Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen, Filippo A. E. Nuccio | |
-/ | |
import algebra.big_operators.finprod | |
import ring_theory.integral_closure | |
import ring_theory.localization.integer | |
import ring_theory.localization.submodule | |
import ring_theory.noetherian | |
import ring_theory.principal_ideal_domain | |
import tactic.field_simp | |
/-! | |
# Fractional ideals | |
This file defines fractional ideals of an integral domain and proves basic facts about them. | |
## Main definitions | |
Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the | |
natural ring hom from `R` to `P`. | |
* `is_fractional` defines which `R`-submodules of `P` are fractional ideals | |
* `fractional_ideal S P` is the type of fractional ideals in `P` | |
* `has_coe_t (ideal R) (fractional_ideal S P)` instance | |
* `comm_semiring (fractional_ideal S P)` instance: | |
the typical ideal operations generalized to fractional ideals | |
* `lattice (fractional_ideal S P)` instance | |
* `map` is the pushforward of a fractional ideal along an algebra morphism | |
Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). | |
* `fractional_ideal R⁰ K` is the type of fractional ideals in the field of fractions | |
* `has_div (fractional_ideal R⁰ K)` instance: | |
the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) | |
## Main statements | |
* `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone | |
* `prod_one_self_div_eq` states that `1 / I` is the inverse of `I` if one exists | |
* `is_noetherian` states that every fractional ideal of a noetherian integral domain is noetherian | |
## Implementation notes | |
Fractional ideals are considered equal when they contain the same elements, | |
independent of the denominator `a : R` such that `a I ⊆ R`. | |
Thus, we define `fractional_ideal` to be the subtype of the predicate `is_fractional`, | |
instead of having `fractional_ideal` be a structure of which `a` is a field. | |
Most definitions in this file specialize operations from submodules to fractional ideals, | |
proving that the result of this operation is fractional if the input is fractional. | |
Exceptions to this rule are defining `(+) := (⊔)` and `⊥ := 0`, | |
in order to re-use their respective proof terms. | |
We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑⊥ = ↑0`. | |
Many results in fact do not need that `P` is a localization, only that `P` is an | |
`R`-algebra. We omit the `is_localization` parameter whenever this is practical. | |
Similarly, we don't assume that the localization is a field until we need it to | |
define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, | |
making the localization a field. | |
## References | |
* https://en.wikipedia.org/wiki/Fractional_ideal | |
## Tags | |
fractional ideal, fractional ideals, invertible ideal | |
-/ | |
open is_localization | |
open_locale pointwise | |
open_locale non_zero_divisors | |
section defs | |
variables {R : Type*} [comm_ring R] {S : submonoid R} {P : Type*} [comm_ring P] | |
variables [algebra R P] | |
variables (S) | |
/-- A submodule `I` is a fractional ideal if `a I ⊆ R` for some `a ≠ 0`. -/ | |
def is_fractional (I : submodule R P) := | |
∃ a ∈ S, ∀ b ∈ I, is_integer R (a • b) | |
variables (S P) | |
/-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. | |
More precisely, let `P` be a localization of `R` at some submonoid `S`, | |
then a fractional ideal `I ⊆ P` is an `R`-submodule of `P`, | |
such that there is a nonzero `a : R` with `a I ⊆ R`. | |
-/ | |
def fractional_ideal := | |
{I : submodule R P // is_fractional S I} | |
end defs | |
namespace fractional_ideal | |
open set | |
open submodule | |
variables {R : Type*} [comm_ring R] {S : submonoid R} {P : Type*} [comm_ring P] | |
variables [algebra R P] [loc : is_localization S P] | |
/-- Map a fractional ideal `I` to a submodule by forgetting that `∃ a, a I ⊆ R`. | |
This coercion is typically called `coe_to_submodule` in lemma names | |
(or `coe` when the coercion is clear from the context), | |
not to be confused with `is_localization.coe_submodule : ideal R → submodule R P` | |
(which we use to define `coe : ideal R → fractional_ideal S P`, | |
referred to as `coe_ideal` in theorem names). | |
-/ | |
instance : has_coe (fractional_ideal S P) (submodule R P) := ⟨λ I, I.val⟩ | |
protected lemma is_fractional (I : fractional_ideal S P) : | |
is_fractional S (I : submodule R P) := | |
I.prop | |
section set_like | |
instance : set_like (fractional_ideal S P) P := | |
{ coe := λ I, ↑(I : submodule R P), | |
coe_injective' := set_like.coe_injective.comp subtype.coe_injective } | |
@[simp] lemma mem_coe {I : fractional_ideal S P} {x : P} : | |
