Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
34.4 kB
/-
Copyright (c) 2020 Devon Tuma. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Devon Tuma
-/
import ring_theory.localization.away
import ring_theory.ideal.over
import ring_theory.jacobson_ideal
/-!
# Jacobson Rings
The following conditions are equivalent for a ring `R`:
1. Every radical ideal `I` is equal to its Jacobson radical
2. Every radical ideal `I` can be written as an intersection of maximal ideals
3. Every prime ideal `I` is equal to its Jacobson radical
Any ring satisfying any of these equivalent conditions is said to be Jacobson.
Some particular examples of Jacobson rings are also proven.
`is_jacobson_quotient` says that the quotient of a Jacobson ring is Jacobson.
`is_jacobson_localization` says the localization of a Jacobson ring to a single element is Jacobson.
`is_jacobson_polynomial_iff_is_jacobson` says polynomials over a Jacobson ring form a Jacobson ring.
## Main definitions
Let `R` be a commutative ring. Jacobson Rings are defined using the first of the above conditions
* `is_jacobson R` is the proposition that `R` is a Jacobson ring. It is a class,
implemented as the predicate that for any ideal, `I.radical = I` implies `I.jacobson = I`.
## Main statements
* `is_jacobson_iff_prime_eq` is the equivalence between conditions 1 and 3 above.
* `is_jacobson_iff_Inf_maximal` is the equivalence between conditions 1 and 2 above.
* `is_jacobson_of_surjective` says that if `R` is a Jacobson ring and `f : R →+* S` is surjective,
then `S` is also a Jacobson ring
* `is_jacobson_mv_polynomial` says that multi-variate polynomials over a Jacobson ring are Jacobson.
## Tags
Jacobson, Jacobson Ring
-/
namespace ideal
open polynomial
open_locale polynomial
section is_jacobson
variables {R S : Type*} [comm_ring R] [comm_ring S] {I : ideal R}
/-- A ring is a Jacobson ring if for every radical ideal `I`,
the Jacobson radical of `I` is equal to `I`.
See `is_jacobson_iff_prime_eq` and `is_jacobson_iff_Inf_maximal` for equivalent definitions. -/
class is_jacobson (R : Type*) [comm_ring R] : Prop :=
(out' : ∀ (I : ideal R), I.radical = I → I.jacobson = I)
theorem is_jacobson_iff {R} [comm_ring R] :
is_jacobson R ↔ ∀ (I : ideal R), I.radical = I → I.jacobson = I :=
⟨λ h, h.1, λ h, ⟨h⟩⟩
theorem is_jacobson.out {R} [comm_ring R] :
is_jacobson R → ∀ {I : ideal R}, I.radical = I → I.jacobson = I := is_jacobson_iff.1
/-- A ring is a Jacobson ring if and only if for all prime ideals `P`,
the Jacobson radical of `P` is equal to `P`. -/
lemma is_jacobson_iff_prime_eq : is_jacobson R ↔ ∀ P : ideal R, is_prime P → P.jacobson = P :=
begin
refine is_jacobson_iff.trans ⟨λ h I hI, h I (is_prime.radical hI), _⟩,
refine λ h I hI, le_antisymm (λ x hx, _) (λ x hx, mem_Inf.mpr (λ _ hJ, hJ.left hx)),
rw [← hI, radical_eq_Inf I, mem_Inf],
intros P hP,
rw set.mem_set_of_eq at hP,
erw mem_Inf at hx,
erw [← h P hP.right, mem_Inf],
exact λ J hJ, hx ⟨le_trans hP.left hJ.left, hJ.right⟩
end
/-- A ring `R` is Jacobson if and only if for every prime ideal `I`,
`I` can be written as the infimum of some collection of maximal ideals.
Allowing ⊤ in the set `M` of maximal ideals is equivalent, but makes some proofs cleaner. -/
lemma is_jacobson_iff_Inf_maximal : is_jacobson R ↔
∀ {I : ideal R}, I.is_prime → ∃ M : set (ideal R), (∀ J ∈ M, is_maximal J ∨ J = ⊤) ∧ I = Inf M :=
⟨λ H I h, eq_jacobson_iff_Inf_maximal.1 (H.out (is_prime.radical h)),
λ H, is_jacobson_iff_prime_eq.2 (λ P hP, eq_jacobson_iff_Inf_maximal.2 (H hP))⟩
lemma is_jacobson_iff_Inf_maximal' : is_jacobson R ↔
∀ {I : ideal R}, I.is_prime → ∃ M : set (ideal R),
(∀ (J ∈ M) (K : ideal R), J < K → K = ⊤) ∧ I = Inf M :=
⟨λ H I h, eq_jacobson_iff_Inf_maximal'.1 (H.out (is_prime.radical h)),
λ H, is_jacobson_iff_prime_eq.2 (λ P hP, eq_jacobson_iff_Inf_maximal'.2 (H hP))⟩
lemma radical_eq_jacobson [H : is_jacobson R] (I : ideal R) : I.radical = I.jacobson :=
le_antisymm (le_Inf (λ J ⟨hJ, hJ_max⟩, (is_prime.radical_le_iff hJ_max.is_prime).mpr hJ))
((H.out (radical_idem I)) ▸ (jacobson_mono le_radical))
/-- Fields have only two ideals, and the condition holds for both of them. -/
@[priority 100]
instance is_jacobson_field {K : Type*} [field K] : is_jacobson K :=
⟨λ I hI, or.rec_on (eq_bot_or_top I)
(λ h, le_antisymm
(Inf_le ⟨le_of_eq rfl, (eq.symm h) ▸ bot_is_maximal⟩)
((eq.symm h) ▸ bot_le))
(λ h, by rw [h, jacobson_eq_top_iff])⟩
theorem is_jacobson_of_surjective [H : is_jacobson R] :
(∃ (f : R →+* S), function.surjective f) → is_jacobson S :=
begin
rintros ⟨f, hf⟩,