x ∈ (I : submodule R P) ↔ x ∈ I := | |
iff.rfl | |
@[ext] lemma ext {I J : fractional_ideal S P} : (∀ x, x ∈ I ↔ x ∈ J) → I = J := set_like.ext | |
/-- Copy of a `fractional_ideal` with a new underlying set equal to the old one. | |
Useful to fix definitional equalities. -/ | |
protected def copy (p : fractional_ideal S P) (s : set P) (hs : s = ↑p) : fractional_ideal S P := | |
⟨submodule.copy p s hs, by { convert p.is_fractional, ext, simp only [hs], refl }⟩ | |
end set_like | |
@[simp] lemma val_eq_coe (I : fractional_ideal S P) : I.val = I := rfl | |
@[simp, norm_cast] lemma coe_mk (I : submodule R P) (hI : is_fractional S I) : | |
(subtype.mk I hI : submodule R P) = I := rfl | |
/-! Transfer instances from `submodule R P` to `fractional_ideal S P`. --/ | |
instance (I : fractional_ideal S P) : add_comm_group I := submodule.add_comm_group ↑I | |
instance (I : fractional_ideal S P) : module R I := submodule.module ↑I | |
lemma coe_to_submodule_injective : | |
function.injective (coe : fractional_ideal S P → submodule R P) := | |
subtype.coe_injective | |
lemma is_fractional_of_le_one (I : submodule R P) (h : I ≤ 1) : | |
is_fractional S I := | |
begin | |
use [1, S.one_mem], | |
intros b hb, | |
rw one_smul, | |
obtain ⟨b', b'_mem, rfl⟩ := h hb, | |
exact set.mem_range_self b', | |
end | |
lemma is_fractional_of_le {I : submodule R P} {J : fractional_ideal S P} | |
(hIJ : I ≤ J) : is_fractional S I := | |
begin | |
obtain ⟨a, a_mem, ha⟩ := J.is_fractional, | |
use [a, a_mem], | |
intros b b_mem, | |
exact ha b (hIJ b_mem) | |
end | |
/-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. | |
This is a bundled version of `is_localization.coe_submodule : ideal R → submodule R P`, | |
which is not to be confused with the `coe : fractional_ideal S P → submodule R P`, | |
also called `coe_to_submodule` in theorem names. | |
This map is available as a ring hom, called `fractional_ideal.coe_ideal_hom`. | |
-/ | |
-- Is a `coe_t` rather than `coe` to speed up failing inference, see library note [use has_coe_t] | |
instance coe_to_fractional_ideal : has_coe_t (ideal R) (fractional_ideal S P) := | |
⟨λ I, ⟨coe_submodule P I, is_fractional_of_le_one _ | |
(by simpa using coe_submodule_mono P (le_top : I ≤ ⊤))⟩⟩ | |
@[simp, norm_cast] lemma coe_coe_ideal (I : ideal R) : | |
((I : fractional_ideal S P) : submodule R P) = coe_submodule P I := rfl | |
variables (S) | |
@[simp] lemma mem_coe_ideal {x : P} {I : ideal R} : | |
x ∈ (I : fractional_ideal S P) ↔ ∃ x', x' ∈ I ∧ algebra_map R P x' = x := | |
mem_coe_submodule _ _ | |
lemma mem_coe_ideal_of_mem {x : R} {I : ideal R} (hx : x ∈ I) : | |
algebra_map R P x ∈ (I : fractional_ideal S P) := | |
(mem_coe_ideal S).mpr ⟨x, hx, rfl⟩ | |
lemma coe_ideal_le_coe_ideal' [is_localization S P] (h : S ≤ non_zero_divisors R) | |
{I J : ideal R} : (I : fractional_ideal S P) ≤ J ↔ I ≤ J := | |
coe_submodule_le_coe_submodule h | |
@[simp] lemma coe_ideal_le_coe_ideal (K : Type*) [comm_ring K] [algebra R K] [is_fraction_ring R K] | |
{I J : ideal R} : (I : fractional_ideal R⁰ K) ≤ J ↔ I ≤ J := | |
is_fraction_ring.coe_submodule_le_coe_submodule | |
instance : has_zero (fractional_ideal S P) := ⟨(0 : ideal R)⟩ | |
@[simp] lemma mem_zero_iff {x : P} : x ∈ (0 : fractional_ideal S P) ↔ x = 0 := | |
⟨(λ ⟨x', x'_mem_zero, x'_eq_x⟩, | |
have x'_eq_zero : x' = 0 := x'_mem_zero, | |
by simp [x'_eq_x.symm, x'_eq_zero]), | |
(λ hx, ⟨0, rfl, by simp [hx]⟩)⟩ | |
variables {S} | |
@[simp, norm_cast] lemma coe_zero : ↑(0 : fractional_ideal S P) = (⊥ : submodule R P) := | |
submodule.ext $ λ _, mem_zero_iff S | |
@[simp, norm_cast] lemma coe_to_fractional_ideal_bot : ((⊥ : ideal R) : fractional_ideal S P) = 0 := | |
rfl | |
variables (P) | |
include loc | |
@[simp] lemma exists_mem_to_map_eq {x : R} {I : ideal R} (h : S ≤ non_zero_divisors R) : | |
(∃ x', x' ∈ I ∧ algebra_map R P x' = algebra_map R P x) ↔ x ∈ I := | |
⟨λ ⟨x', hx', eq⟩, is_localization.injective _ h eq ▸ hx', λ h, ⟨x, h, rfl⟩⟩ | |
variables {P} | |
lemma coe_to_fractional_ideal_injective (h : S ≤ non_zero_divisors R) : | |
function.injective (coe : ideal R → fractional_ideal S P) := | |
λ I J heq, have | |
∀ (x : R), algebra_map R P x ∈ (I : fractional_ideal S P) ↔ | |
algebra_map R P x ∈ (J : fractional_ideal S P) := | |
λ x, heq ▸ iff.rfl, | |
ideal.ext (by simpa only [mem_coe_ideal, exists_prop, exists_mem_to_map_eq P h] using this) | |
lemma coe_to_fractional_ideal_eq_zero {I : ideal R} (hS : S ≤ non_zero_divisors R) : | |
(I : fractional_ideal S P) = 0 ↔ I = (⊥ : ideal R) := | |
⟨λ h, coe_to_fractional_ideal_injective hS h, | |
λ h, by rw [h, coe_to_fractional_ideal_bot]⟩ | |