rw is_jacobson_iff_Inf_maximal,
intros p hp,
use map f '' {J : ideal R | comap f p ≤ J ∧ J.is_maximal },
use λ j ⟨J, hJ, hmap⟩, hmap ▸ or.symm (map_eq_top_or_is_maximal_of_surjective f hf hJ.right),
have : p = map f ((comap f p).jacobson),
from (is_jacobson.out' (comap f p) (by rw [← comap_radical, is_prime.radical hp])).symm
▸ (map_comap_of_surjective f hf p).symm,
exact eq.trans this (map_Inf hf (λ J ⟨hJ, _⟩, le_trans (ideal.ker_le_comap f) hJ)),
end
@[priority 100]
instance is_jacobson_quotient [is_jacobson R] : is_jacobson (R ⧸ I) :=
is_jacobson_of_surjective ⟨quotient.mk I, (by rintro ⟨x⟩; use x; refl)⟩
lemma is_jacobson_iso (e : R ≃+* S) : is_jacobson R ↔ is_jacobson S :=
⟨λ h, @is_jacobson_of_surjective _ _ _ _ h ⟨(e : R →+* S), e.surjective⟩,
λ h, @is_jacobson_of_surjective _ _ _ _ h ⟨(e.symm : S →+* R), e.symm.surjective⟩⟩
lemma is_jacobson_of_is_integral [algebra R S] (hRS : algebra.is_integral R S)
(hR : is_jacobson R) : is_jacobson S :=
begin
rw is_jacobson_iff_prime_eq,
introsI P hP,
by_cases hP_top : comap (algebra_map R S) P = ⊤,
{ simp [comap_eq_top_iff.1 hP_top] },
{ haveI : nontrivial (R ⧸ comap (algebra_map R S) P) := quotient.nontrivial hP_top,
rw jacobson_eq_iff_jacobson_quotient_eq_bot,
refine eq_bot_of_comap_eq_bot (is_integral_quotient_of_is_integral hRS) _,
rw [eq_bot_iff, ← jacobson_eq_iff_jacobson_quotient_eq_bot.1 ((is_jacobson_iff_prime_eq.1 hR)
(comap (algebra_map R S) P) (comap_is_prime _ _)), comap_jacobson],
refine Inf_le_Inf (λ J hJ, _),
simp only [true_and, set.mem_image, bot_le, set.mem_set_of_eq],
haveI : J.is_maximal, { simpa using hJ },
exact exists_ideal_over_maximal_of_is_integral (is_integral_quotient_of_is_integral hRS) J
(comap_bot_le_of_injective _ algebra_map_quotient_injective) }
end
lemma is_jacobson_of_is_integral' (f : R →+* S) (hf : f.is_integral)
(hR : is_jacobson R) : is_jacobson S :=
@is_jacobson_of_is_integral _ _ _ _ f.to_algebra hf hR
end is_jacobson
section localization
open is_localization submonoid
variables {R S : Type*} [comm_ring R] [comm_ring S] {I : ideal R}
variables (y : R) [algebra R S] [is_localization.away y S]
lemma disjoint_powers_iff_not_mem (hI : I.radical = I) :
disjoint ((submonoid.powers y) : set R) ↑I ↔ y ∉ I.1 :=
begin
refine ⟨λ h, set.disjoint_left.1 h (mem_powers _), λ h, (disjoint_iff).mpr (eq_bot_iff.mpr _)⟩,
rintros x ⟨⟨n, rfl⟩, hx'⟩,
rw [← hI] at hx',
exact absurd (hI ▸ mem_radical_of_pow_mem hx' : y ∈ I.carrier) h
end
variables (S)
/-- If `R` is a Jacobson ring, then maximal ideals in the localization at `y`
correspond to maximal ideals in the original ring `R` that don't contain `y`.
This lemma gives the correspondence in the particular case of an ideal and its comap.
See `le_rel_iso_of_maximal` for the more general relation isomorphism -/
lemma is_maximal_iff_is_maximal_disjoint [H : is_jacobson R] (J : ideal S) :
J.is_maximal ↔ (comap (algebra_map R S) J).is_maximal ∧ y ∉ ideal.comap (algebra_map R S) J :=
begin
split,
{ refine λ h, ⟨_, λ hy, h.ne_top (ideal.eq_top_of_is_unit_mem _ hy
(map_units _ ⟨y, submonoid.mem_powers _⟩))⟩,
have hJ : J.is_prime := is_maximal.is_prime h,
rw is_prime_iff_is_prime_disjoint (submonoid.powers y) at hJ,
have : y ∉ (comap (algebra_map R S) J).1 :=
set.disjoint_left.1 hJ.right (submonoid.mem_powers _),
erw [← H.out (is_prime.radical hJ.left), mem_Inf] at this,
push_neg at this,
rcases this with ⟨I, hI, hI'⟩,
convert hI.right,
by_cases hJ : J = map (algebra_map R S) I,
{ rw [hJ, comap_map_of_is_prime_disjoint (powers y) S I (is_maximal.is_prime hI.right)],
rwa disjoint_powers_iff_not_mem y (is_maximal.is_prime hI.right).radical },
{ have hI_p : (map (algebra_map R S) I).is_prime,
{ refine is_prime_of_is_prime_disjoint (powers y) _ I hI.right.is_prime _,
rwa disjoint_powers_iff_not_mem y (is_maximal.is_prime hI.right).radical },
have : J ≤ map (algebra_map R S) I :=
(map_comap (submonoid.powers y) S J) ▸ (map_mono hI.left),
exact absurd (h.1.2 _ (lt_of_le_of_ne this hJ)) hI_p.1 } },
{ refine λ h, ⟨⟨λ hJ, h.1.ne_top (eq_top_iff.2 _), λ I hI, _⟩⟩,
{ rwa [eq_top_iff, ← (is_localization.order_embedding (powers y) S).le_iff_le] at hJ },
{ have := congr_arg (map (algebra_map R S)) (h.1.1.2 _ ⟨comap_mono (le_of_lt hI), _⟩),
rwa [map_comap (powers y) S I, map_top] at this,
refine λ hI', hI.right _,
rw [← map_comap (powers y) S I, ← map_comap (powers y) S J],
exact map_mono hI' } }
end
variables {S}
/-- If `R` is a Jacobson ring, then maximal ideals in the localization at `y`
correspond to maximal ideals in the original ring `R` that don't contain `y`.