lemma coe_to_fractional_ideal_ne_zero {I : ideal R} (hS : S ≤ non_zero_divisors R) : | |
(I : fractional_ideal S P) ≠ 0 ↔ I ≠ (⊥ : ideal R) := | |
not_iff_not.mpr (coe_to_fractional_ideal_eq_zero hS) | |
omit loc | |
lemma coe_to_submodule_eq_bot {I : fractional_ideal S P} : | |
(I : submodule R P) = ⊥ ↔ I = 0 := | |
⟨λ h, coe_to_submodule_injective (by simp [h]), | |
λ h, by simp [h]⟩ | |
lemma coe_to_submodule_ne_bot {I : fractional_ideal S P} : | |
↑I ≠ (⊥ : submodule R P) ↔ I ≠ 0 := | |
not_iff_not.mpr coe_to_submodule_eq_bot | |
instance : inhabited (fractional_ideal S P) := ⟨0⟩ | |
instance : has_one (fractional_ideal S P) := | |
⟨(⊤ : ideal R)⟩ | |
variables (S) | |
@[simp, norm_cast] lemma coe_ideal_top : ((⊤ : ideal R) : fractional_ideal S P) = 1 := | |
rfl | |
lemma mem_one_iff {x : P} : x ∈ (1 : fractional_ideal S P) ↔ ∃ x' : R, algebra_map R P x' = x := | |
iff.intro (λ ⟨x', _, h⟩, ⟨x', h⟩) (λ ⟨x', h⟩, ⟨x', ⟨⟩, h⟩) | |
lemma coe_mem_one (x : R) : algebra_map R P x ∈ (1 : fractional_ideal S P) := | |
(mem_one_iff S).mpr ⟨x, rfl⟩ | |
lemma one_mem_one : (1 : P) ∈ (1 : fractional_ideal S P) := | |
(mem_one_iff S).mpr ⟨1, ring_hom.map_one _⟩ | |
variables {S} | |
/-- `(1 : fractional_ideal S P)` is defined as the R-submodule `f(R) ≤ P`. | |
However, this is not definitionally equal to `1 : submodule R P`, | |
which is proved in the actual `simp` lemma `coe_one`. -/ | |
lemma coe_one_eq_coe_submodule_top : | |
↑(1 : fractional_ideal S P) = coe_submodule P (⊤ : ideal R) := | |
rfl | |
@[simp, norm_cast] lemma coe_one : | |
(↑(1 : fractional_ideal S P) : submodule R P) = 1 := | |
by rw [coe_one_eq_coe_submodule_top, coe_submodule_top] | |
section lattice | |
/-! | |
### `lattice` section | |
Defines the order on fractional ideals as inclusion of their underlying sets, | |
and ports the lattice structure on submodules to fractional ideals. | |
-/ | |
@[simp] lemma coe_le_coe {I J : fractional_ideal S P} : | |
(I : submodule R P) ≤ (J : submodule R P) ↔ I ≤ J := | |
iff.rfl | |
lemma zero_le (I : fractional_ideal S P) : 0 ≤ I := | |
begin | |
intros x hx, | |
convert submodule.zero_mem _, | |
simpa using hx | |
end | |
instance order_bot : order_bot (fractional_ideal S P) := | |
{ bot := 0, | |
bot_le := zero_le } | |
@[simp] lemma bot_eq_zero : (⊥ : fractional_ideal S P) = 0 := | |
rfl | |
@[simp] lemma le_zero_iff {I : fractional_ideal S P} : I ≤ 0 ↔ I = 0 := | |
le_bot_iff | |
lemma eq_zero_iff {I : fractional_ideal S P} : I = 0 ↔ (∀ x ∈ I, x = (0 : P)) := | |
⟨ (λ h x hx, by simpa [h, mem_zero_iff] using hx), | |
(λ h, le_bot_iff.mp (λ x hx, (mem_zero_iff S).mpr (h x hx))) ⟩ | |
lemma _root_.is_fractional.sup {I J : submodule R P} : | |
is_fractional S I → is_fractional S J → is_fractional S (I ⊔ J) | |
| ⟨aI, haI, hI⟩ ⟨aJ, haJ, hJ⟩ := ⟨aI * aJ, S.mul_mem haI haJ, λ b hb, begin | |
rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩, | |
rw smul_add, | |
apply is_integer_add, | |
{ rw [mul_smul, smul_comm], | |
exact is_integer_smul (hI bI hbI), }, | |
{ rw mul_smul, | |
exact is_integer_smul (hJ bJ hbJ) } | |
end⟩ | |
lemma _root_.is_fractional.inf_right {I : submodule R P} : | |
is_fractional S I → ∀ J, is_fractional S (I ⊓ J) | |
| ⟨aI, haI, hI⟩ J := ⟨aI, haI, λ b hb, begin | |
rcases mem_inf.mp hb with ⟨hbI, hbJ⟩, | |
exact hI b hbI | |
end⟩ | |
instance : has_inf (fractional_ideal S P) := ⟨λ I J, ⟨I ⊓ J, I.is_fractional.inf_right J⟩⟩ | |
@[simp, norm_cast] | |
lemma coe_inf (I J : fractional_ideal S P) : ↑(I ⊓ J) = (I ⊓ J : submodule R P) := rfl | |
instance : has_sup (fractional_ideal S P) := ⟨λ I J, ⟨I ⊔ J, I.is_fractional.sup J.is_fractional⟩⟩ | |
@[norm_cast] | |
lemma coe_sup (I J : fractional_ideal S P) : ↑(I ⊔ J) = (I ⊔ J : submodule R P) := rfl | |
instance lattice : lattice (fractional_ideal S P) := | |
function.injective.lattice _ subtype.coe_injective coe_sup coe_inf | |
instance : semilattice_sup (fractional_ideal S P) := | |
{ ..fractional_ideal.lattice } | |
end lattice | |
section semiring | |
instance : has_add (fractional_ideal S P) := ⟨(⊔)⟩ | |
@[simp] | |
lemma sup_eq_add (I J : fractional_ideal S P) : I ⊔ J = I + J := rfl | |
@[simp, norm_cast] | |
lemma coe_add (I J : fractional_ideal S P) : (↑(I + J) : submodule R P) = I + J := rfl | |
@[simp, norm_cast] | |
lemma coe_ideal_sup (I J : ideal R) : ↑(I ⊔ J) = (I + J : fractional_ideal S P) := | |
coe_to_submodule_injective $ coe_submodule_sup _ _ _ | |
lemma _root_.is_fractional.nsmul {I : submodule R P} : | |
Π n : ℕ, is_fractional S I → is_fractional S (n • I : submodule R P) | |
| 0 _ := begin | |
rw [zero_smul], | |
convert ((0 : ideal R) : fractional_ideal S P).is_fractional, | |
simp, | |
end | |
| (n + 1) h := begin | |
rw succ_nsmul, | |