This lemma gives the correspondence in the particular case of an ideal and its map.
See `le_rel_iso_of_maximal` for the more general statement, and the reverse of this implication -/
lemma is_maximal_of_is_maximal_disjoint [is_jacobson R] (I : ideal R) (hI : I.is_maximal)
(hy : y ∉ I) : (map (algebra_map R S) I).is_maximal :=
begin
rw [is_maximal_iff_is_maximal_disjoint S y,
comap_map_of_is_prime_disjoint (powers y) S I (is_maximal.is_prime hI)
((disjoint_powers_iff_not_mem y (is_maximal.is_prime hI).radical).2 hy)],
exact ⟨hI, hy⟩
end
/-- If `R` is a Jacobson ring, then maximal ideals in the localization at `y`
correspond to maximal ideals in the original ring `R` that don't contain `y` -/
def order_iso_of_maximal [is_jacobson R] :
{p : ideal S // p.is_maximal} ≃o {p : ideal R // p.is_maximal ∧ y ∉ p} :=
{ to_fun := λ p,
⟨ideal.comap (algebra_map R S) p.1, (is_maximal_iff_is_maximal_disjoint S y p.1).1 p.2⟩,
inv_fun := λ p,
⟨ideal.map (algebra_map R S) p.1, is_maximal_of_is_maximal_disjoint y p.1 p.2.1 p.2.2⟩,
left_inv := λ J, subtype.eq (map_comap (powers y) S J),
right_inv := λ I, subtype.eq (comap_map_of_is_prime_disjoint _ _ I.1 (is_maximal.is_prime I.2.1)
((disjoint_powers_iff_not_mem y I.2.1.is_prime.radical).2 I.2.2)),
map_rel_iff' := λ I I', ⟨λ h, (show I.val ≤ I'.val,
from (map_comap (powers y) S I.val) ▸ (map_comap (powers y) S I'.val) ▸ (ideal.map_mono h)),
λ h x hx, h hx⟩ }
include y
/-- If `S` is the localization of the Jacobson ring `R` at the submonoid generated by `y : R`, then
`S` is Jacobson. -/
lemma is_jacobson_localization [H : is_jacobson R] : is_jacobson S :=
begin
rw is_jacobson_iff_prime_eq,
refine λ P' hP', le_antisymm _ le_jacobson,
obtain ⟨hP', hPM⟩ := (is_localization.is_prime_iff_is_prime_disjoint (powers y) S P').mp hP',
have hP := H.out (is_prime.radical hP'),
refine (le_of_eq (is_localization.map_comap (powers y) S P'.jacobson).symm).trans
((map_mono _).trans (le_of_eq (is_localization.map_comap (powers y) S P'))),
have : Inf { I : ideal R | comap (algebra_map R S) P' ≤ I ∧ I.is_maximal ∧ y ∉ I } ≤
comap (algebra_map R S) P',
{ intros x hx,
have hxy : x * y ∈ (comap (algebra_map R S) P').jacobson,
{ rw [ideal.jacobson, mem_Inf],
intros J hJ,
by_cases y ∈ J,
{ exact J.mul_mem_left x h },
{ exact J.mul_mem_right y ((mem_Inf.1 hx) ⟨hJ.left, ⟨hJ.right, h⟩⟩) } },
rw hP at hxy,
cases hP'.mem_or_mem hxy with hxy hxy,
{ exact hxy },
{ exact (hPM ⟨submonoid.mem_powers _, hxy⟩).elim } },
refine le_trans _ this,
rw [ideal.jacobson, comap_Inf', Inf_eq_infi],
refine infi_le_infi_of_subset (λ I hI, ⟨map (algebra_map R S) I, ⟨_, _⟩⟩),
{ exact ⟨le_trans (le_of_eq ((is_localization.map_comap (powers y) S P').symm)) (map_mono hI.1),
is_maximal_of_is_maximal_disjoint y _ hI.2.1 hI.2.2⟩ },
{ exact is_localization.comap_map_of_is_prime_disjoint _ S I (is_maximal.is_prime hI.2.1)
((disjoint_powers_iff_not_mem y hI.2.1.is_prime.radical).2 hI.2.2) }
end
end localization
namespace polynomial
open polynomial
section comm_ring
variables {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S]
variables {Rₘ Sₘ : Type*} [comm_ring Rₘ] [comm_ring Sₘ]
/-- If `I` is a prime ideal of `polynomial R` and `pX ∈ I` is a non-constant polynomial,
then the map `R →+* R[x]/I` descends to an integral map when localizing at `pX.leading_coeff`.