exact h.sup (_root_.is_fractional.nsmul n h) | |
end | |
instance : has_smul ℕ (fractional_ideal S P) := | |
{ smul := λ n I, ⟨n • I, I.is_fractional.nsmul n⟩} | |
@[norm_cast] | |
lemma coe_nsmul (n : ℕ) (I : fractional_ideal S P) : (↑(n • I) : submodule R P) = n • I := rfl | |
lemma _root_.is_fractional.mul {I J : submodule R P} : | |
is_fractional S I → is_fractional S J → is_fractional S (I * J : submodule R P) | |
| ⟨aI, haI, hI⟩ ⟨aJ, haJ, hJ⟩ := ⟨aI * aJ, S.mul_mem haI haJ, λ b hb, begin | |
apply submodule.mul_induction_on hb, | |
{ intros m hm n hn, | |
obtain ⟨n', hn'⟩ := hJ n hn, | |
rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← algebra.smul_def], | |
apply hI, | |
exact submodule.smul_mem _ _ hm }, | |
{ intros x y hx hy, | |
rw smul_add, | |
apply is_integer_add hx hy }, | |
end⟩ | |
lemma _root_.is_fractional.pow {I : submodule R P} (h : is_fractional S I) : | |
∀ n : ℕ, is_fractional S (I ^ n : submodule R P) | |
| 0 := is_fractional_of_le_one _ (pow_zero _).le | |
| (n + 1) := (pow_succ I n).symm ▸ h.mul (_root_.is_fractional.pow n) | |
/-- `fractional_ideal.mul` is the product of two fractional ideals, | |
used to define the `has_mul` instance. | |
This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. | |
Elaborated terms involving `fractional_ideal` tend to grow quite large, | |
so by making definitions irreducible, we hope to avoid deep unfolds. | |
-/ | |
@[irreducible] | |
def mul (I J : fractional_ideal S P) : fractional_ideal S P := | |
⟨I * J, I.is_fractional.mul J.is_fractional⟩ | |
local attribute [semireducible] mul | |
instance : has_mul (fractional_ideal S P) := ⟨λ I J, mul I J⟩ | |
@[simp] lemma mul_eq_mul (I J : fractional_ideal S P) : mul I J = I * J := rfl | |
@[simp, norm_cast] | |
lemma coe_mul (I J : fractional_ideal S P) : (↑(I * J) : submodule R P) = I * J := rfl | |
@[simp, norm_cast] | |
lemma coe_ideal_mul (I J : ideal R) : (↑(I * J) : fractional_ideal S P) = I * J := | |
coe_to_submodule_injective $ coe_submodule_mul _ _ _ | |
lemma mul_left_mono (I : fractional_ideal S P) : monotone ((*) I) := | |
λ J J' h, mul_le.mpr (λ x hx y hy, mul_mem_mul hx (h hy)) | |
lemma mul_right_mono (I : fractional_ideal S P) : monotone (λ J, J * I) := | |
λ J J' h, mul_le.mpr (λ x hx y hy, mul_mem_mul (h hx) hy) | |
lemma mul_mem_mul {I J : fractional_ideal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : | |
i * j ∈ I * J := submodule.mul_mem_mul hi hj | |
lemma mul_le {I J K : fractional_ideal S P} : | |
I * J ≤ K ↔ (∀ (i ∈ I) (j ∈ J), i * j ∈ K) := | |
submodule.mul_le | |
instance : has_pow (fractional_ideal S P) ℕ := ⟨λ I n, ⟨I^n, I.is_fractional.pow n⟩⟩ | |
@[simp, norm_cast] | |
lemma coe_pow (I : fractional_ideal S P) (n : ℕ) : ↑(I ^ n) = (I ^ n : submodule R P) := rfl | |
@[elab_as_eliminator] protected theorem mul_induction_on | |
{I J : fractional_ideal S P} | |
{C : P → Prop} {r : P} (hr : r ∈ I * J) | |
(hm : ∀ (i ∈ I) (j ∈ J), C (i * j)) | |
(ha : ∀ x y, C x → C y → C (x + y)) : C r := | |
submodule.mul_induction_on hr hm ha | |
instance : has_nat_cast (fractional_ideal S P) := ⟨nat.unary_cast⟩ | |
lemma coe_nat_cast (n : ℕ) : ((n : fractional_ideal S P) : submodule R P) = n := | |
show ↑n.unary_cast = ↑n, by induction n; simp [*, nat.unary_cast] | |
instance : comm_semiring (fractional_ideal S P) := | |
function.injective.comm_semiring coe subtype.coe_injective | |
coe_zero coe_one coe_add coe_mul (λ _ _, coe_nsmul _ _) coe_pow coe_nat_cast | |
section order | |
lemma add_le_add_left {I J : fractional_ideal S P} (hIJ : I ≤ J) (J' : fractional_ideal S P) : | |
J' + I ≤ J' + J := | |
sup_le_sup_left hIJ J' | |
lemma mul_le_mul_left {I J : fractional_ideal S P} (hIJ : I ≤ J) (J' : fractional_ideal S P) : | |
J' * I ≤ J' * J := | |
mul_le.mpr (λ k hk j hj, mul_mem_mul hk (hIJ hj)) | |
lemma le_self_mul_self {I : fractional_ideal S P} (hI: 1 ≤ I) : I ≤ I * I := | |
begin | |
convert mul_left_mono I hI, | |
exact (mul_one I).symm | |
end | |
lemma mul_self_le_self {I : fractional_ideal S P} (hI: I ≤ 1) : I * I ≤ I := | |
begin | |
convert mul_left_mono I hI, | |
exact (mul_one I).symm | |
end | |
lemma coe_ideal_le_one {I : ideal R} : (I : fractional_ideal S P) ≤ 1 := | |
λ x hx, let ⟨y, _, hy⟩ := (fractional_ideal.mem_coe_ideal S).mp hx | |
in (fractional_ideal.mem_one_iff S).mpr ⟨y, hy⟩ | |
lemma le_one_iff_exists_coe_ideal {J : fractional_ideal S P} : | |
J ≤ (1 : fractional_ideal S P) ↔ ∃ (I : ideal R), ↑I = J := | |
begin | |
split, | |
{ intro hJ, | |
refine ⟨⟨{x : R | algebra_map R P x ∈ J}, _, _, _⟩, _⟩, | |
{ intros a b ha hb, | |
rw [mem_set_of_eq, ring_hom.map_add], | |
exact J.val.add_mem ha hb }, | |
{ rw [mem_set_of_eq, ring_hom.map_zero], | |