In particular `X` is integral because it satisfies `pX`, and constants are trivially integral,
so integrality of the entire extension follows by closure under addition and multiplication. -/
lemma is_integral_is_localization_polynomial_quotient
(P : ideal R[X]) (pX : R[X]) (hpX : pX ∈ P)
[algebra (R ⧸ P.comap (C : R →+* _)) Rₘ]
[is_localization.away (pX.map (quotient.mk (P.comap (C : R →+* R[X])))).leading_coeff Rₘ]
[algebra (R[X] ⧸ P) Sₘ]
[is_localization ((submonoid.powers (pX.map
(quotient.mk (P.comap (C : R →+* R[X])))).leading_coeff).map
(quotient_map P C le_rfl) : submonoid (R[X] ⧸ P)) Sₘ] :
(is_localization.map Sₘ (quotient_map P C le_rfl)
((submonoid.powers
(pX.map (quotient.mk (P.comap (C : R →+* R[X])))).leading_coeff).le_comap_map) : Rₘ →+* _)
.is_integral :=
begin
let P' : ideal R := P.comap C,
let M : submonoid (R ⧸ P') :=
submonoid.powers (pX.map (quotient.mk (P.comap (C : R →+* R[X])))).leading_coeff,
let M' : submonoid (R[X] ⧸ P) :=
(submonoid.powers (pX.map (quotient.mk (P.comap (C : R →+* R[X])))).leading_coeff).map
(quotient_map P C le_rfl),
let φ : R ⧸ P' →+* R[X] ⧸ P := quotient_map P C le_rfl,
let φ' : Rₘ →+* Sₘ := is_localization.map Sₘ φ M.le_comap_map,
have hφ' : φ.comp (quotient.mk P') = (quotient.mk P).comp C := rfl,
intro p,
obtain ⟨⟨p', ⟨q, hq⟩⟩, hp⟩ := is_localization.surj M' p,
suffices : φ'.is_integral_elem (algebra_map _ _ p'),
{ obtain ⟨q', hq', rfl⟩ := hq,
obtain ⟨q'', hq''⟩ := is_unit_iff_exists_inv'.1 (is_localization.map_units Rₘ (⟨q', hq'⟩ : M)),
refine φ'.is_integral_of_is_integral_mul_unit p (algebra_map _ _ (φ q')) q'' _ (hp.symm ▸ this),
convert trans (trans (φ'.map_mul _ _).symm (congr_arg φ' hq'')) φ'.map_one using 2,
rw [← φ'.comp_apply, is_localization.map_comp, ring_hom.comp_apply, subtype.coe_mk] },
refine is_integral_of_mem_closure''
(((algebra_map _ Sₘ).comp (quotient.mk P)) '' (insert X {p | p.degree ≤ 0})) _ _ _,
{ rintros x ⟨p, hp, rfl⟩,
refine hp.rec_on (λ hy, _) (λ hy, _),
{ refine hy.symm ▸ (φ.is_integral_elem_localization_at_leading_coeff ((quotient.mk P) X)
(pX.map (quotient.mk P')) _ M ⟨1, pow_one _⟩),
rwa [eval₂_map, hφ', ← hom_eval₂, quotient.eq_zero_iff_mem, eval₂_C_X] },
{ rw [set.mem_set_of_eq, degree_le_zero_iff] at hy,
refine hy.symm ▸ ⟨X - C (algebra_map _ _ ((quotient.mk P') (p.coeff 0))), monic_X_sub_C _, _⟩,
simp only [eval₂_sub, eval₂_C, eval₂_X],
rw [sub_eq_zero, ← φ'.comp_apply, is_localization.map_comp],
refl } },
{ obtain ⟨p, rfl⟩ := quotient.mk_surjective p',
refine polynomial.induction_on p
(λ r, subring.subset_closure $ set.mem_image_of_mem _ (or.inr degree_C_le))
(λ _ _ h1 h2, _) (λ n _ hr, _),
{ convert subring.add_mem _ h1 h2,
rw [ring_hom.map_add, ring_hom.map_add] },
{ rw [pow_succ X n, mul_comm X, ← mul_assoc, ring_hom.map_mul, ring_hom.map_mul],
exact subring.mul_mem _ hr (subring.subset_closure (set.mem_image_of_mem _ (or.inl rfl))) } },
end
/-- If `f : R → S` descends to an integral map in the localization at `x`,
and `R` is a Jacobson ring, then the intersection of all maximal ideals in `S` is trivial -/
lemma jacobson_bot_of_integral_localization
{R : Type*} [comm_ring R] [is_domain R] [is_jacobson R]
(Rₘ Sₘ : Type*) [comm_ring Rₘ] [comm_ring Sₘ]
(φ : R →+* S) (hφ : function.injective φ) (x : R) (hx : x ≠ 0)
[algebra R Rₘ] [is_localization.away x Rₘ]
[algebra S Sₘ] [is_localization ((submonoid.powers x).map φ : submonoid S) Sₘ]
(hφ' : ring_hom.is_integral
(is_localization.map Sₘ φ (submonoid.powers x).le_comap_map : Rₘ →+* Sₘ)) :
(⊥ : ideal S).jacobson = (⊥ : ideal S) :=
begin
have hM : ((submonoid.powers x).map φ : submonoid S) ≤ non_zero_divisors S :=
map_le_non_zero_divisors_of_injective φ hφ (powers_le_non_zero_divisors_of_no_zero_divisors hx),
letI : is_domain Sₘ := is_localization.is_domain_of_le_non_zero_divisors _ hM,
let φ' : Rₘ →+* Sₘ := is_localization.map _ φ (submonoid.powers x).le_comap_map,
suffices : ∀ I : ideal Sₘ, I.is_maximal → (I.comap (algebra_map S Sₘ)).is_maximal,