exact J.val.zero_mem }, | |
{ intros c x hx, | |
rw [smul_eq_mul, mem_set_of_eq, ring_hom.map_mul, ← algebra.smul_def], | |
exact J.val.smul_mem c hx }, | |
{ ext x, | |
split, | |
{ rintros ⟨y, hy, eq_y⟩, | |
rwa ← eq_y }, | |
{ intro hx, | |
obtain ⟨y, eq_x⟩ := (fractional_ideal.mem_one_iff S).mp (hJ hx), | |
rw ← eq_x at *, | |
exact ⟨y, hx, rfl⟩ } } }, | |
{ rintro ⟨I, hI⟩, | |
rw ← hI, | |
apply coe_ideal_le_one }, | |
end | |
variables (S P) | |
/-- `coe_ideal_hom (S : submonoid R) P` is `coe : ideal R → fractional_ideal S P` as a ring hom -/ | |
@[simps] | |
def coe_ideal_hom : ideal R →+* fractional_ideal S P := | |
{ to_fun := coe, | |
map_add' := coe_ideal_sup, | |
map_mul' := coe_ideal_mul, | |
map_one' := by rw [ideal.one_eq_top, coe_ideal_top], | |
map_zero' := coe_to_fractional_ideal_bot } | |
lemma coe_ideal_pow (I : ideal R) (n : ℕ) : (↑(I^n) : fractional_ideal S P) = I^n := | |
(fractional_ideal.coe_ideal_hom S P).map_pow _ n | |
open_locale big_operators | |
lemma coe_ideal_finprod [is_localization S P] {α : Sort*} {f : α → ideal R} | |
(hS : S ≤ non_zero_divisors R) : | |
((∏ᶠ a : α, f a : ideal R) : fractional_ideal S P) = ∏ᶠ a : α, (f a : fractional_ideal S P) := | |
monoid_hom.map_finprod_of_injective (fractional_ideal.coe_ideal_hom S P).to_monoid_hom | |
(fractional_ideal.coe_to_fractional_ideal_injective hS) f | |
end order | |
variables {P' : Type*} [comm_ring P'] [algebra R P'] [loc' : is_localization S P'] | |
variables {P'' : Type*} [comm_ring P''] [algebra R P''] [loc'' : is_localization S P''] | |
lemma _root_.is_fractional.map (g : P →ₐ[R] P') {I : submodule R P} : | |
is_fractional S I → is_fractional S (submodule.map g.to_linear_map I) | |
| ⟨a, a_nonzero, hI⟩ := ⟨a, a_nonzero, λ b hb, begin | |
obtain ⟨b', b'_mem, hb'⟩ := submodule.mem_map.mp hb, | |
obtain ⟨x, hx⟩ := hI b' b'_mem, | |
use x, | |
erw [←g.commutes, hx, g.map_smul, hb'] | |
end⟩ | |
/-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ | |
def map (g : P →ₐ[R] P') : | |
fractional_ideal S P → fractional_ideal S P' := | |
λ I, ⟨submodule.map g.to_linear_map I, I.is_fractional.map g⟩ | |
@[simp, norm_cast] lemma coe_map (g : P →ₐ[R] P') (I : fractional_ideal S P) : | |
↑(map g I) = submodule.map g.to_linear_map I := rfl | |
@[simp] lemma mem_map {I : fractional_ideal S P} {g : P →ₐ[R] P'} | |
{y : P'} : y ∈ I.map g ↔ ∃ x, x ∈ I ∧ g x = y := | |
submodule.mem_map | |
variables (I J : fractional_ideal S P) (g : P →ₐ[R] P') | |
@[simp] lemma map_id : I.map (alg_hom.id _ _) = I := | |
coe_to_submodule_injective (submodule.map_id I) | |
@[simp] lemma map_comp (g' : P' →ₐ[R] P'') : | |
I.map (g'.comp g) = (I.map g).map g' := | |
coe_to_submodule_injective (submodule.map_comp g.to_linear_map g'.to_linear_map I) | |
@[simp, norm_cast] lemma map_coe_ideal (I : ideal R) : | |
(I : fractional_ideal S P).map g = I := | |
begin | |
ext x, | |
simp only [mem_coe_ideal], | |
split, | |
{ rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩, | |
exact ⟨y, hy, (g.commutes y).symm⟩ }, | |
{ rintro ⟨y, hy, rfl⟩, | |
exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ }, | |
end | |
@[simp] lemma map_one : | |
(1 : fractional_ideal S P).map g = 1 := | |
map_coe_ideal g ⊤ | |
@[simp] lemma map_zero : | |
(0 : fractional_ideal S P).map g = 0 := | |
map_coe_ideal g 0 | |
@[simp] lemma map_add : (I + J).map g = I.map g + J.map g := | |
coe_to_submodule_injective (submodule.map_sup _ _ _) | |
@[simp] lemma map_mul : (I * J).map g = I.map g * J.map g := | |
coe_to_submodule_injective (submodule.map_mul _ _ _) | |
@[simp] lemma map_map_symm (g : P ≃ₐ[R] P') : | |
(I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := | |
by rw [←map_comp, g.symm_comp, map_id] | |
@[simp] lemma map_symm_map (I : fractional_ideal S P') (g : P ≃ₐ[R] P') : | |
(I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := | |
by rw [←map_comp, g.comp_symm, map_id] | |
lemma map_mem_map {f : P →ₐ[R] P'} (h : function.injective f) {x : P} {I : fractional_ideal S P} : | |
f x ∈ map f I ↔ x ∈ I := | |
mem_map.trans ⟨λ ⟨x', hx', x'_eq⟩, h x'_eq ▸ hx', λ h, ⟨x, h, rfl⟩⟩ | |
lemma map_injective (f : P →ₐ[R] P') (h : function.injective f) : | |
function.injective (map f : fractional_ideal S P → fractional_ideal S P') := | |
λ I J hIJ, fractional_ideal.ext (λ x, (fractional_ideal.map_mem_map h).symm.trans | |
(hIJ.symm ▸ fractional_ideal.map_mem_map h)) | |
/-- If `g` is an equivalence, `map g` is an isomorphism -/ | |
def map_equiv (g : P ≃ₐ[R] P') : | |
fractional_ideal S P ≃+* fractional_ideal S P' := | |
{ to_fun := map g, | |
inv_fun := map g.symm, | |
map_add' := λ I J, map_add I J _, | |
map_mul' := λ I J, map_mul I J _, | |
left_inv := λ I, by { rw [←map_comp, alg_equiv.symm_comp, map_id] }, | |
right_inv := λ I, by { rw [←map_comp, alg_equiv.comp_symm, map_id] } } | |
@[simp] lemma coe_fun_map_equiv (g : P ≃ₐ[R] P') : | |
(map_equiv g : fractional_ideal S P → fractional_ideal S P') = map g := | |
rfl | |
@[simp] lemma map_equiv_apply (g : P ≃ₐ[R] P') (I : fractional_ideal S P) : | |
map_equiv g I = map ↑g I := rfl | |
@[simp] lemma map_equiv_symm (g : P ≃ₐ[R] P') : | |
((map_equiv g).symm : fractional_ideal S P' ≃+* _) = map_equiv g.symm := rfl | |
@[simp] lemma map_equiv_refl : | |
map_equiv alg_equiv.refl = ring_equiv.refl (fractional_ideal S P) := | |
ring_equiv.ext (λ x, by simp) | |
lemma is_fractional_span_iff {s : set P} : | |
is_fractional S (span R s) ↔ ∃ a ∈ S, ∀ (b : P), b ∈ s → is_integer R (a • b) := | |
⟨λ ⟨a, a_mem, h⟩, ⟨a, a_mem, λ b hb, h b (subset_span hb)⟩, | |
λ ⟨a, a_mem, h⟩, ⟨a, a_mem, λ b hb, span_induction hb | |
h | |
(by { rw smul_zero, exact is_integer_zero }) | |
(λ x y hx hy, by { rw smul_add, exact is_integer_add hx hy }) | |
(λ s x hx, by { rw smul_comm, exact is_integer_smul hx })⟩⟩ | |
include loc | |
lemma is_fractional_of_fg {I : submodule R P} (hI : I.fg) : | |
is_fractional S I := | |
begin | |
rcases hI with ⟨I, rfl⟩, | |
rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩, | |
rw is_fractional_span_iff, | |
exact ⟨s, hs1, hs⟩, | |
end | |
omit loc | |
lemma mem_span_mul_finite_of_mem_mul {I J : fractional_ideal S P} {x : P} (hx : x ∈ I * J) : | |
∃ (T T' : finset P), (T : set P) ⊆ I ∧ (T' : set P) ⊆ J ∧ x ∈ span R (T * T' : set P) := | |
submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) | |
variables (S) | |
lemma coe_ideal_fg (inj : function.injective (algebra_map R P)) (I : ideal R) : | |
fg ((I : fractional_ideal S P) : submodule R P) ↔ I.fg := | |
coe_submodule_fg _ inj _ | |
variables {S} | |
lemma fg_unit (I : (fractional_ideal S P)ˣ) : | |
fg (I : submodule R P) := | |
begin | |
have : (1 : P) ∈ (I * ↑I⁻¹ : fractional_ideal S P), | |
{ rw units.mul_inv, exact one_mem_one _ }, | |
obtain ⟨T, T', hT, hT', one_mem⟩ := mem_span_mul_finite_of_mem_mul this, | |
refine ⟨T, submodule.span_eq_of_le _ hT _⟩, | |
rw [← one_mul ↑I, ← mul_one (span R ↑T)], | |
conv_rhs { rw [← fractional_ideal.coe_one, ← units.mul_inv I, fractional_ideal.coe_mul, | |
mul_comm ↑↑I, ← mul_assoc] }, | |
refine submodule.mul_le_mul_left | |
(le_trans _ (submodule.mul_le_mul_right (submodule.span_le.mpr hT'))), | |
rwa [submodule.one_le, submodule.span_mul_span] | |
end | |
lemma fg_of_is_unit (I : fractional_ideal S P) (h : is_unit I) : | |
fg (I : submodule R P) := | |
by { rcases h with ⟨I, rfl⟩, exact fg_unit I } | |
lemma _root_.ideal.fg_of_is_unit (inj : function.injective (algebra_map R P)) | |
(I : ideal R) (h : is_unit (I : fractional_ideal S P)) : | |
I.fg := | |
by { rw ← coe_ideal_fg S inj I, exact fg_of_is_unit I h } | |
variables (S P P') | |
include loc loc' | |
/-- `canonical_equiv f f'` is the canonical equivalence between the fractional | |
ideals in `P` and in `P'` -/ | |
@[irreducible] | |
noncomputable def canonical_equiv : | |
fractional_ideal S P ≃+* fractional_ideal S P' := | |
map_equiv | |
{ commutes' := λ r, ring_equiv_of_ring_equiv_eq _ _, | |
..ring_equiv_of_ring_equiv P P' (ring_equiv.refl R) | |
(show S.map _ = S, by rw [ring_equiv.to_monoid_hom_refl, submonoid.map_id]) } | |
@[simp] lemma mem_canonical_equiv_apply {I : fractional_ideal S P} {x : P'} : | |
x ∈ canonical_equiv S P P' I ↔ | |
∃ y ∈ I, is_localization.map P' (ring_hom.id R) | |
(λ y (hy : y ∈ S), show ring_hom.id R y ∈ S, from hy) (y : P) = x := | |
begin | |
rw [canonical_equiv, map_equiv_apply, mem_map], | |
exact ⟨λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩, λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩⟩ | |
end | |
@[simp] lemma canonical_equiv_symm : | |
(canonical_equiv S P P').symm = canonical_equiv S P' P := | |
ring_equiv.ext $ λ I, set_like.ext_iff.mpr $ λ x, | |
by { rw [mem_canonical_equiv_apply, canonical_equiv, map_equiv_symm, map_equiv, | |
ring_equiv.coe_mk, mem_map], | |
exact ⟨λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩, λ ⟨y, mem, eq⟩, ⟨y, mem, eq⟩⟩ } | |
@[simp] lemma canonical_equiv_flip (I) : | |
canonical_equiv S P P' (canonical_equiv S P' P I) = I := | |
by rw [←canonical_equiv_symm, ring_equiv.symm_apply_apply] | |
end semiring | |
section is_fraction_ring | |
/-! | |
### `is_fraction_ring` section | |
This section concerns fractional ideals in the field of fractions, | |
i.e. the type `fractional_ideal R⁰ K` where `is_fraction_ring R K`. | |
-/ | |
variables {K K' : Type*} [field K] [field K'] | |
variables [algebra R K] [is_fraction_ring R K] [algebra R K'] [is_fraction_ring R K'] | |