{ have hϕ' : comap (algebra_map S Sₘ) (⊥ : ideal Sₘ) = (⊥ : ideal S),
{ rw [← ring_hom.ker_eq_comap_bot, ← ring_hom.injective_iff_ker_eq_bot],
exact is_localization.injective Sₘ hM },
have hSₘ : is_jacobson Sₘ := is_jacobson_of_is_integral' φ' hφ' (is_jacobson_localization x),
refine eq_bot_iff.mpr (le_trans _ (le_of_eq hϕ')),
rw [← hSₘ.out radical_bot_of_is_domain, comap_jacobson],
exact Inf_le_Inf (λ j hj, ⟨bot_le, let ⟨J, hJ⟩ := hj in hJ.2 ▸ this J hJ.1.2⟩) },
introsI I hI,
-- Remainder of the proof is pulling and pushing ideals around the square and the quotient square
haveI : (I.comap (algebra_map S Sₘ)).is_prime := comap_is_prime _ I,
haveI : (I.comap φ').is_prime := comap_is_prime φ' I,
haveI : (⊥ : ideal (S ⧸ I.comap (algebra_map S Sₘ))).is_prime := bot_prime,
have hcomm: φ'.comp (algebra_map R Rₘ) = (algebra_map S Sₘ).comp φ := is_localization.map_comp _,
let f := quotient_map (I.comap (algebra_map S Sₘ)) φ le_rfl,
let g := quotient_map I (algebra_map S Sₘ) le_rfl,
have := is_maximal_comap_of_is_integral_of_is_maximal' φ' hφ' I
(by convert hI; casesI _inst_4; refl),
have := ((is_maximal_iff_is_maximal_disjoint Rₘ x _).1 this).left,
have : ((I.comap (algebra_map S Sₘ)).comap φ).is_maximal,
{ rwa [comap_comap, hcomm, ← comap_comap] at this },
rw ← bot_quotient_is_maximal_iff at this ⊢,
refine is_maximal_of_is_integral_of_is_maximal_comap' f _ ⊥
((eq_bot_iff.2 (comap_bot_le_of_injective f quotient_map_injective)).symm ▸ this),
exact f.is_integral_tower_bot_of_is_integral g quotient_map_injective
((comp_quotient_map_eq_of_comp_eq hcomm I).symm ▸
(ring_hom.is_integral_trans _ _ (ring_hom.is_integral_of_surjective _
(is_localization.surjective_quotient_map_of_maximal_of_localization (submonoid.powers x) Rₘ
(by rwa [comap_comap, hcomm, ← bot_quotient_is_maximal_iff])))
(ring_hom.is_integral_quotient_of_is_integral _ hφ'))),
end
/-- Used to bootstrap the proof of `is_jacobson_polynomial_iff_is_jacobson`.
That theorem is more general and should be used instead of this one. -/
private lemma is_jacobson_polynomial_of_domain
(R : Type*) [comm_ring R] [is_domain R] [hR : is_jacobson R]
(P : ideal R[X]) [is_prime P] (hP : ∀ (x : R), C x ∈ P → x = 0) :
P.jacobson = P :=
begin
by_cases Pb : P = ⊥,
{ exact Pb.symm ▸ jacobson_bot_polynomial_of_jacobson_bot
(hR.out radical_bot_of_is_domain) },
{ rw jacobson_eq_iff_jacobson_quotient_eq_bot,
haveI : (P.comap (C : R →+* R[X])).is_prime := comap_is_prime C P,
obtain ⟨p, pP, p0⟩ := exists_nonzero_mem_of_ne_bot Pb hP,
let x := (polynomial.map (quotient.mk (comap (C : R →+* _) P)) p).leading_coeff,
have hx : x ≠ 0 := by rwa [ne.def, leading_coeff_eq_zero],
refine jacobson_bot_of_integral_localization
(localization.away x)
(localization ((submonoid.powers x).map (P.quotient_map C le_rfl) :
submonoid (R[X] ⧸ P)))
(quotient_map P C le_rfl) quotient_map_injective
x hx
_,
-- `convert` is noticeably faster than `exact` here:
convert is_integral_is_localization_polynomial_quotient P p pP }
end
lemma is_jacobson_polynomial_of_is_jacobson (hR : is_jacobson R) :
is_jacobson R[X] :=
begin
refine is_jacobson_iff_prime_eq.mpr (λ I, _),
introI hI,
let R' : subring (R[X] ⧸ I) := ((quotient.mk I).comp C).range,
let i : R →+* R' := ((quotient.mk I).comp C).range_restrict,
have hi : function.surjective (i : R → R') := ((quotient.mk I).comp C).range_restrict_surjective,
have hi' : (polynomial.map_ring_hom i : R[X] →+* R'[X]).ker ≤ I,
{ refine λ f hf, polynomial_mem_ideal_of_coeff_mem_ideal I f (λ n, _),
replace hf := congr_arg (λ (g : polynomial (((quotient.mk I).comp C).range)), g.coeff n) hf,
change (polynomial.map ((quotient.mk I).comp C).range_restrict f).coeff n = 0 at hf,
rw [coeff_map, subtype.ext_iff] at hf,
rwa [mem_comap, ← quotient.eq_zero_iff_mem, ← ring_hom.comp_apply], },
haveI := map_is_prime_of_surjective
(show function.surjective (map_ring_hom i), from map_surjective i hi) hi',