variables {I J : fractional_ideal R⁰ K} (h : K →ₐ[R] K') | |
/-- Nonzero fractional ideals contain a nonzero integer. -/ | |
lemma exists_ne_zero_mem_is_integer [nontrivial R] (hI : I ≠ 0) : | |
∃ x ≠ (0 : R), algebra_map R K x ∈ I := | |
begin | |
obtain ⟨y, y_mem, y_not_mem⟩ := set_like.exists_of_lt | |
(by simpa only using bot_lt_iff_ne_bot.mpr hI), | |
have y_ne_zero : y ≠ 0 := by simpa using y_not_mem, | |
obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y, | |
refine ⟨x, _, _⟩, | |
{ rw [ne.def, ← @is_fraction_ring.to_map_eq_zero_iff R _ K, hx, algebra.smul_def], | |
exact mul_ne_zero (is_fraction_ring.to_map_ne_zero_of_mem_non_zero_divisors z.2) y_ne_zero }, | |
{ rw hx, | |
exact smul_mem _ _ y_mem } | |
end | |
lemma map_ne_zero [nontrivial R] (hI : I ≠ 0) : I.map h ≠ 0 := | |
begin | |
obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_is_integer hI, | |
contrapose! x_ne_zero with map_eq_zero, | |
refine is_fraction_ring.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)), | |
exact ⟨algebra_map R K x, hx, h.commutes x⟩, | |
end | |
@[simp] lemma map_eq_zero_iff [nontrivial R] : I.map h = 0 ↔ I = 0 := | |
⟨imp_of_not_imp_not _ _ (map_ne_zero _), λ hI, hI.symm ▸ map_zero h⟩ | |
lemma coe_ideal_injective : function.injective (coe : ideal R → fractional_ideal R⁰ K) := | |
injective_of_le_imp_le _ (λ _ _, (coe_ideal_le_coe_ideal _).mp) | |
@[simp] lemma coe_ideal_eq_zero_iff {I : ideal R} : (I : fractional_ideal R⁰ K) = 0 ↔ I = ⊥ := | |
coe_ideal_injective.eq_iff | |
lemma coe_ideal_ne_zero_iff {I : ideal R} : (I : fractional_ideal R⁰ K) ≠ 0 ↔ I ≠ ⊥ := | |
not_iff_not.mpr coe_ideal_eq_zero_iff | |
lemma coe_ideal_ne_zero {I : ideal R} (hI : I ≠ ⊥) : (I : fractional_ideal R⁰ K) ≠ 0 := | |
coe_ideal_ne_zero_iff.mpr hI | |
@[simp] lemma coe_ideal_eq_one_iff {I : ideal R} : (I : fractional_ideal R⁰ K) = 1 ↔ I = 1 := | |
by simpa only [ideal.one_eq_top] using coe_ideal_injective.eq_iff | |
end is_fraction_ring | |
section quotient | |
/-! | |
### `quotient` section | |
This section defines the ideal quotient of fractional ideals. | |
In this section we need that each non-zero `y : R` has an inverse in | |
the localization, i.e. that the localization is a field. We satisfy this | |
assumption by taking `S = non_zero_divisors R`, `R`'s localization at which | |
is a field because `R` is a domain. | |
-/ | |
open_locale classical | |
variables {R₁ : Type*} [comm_ring R₁] {K : Type*} [field K] | |
variables [algebra R₁ K] [frac : is_fraction_ring R₁ K] | |
instance : nontrivial (fractional_ideal R₁⁰ K) := | |
⟨⟨0, 1, λ h, | |
have this : (1 : K) ∈ (0 : fractional_ideal R₁⁰ K) := | |
by { rw ← (algebra_map R₁ K).map_one, simpa only [h] using coe_mem_one R₁⁰ 1 }, | |
one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ | |
lemma ne_zero_of_mul_eq_one (I J : fractional_ideal R₁⁰ K) (h : I * J = 1) : I ≠ 0 := | |
λ hI, @zero_ne_one (fractional_ideal R₁⁰ K) _ _ (by { convert h, simp [hI], }) | |
variables [is_domain R₁] | |
include frac | |
lemma _root_.is_fractional.div_of_nonzero {I J : submodule R₁ K} : | |
is_fractional R₁⁰ I → is_fractional R₁⁰ J → J ≠ 0 → is_fractional R₁⁰ (I / J) | |
| ⟨aI, haI, hI⟩ ⟨aJ, haJ, hJ⟩ h := begin | |
obtain ⟨y, mem_J, not_mem_zero⟩ := set_like.exists_of_lt | |
(by simpa only using bot_lt_iff_ne_bot.mpr h), | |
obtain ⟨y', hy'⟩ := hJ y mem_J, | |
use (aI * y'), | |
split, | |
{ apply (non_zero_divisors R₁).mul_mem haI (mem_non_zero_divisors_iff_ne_zero.mpr _), | |
intro y'_eq_zero, | |
have : algebra_map R₁ K aJ * y = 0, | |
{ rw [← algebra.smul_def, ←hy', y'_eq_zero, ring_hom.map_zero] }, | |
have y_zero := (mul_eq_zero.mp this).resolve_left | |
(mt ((injective_iff_map_eq_zero (algebra_map R₁ K)).1 (is_fraction_ring.injective _ _) _) | |
(mem_non_zero_divisors_iff_ne_zero.mp haJ)), | |
apply not_mem_zero, | |
simpa only using (mem_zero_iff R₁⁰).mpr y_zero, }, | |
intros b hb, | |
convert hI _ (hb _ (submodule.smul_mem _ aJ mem_J)) using 1, | |
rw [← hy', mul_comm b, ← algebra.smul_def, mul_smul] | |
end | |
lemma fractional_div_of_nonzero {I J : fractional_ideal R₁⁰ K} (h : J ≠ 0) : | |
is_fractional R₁⁰ (I / J : submodule R₁ K) := | |
I.is_fractional.div_of_nonzero J.is_fractional $ λ H, h $ | |
coe_to_submodule_injective $ H.trans coe_zero.symm | |
noncomputable instance fractional_ideal_has_div : | |
has_div (fractional_ideal R₁⁰ K) := | |
⟨ λ I J, if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩ ⟩ | |
variables {I J : fractional_ideal R₁⁰ K} [ J ≠ 0 ] | |
@[simp] lemma div_zero {I : fractional_ideal R₁⁰ K} : | |
I / 0 = 0 := | |
dif_pos rfl | |
lemma div_nonzero {I J : fractional_ideal R₁⁰ K} (h : J ≠ 0) : | |