suffices : (I.map (polynomial.map_ring_hom i)).jacobson = (I.map (polynomial.map_ring_hom i)),
{ replace this := congr_arg (comap (polynomial.map_ring_hom i)) this,
rw [← map_jacobson_of_surjective _ hi',
comap_map_of_surjective _ _, comap_map_of_surjective _ _] at this,
refine le_antisymm (le_trans (le_sup_of_le_left le_rfl)
(le_trans (le_of_eq this) (sup_le le_rfl hi'))) le_jacobson,
all_goals {exact polynomial.map_surjective i hi} },
exact @is_jacobson_polynomial_of_domain R' _ _ (is_jacobson_of_surjective ⟨i, hi⟩)
(map (map_ring_hom i) I) _ (eq_zero_of_polynomial_mem_map_range I),
end
theorem is_jacobson_polynomial_iff_is_jacobson :
is_jacobson R[X] ↔ is_jacobson R :=
begin
refine ⟨_, is_jacobson_polynomial_of_is_jacobson⟩,
introI H,
exact is_jacobson_of_surjective ⟨eval₂_ring_hom (ring_hom.id _) 1, λ x,
⟨C x, by simp only [coe_eval₂_ring_hom, ring_hom.id_apply, eval₂_C]⟩⟩,
end
instance [is_jacobson R] : is_jacobson R[X] :=
is_jacobson_polynomial_iff_is_jacobson.mpr ‹is_jacobson R›
end comm_ring
section
variables {R : Type*} [comm_ring R] [is_jacobson R]
variables (P : ideal R[X]) [hP : P.is_maximal]
include P hP
lemma is_maximal_comap_C_of_is_maximal [nontrivial R] (hP' : ∀ (x : R), C x ∈ P → x = 0) :
is_maximal (comap (C : R →+* R[X]) P : ideal R) :=
begin
haveI hp'_prime : (P.comap (C : R →+* R[X]) : ideal R).is_prime := comap_is_prime C P,
obtain ⟨m, hm⟩ := submodule.nonzero_mem_of_bot_lt (bot_lt_of_maximal P polynomial_not_is_field),
have : (m : R[X]) ≠ 0, rwa [ne.def, submodule.coe_eq_zero],
let φ : R ⧸ P.comap (C : R →+* R[X]) →+* R[X] ⧸ P := quotient_map P (C : R →+* R[X]) le_rfl,
let M : submonoid (R ⧸ P.comap C) :=
submonoid.powers ((m : R[X]).map
(quotient.mk (P.comap (C : R →+* R[X]) : ideal R))).leading_coeff,
rw ← bot_quotient_is_maximal_iff,
have hp0 : ((m : R[X]).map
(quotient.mk (P.comap (C : R →+* R[X]) : ideal R))).leading_coeff ≠ 0 :=
λ hp0', this $ map_injective (quotient.mk (P.comap (C : R →+* R[X]) : ideal R))
((injective_iff_map_eq_zero (quotient.mk (P.comap (C : R →+* R[X]) : ideal R))).2 (λ x hx,
by rwa [quotient.eq_zero_iff_mem, (by rwa eq_bot_iff : (P.comap C : ideal R) = ⊥)] at hx))
(by simpa only [leading_coeff_eq_zero, polynomial.map_zero] using hp0'),
have hM : (0 : R ⧸ P.comap C) ∉ M := λ ⟨n, hn⟩, hp0 (pow_eq_zero hn),
suffices : (⊥ : ideal (localization M)).is_maximal,
{ rw ← is_localization.comap_map_of_is_prime_disjoint M (localization M) ⊥ bot_prime
(λ x hx, hM (hx.2 ▸ hx.1)),
refine ((is_maximal_iff_is_maximal_disjoint (localization M) _ _).mp (by rwa map_bot)).1,
swap, exact localization.is_localization },
let M' : submonoid (R[X] ⧸ P) := M.map φ,
have hM' : (0 : R[X] ⧸ P) ∉ M' :=
λ ⟨z, hz⟩, hM (quotient_map_injective (trans hz.2 φ.map_zero.symm) ▸ hz.1),
haveI : is_domain (localization M') :=
is_localization.is_domain_localization (le_non_zero_divisors_of_no_zero_divisors hM'),
suffices : (⊥ : ideal (localization M')).is_maximal,
{ rw le_antisymm bot_le (comap_bot_le_of_injective _ (is_localization.map_injective_of_injective
M (localization M) (localization M') quotient_map_injective )),
refine is_maximal_comap_of_is_integral_of_is_maximal' _ _ ⊥ this,
apply is_integral_is_localization_polynomial_quotient P _ (submodule.coe_mem m) },
rw (map_bot.symm : (⊥ : ideal (localization M')) =
map (algebra_map (R[X] ⧸ P) (localization M')) ⊥),
let bot_maximal := ((bot_quotient_is_maximal_iff _).mpr hP),
refine map.is_maximal (algebra_map _ _) (is_field.localization_map_bijective hM' _) bot_maximal,
rwa [← quotient.maximal_ideal_iff_is_field_quotient, ← bot_quotient_is_maximal_iff],
end
/-- Used to bootstrap the more general `quotient_mk_comp_C_is_integral_of_jacobson` -/
private lemma quotient_mk_comp_C_is_integral_of_jacobson' [nontrivial R] (hR : is_jacobson R)
(hP' : ∀ (x : R), C x ∈ P → x = 0) :
((quotient.mk P).comp C : R →+* R[X] ⧸ P).is_integral :=
begin
refine (is_integral_quotient_map_iff _).mp _,
let P' : ideal R := P.comap C,
obtain ⟨pX, hpX, hp0⟩ :=
exists_nonzero_mem_of_ne_bot (ne_of_lt (bot_lt_of_maximal P polynomial_not_is_field)).symm hP',
let M : submonoid (R ⧸ P') := submonoid.powers (pX.map (quotient.mk P')).leading_coeff,
let φ : R ⧸ P' →+* R[X] ⧸ P := quotient_map P C le_rfl,
haveI hp'_prime : P'.is_prime := comap_is_prime C P,
have hM : (0 : R ⧸ P') ∉ M := λ ⟨n, hn⟩, hp0 $ leading_coeff_eq_zero.mp (pow_eq_zero hn),
let M' : submonoid (R[X] ⧸ P) := M.map (quotient_map P C le_rfl),
refine ((quotient_map P C le_rfl).is_integral_tower_bot_of_is_integral
(algebra_map _ (localization M')) _ _),
{ refine is_localization.injective (localization M')
(show M' ≤ _, from le_non_zero_divisors_of_no_zero_divisors (λ hM', hM _)),
exact (let ⟨z, zM, z0⟩ := hM' in (quotient_map_injective (trans z0 φ.map_zero.symm)) ▸ zM) },
{ rw ← is_localization.map_comp M.le_comap_map,
refine ring_hom.is_integral_trans (algebra_map (R ⧸ P') (localization M))
(is_localization.map (localization M') _ M.le_comap_map) _ _,
{ exact (algebra_map (R ⧸ P') (localization M)).is_integral_of_surjective
(is_field.localization_map_bijective hM ((quotient.maximal_ideal_iff_is_field_quotient _).mp
(is_maximal_comap_C_of_is_maximal P hP'))).2 },
{ -- `convert` here is faster than `exact`, and this proof is near the time limit.
convert is_integral_is_localization_polynomial_quotient P pX hpX } }
end
/-- If `R` is a Jacobson ring, and `P` is a maximal ideal of `polynomial R`,
then `R → R[X]/P` is an integral map. -/
lemma quotient_mk_comp_C_is_integral_of_jacobson :
((quotient.mk P).comp C : R →+* R[X] ⧸ P).is_integral :=
begin
let P' : ideal R := P.comap C,
haveI : P'.is_prime := comap_is_prime C P,
let f : R[X] →+* polynomial (R ⧸ P') := polynomial.map_ring_hom (quotient.mk P'),
have hf : function.surjective f := map_surjective (quotient.mk P') quotient.mk_surjective,
have hPJ : P = (P.map f).comap f,
{ rw comap_map_of_surjective _ hf,
refine le_antisymm (le_sup_of_le_left le_rfl) (sup_le le_rfl _),
refine λ p hp, polynomial_mem_ideal_of_coeff_mem_ideal P p (λ n, quotient.eq_zero_iff_mem.mp _),
simpa only [coeff_map, coe_map_ring_hom] using (polynomial.ext_iff.mp hp) n },
refine ring_hom.is_integral_tower_bot_of_is_integral _ _ (injective_quotient_le_comap_map P) _,
rw ← quotient_mk_maps_eq,
refine ring_hom.is_integral_trans _ _
((quotient.mk P').is_integral_of_surjective quotient.mk_surjective) _,
apply quotient_mk_comp_C_is_integral_of_jacobson' _ _ (λ x hx, _),
any_goals { exact ideal.is_jacobson_quotient },
{ exact or.rec_on (map_eq_top_or_is_maximal_of_surjective f hf hP)
(λ h, absurd (trans (h ▸ hPJ : P = comap f ⊤) comap_top : P = ⊤) hP.ne_top) id },
{ apply_instance, },
{ obtain ⟨z, rfl⟩ := quotient.mk_surjective x,
rwa [quotient.eq_zero_iff_mem, mem_comap, hPJ, mem_comap, coe_map_ring_hom, map_C] }
end
lemma is_maximal_comap_C_of_is_jacobson :
(P.comap (C : R →+* R[X])).is_maximal :=
begin
rw [← @mk_ker _ _ P, ring_hom.ker_eq_comap_bot, comap_comap],
exact is_maximal_comap_of_is_integral_of_is_maximal' _
(quotient_mk_comp_C_is_integral_of_jacobson P) ⊥ ((bot_quotient_is_maximal_iff _).mpr hP),
end
omit P hP
lemma comp_C_integral_of_surjective_of_jacobson
{S : Type*} [field S] (f : R[X] →+* S) (hf : function.surjective f) :
(f.comp C).is_integral :=
begin
haveI : (f.ker).is_maximal := ring_hom.ker_is_maximal_of_surjective f hf,
let g : R[X] ⧸ f.ker →+* S := ideal.quotient.lift f.ker f (λ _ h, h),
have hfg : (g.comp (quotient.mk f.ker)) = f := ring_hom_ext' rfl rfl,
rw [← hfg, ring_hom.comp_assoc],
refine ring_hom.is_integral_trans _ g (quotient_mk_comp_C_is_integral_of_jacobson f.ker)
(g.is_integral_of_surjective _), --(quotient.lift_surjective f.ker f _ hf)),
rw [← hfg] at hf,
exact function.surjective.of_comp hf,
end
end
end polynomial
open mv_polynomial ring_hom
namespace mv_polynomial
lemma is_jacobson_mv_polynomial_fin {R : Type*} [comm_ring R] [H : is_jacobson R] :
∀ (n : ℕ), is_jacobson (mv_polynomial (fin n) R)
| 0 := ((is_jacobson_iso ((rename_equiv R
(equiv.equiv_pempty (fin 0))).to_ring_equiv.trans (is_empty_ring_equiv R pempty))).mpr H)
| (n+1) := (is_jacobson_iso (fin_succ_equiv R n).to_ring_equiv).2
(polynomial.is_jacobson_polynomial_iff_is_jacobson.2 (is_jacobson_mv_polynomial_fin n))
/-- General form of the nullstellensatz for Jacobson rings, since in a Jacobson ring we have
`Inf {P maximal | P ≥ I} = Inf {P prime | P ≥ I} = I.radical`. Fields are always Jacobson,
and in that special case this is (most of) the classical Nullstellensatz,
since `I(V(I))` is the intersection of maximal ideals containing `I`, which is then `I.radical` -/
instance {R : Type*} [comm_ring R] {ι : Type*} [fintype ι] [is_jacobson R] :
is_jacobson (mv_polynomial ι R) :=
begin
haveI := classical.dec_eq ι,
let e := fintype.equiv_fin ι,
rw is_jacobson_iso (rename_equiv R e).to_ring_equiv,
exact is_jacobson_mv_polynomial_fin _
end
variables {n : ℕ}
lemma quotient_mk_comp_C_is_integral_of_jacobson
{R : Type*} [comm_ring R] [is_jacobson R]
(P : ideal (mv_polynomial (fin n) R)) [P.is_maximal] :
((quotient.mk P).comp mv_polynomial.C : R →+* mv_polynomial _ R ⧸ P).is_integral :=
begin
unfreezingI {induction n with n IH},
{ refine ring_hom.is_integral_of_surjective _ (function.surjective.comp quotient.mk_surjective _),
exact C_surjective (fin 0) },
{ rw [← fin_succ_equiv_comp_C_eq_C, ← ring_hom.comp_assoc, ← ring_hom.comp_assoc,
← quotient_map_comp_mk le_rfl, ring_hom.comp_assoc (polynomial.C),
← quotient_map_comp_mk le_rfl, ring_hom.comp_assoc, ring_hom.comp_assoc,
← quotient_map_comp_mk le_rfl, ← ring_hom.comp_assoc (quotient.mk _)],
refine ring_hom.is_integral_trans _ _ _ _,
{ refine ring_hom.is_integral_trans _ _ (is_integral_of_surjective _ quotient.mk_surjective) _,
refine ring_hom.is_integral_trans _ _ _ _,
{ apply (is_integral_quotient_map_iff _).mpr (IH _),
apply polynomial.is_maximal_comap_C_of_is_jacobson _,
{ exact mv_polynomial.is_jacobson_mv_polynomial_fin n },
{ apply comap_is_maximal_of_surjective,
exact (fin_succ_equiv R n).symm.surjective } },
{ refine (is_integral_quotient_map_iff _).mpr _,
rw ← quotient_map_comp_mk le_rfl,
refine ring_hom.is_integral_trans _ _ _ ((is_integral_quotient_map_iff _).mpr _),
{ exact ring_hom.is_integral_of_surjective _ quotient.mk_surjective },
{ apply polynomial.quotient_mk_comp_C_is_integral_of_jacobson _,
{ exact mv_polynomial.is_jacobson_mv_polynomial_fin n },
{ exact comap_is_maximal_of_surjective _ (fin_succ_equiv R n).symm.surjective } } } },
{ refine (is_integral_quotient_map_iff _).mpr _,
refine ring_hom.is_integral_trans _ _ _ (is_integral_of_surjective _ quotient.mk_surjective),
exact ring_hom.is_integral_of_surjective _ (fin_succ_equiv R n).symm.surjective } }
end
lemma comp_C_integral_of_surjective_of_jacobson
{R : Type*} [comm_ring R] [is_jacobson R]
{σ : Type*} [fintype σ] {S : Type*} [field S] (f : mv_polynomial σ R →+* S)
(hf : function.surjective f) : (f.comp C).is_integral :=
begin
have e := (fintype.equiv_fin σ).symm,
let f' : mv_polynomial (fin _) R →+* S :=
f.comp (rename_equiv R e).to_ring_equiv.to_ring_hom,
have hf' : function.surjective f' :=
((function.surjective.comp hf (rename_equiv R e).surjective)),
have : (f'.comp C).is_integral,
{ haveI : (f'.ker).is_maximal := ker_is_maximal_of_surjective f' hf',
let g : mv_polynomial _ R ⧸ f'.ker →+* S := ideal.quotient.lift f'.ker f' (λ _ h, h),
have hfg : (g.comp (quotient.mk f'.ker)) = f' := ring_hom_ext (λ r, rfl) (λ i, rfl),
rw [← hfg, ring_hom.comp_assoc],
refine ring_hom.is_integral_trans _ g (quotient_mk_comp_C_is_integral_of_jacobson f'.ker)
(g.is_integral_of_surjective _),
rw ← hfg at hf',
exact function.surjective.of_comp hf' },
rw ring_hom.comp_assoc at this,
convert this,
refine ring_hom.ext (λ x, _),
exact ((rename_equiv R e).commutes' x).symm,
end
end mv_polynomial
end ideal