(I / J) = ⟨I / J, fractional_div_of_nonzero h⟩ := | |
dif_neg h | |
@[simp] lemma coe_div {I J : fractional_ideal R₁⁰ K} (hJ : J ≠ 0) : | |
(↑(I / J) : submodule R₁ K) = ↑I / (↑J : submodule R₁ K) := | |
congr_arg _ (dif_neg hJ) | |
lemma mem_div_iff_of_nonzero {I J : fractional_ideal R₁⁰ K} (h : J ≠ 0) {x} : | |
x ∈ I / J ↔ ∀ y ∈ J, x * y ∈ I := | |
by { rw div_nonzero h, exact submodule.mem_div_iff_forall_mul_mem } | |
lemma mul_one_div_le_one {I : fractional_ideal R₁⁰ K} : I * (1 / I) ≤ 1 := | |
begin | |
by_cases hI : I = 0, | |
{ rw [hI, div_zero, mul_zero], | |
exact zero_le 1 }, | |
{ rw [← coe_le_coe, coe_mul, coe_div hI, coe_one], | |
apply submodule.mul_one_div_le_one }, | |
end | |
lemma le_self_mul_one_div {I : fractional_ideal R₁⁰ K} (hI : I ≤ (1 : fractional_ideal R₁⁰ K)) : | |
I ≤ I * (1 / I) := | |
begin | |
by_cases hI_nz : I = 0, | |
{ rw [hI_nz, div_zero, mul_zero], exact zero_le 0 }, | |
{ rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one], | |
rw [← coe_le_coe, coe_one] at hI, | |
exact submodule.le_self_mul_one_div hI }, | |
end | |
lemma le_div_iff_of_nonzero {I J J' : fractional_ideal R₁⁰ K} (hJ' : J' ≠ 0) : | |
I ≤ J / J' ↔ ∀ (x ∈ I) (y ∈ J'), x * y ∈ J := | |
⟨ λ h x hx, (mem_div_iff_of_nonzero hJ').mp (h hx), | |
λ h x hx, (mem_div_iff_of_nonzero hJ').mpr (h x hx) ⟩ | |
lemma le_div_iff_mul_le {I J J' : fractional_ideal R₁⁰ K} (hJ' : J' ≠ 0) : | |
I ≤ J / J' ↔ I * J' ≤ J := | |
begin | |
rw div_nonzero hJ', | |
convert submodule.le_div_iff_mul_le using 1, | |
rw [← coe_mul, coe_le_coe] | |
end | |
@[simp] lemma div_one {I : fractional_ideal R₁⁰ K} : I / 1 = I := | |
begin | |
rw [div_nonzero (@one_ne_zero (fractional_ideal R₁⁰ K) _ _)], | |
ext, | |
split; intro h, | |
{ simpa using mem_div_iff_forall_mul_mem.mp h 1 | |
((algebra_map R₁ K).map_one ▸ coe_mem_one R₁⁰ 1) }, | |
{ apply mem_div_iff_forall_mul_mem.mpr, | |
rintros y ⟨y', _, rfl⟩, | |
rw mul_comm, | |
convert submodule.smul_mem _ y' h, | |
exact (algebra.smul_def _ _).symm } | |
end | |
theorem eq_one_div_of_mul_eq_one_right (I J : fractional_ideal R₁⁰ K) (h : I * J = 1) : | |
J = 1 / I := | |
begin | |
have hI : I ≠ 0 := ne_zero_of_mul_eq_one I J h, | |
suffices h' : I * (1 / I) = 1, | |
{ exact (congr_arg units.inv $ | |
@units.ext _ _ (units.mk_of_mul_eq_one _ _ h) (units.mk_of_mul_eq_one _ _ h') rfl) }, | |
apply le_antisymm, | |
{ apply mul_le.mpr _, | |
intros x hx y hy, | |
rw mul_comm, | |
exact (mem_div_iff_of_nonzero hI).mp hy x hx }, | |
rw ← h, | |
apply mul_left_mono I, | |
apply (le_div_iff_of_nonzero hI).mpr _, | |
intros y hy x hx, | |
rw mul_comm, | |
exact mul_mem_mul hx hy, | |
end | |
theorem mul_div_self_cancel_iff {I : fractional_ideal R₁⁰ K} : | |
I * (1 / I) = 1 ↔ ∃ J, I * J = 1 := | |
⟨λ h, ⟨(1 / I), h⟩, λ ⟨J, hJ⟩, by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ | |
variables {K' : Type*} [field K'] [algebra R₁ K'] [is_fraction_ring R₁ K'] | |
@[simp] lemma map_div (I J : fractional_ideal R₁⁰ K) (h : K ≃ₐ[R₁] K') : | |
(I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := | |
begin | |
by_cases H : J = 0, | |
{ rw [H, div_zero, map_zero, div_zero] }, | |
{ apply coe_to_submodule_injective, | |
simp [div_nonzero H, div_nonzero (map_ne_zero _ H), submodule.map_div] } | |
end | |
@[simp] lemma map_one_div (I : fractional_ideal R₁⁰ K) (h : K ≃ₐ[R₁] K') : | |
(1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := | |
by rw [map_div, map_one] | |
end quotient | |
section field | |
variables {R₁ K L : Type*} [comm_ring R₁] [is_domain R₁] [field K] [field L] | |
variables [algebra R₁ K] [is_fraction_ring R₁ K] [algebra K L] [is_fraction_ring K L] | |
lemma eq_zero_or_one (I : fractional_ideal K⁰ L) : I = 0 ∨ I = 1 := | |
begin | |
rw or_iff_not_imp_left, | |
intro hI, | |
simp_rw [@set_like.ext_iff _ _ _ I 1, fractional_ideal.mem_one_iff], | |
intro x, | |
split, | |
{ intro x_mem, | |
obtain ⟨n, d, rfl⟩ := is_localization.mk'_surjective K⁰ x, | |
refine ⟨n / d, _⟩, | |
rw [ring_hom.map_div, is_fraction_ring.mk'_eq_div] }, | |
{ rintro ⟨x, rfl⟩, | |
obtain ⟨y, y_ne, y_mem⟩ := fractional_ideal.exists_ne_zero_mem_is_integer hI, | |
rw [← div_mul_cancel x y_ne, ring_hom.map_mul, ← algebra.smul_def], | |
exact submodule.smul_mem I _ y_mem } | |
end | |
lemma eq_zero_or_one_of_is_field (hF : is_field R₁) (I : fractional_ideal R₁⁰ K) : I = 0 ∨ I = 1 := | |
begin | |
letI : field R₁ := hF.to_field, | |
-- TODO can this be less ugly? | |
exact @eq_zero_or_one R₁ K _ _ _ (by { unfreezingI {cases _inst_4}, convert _inst_9 }) I | |
end | |
end field | |
section principal_ideal_ring | |
variables {R₁ : Type*} [comm_ring R₁] {K : Type*} [field K] | |
variables [algebra R₁ K] [is_fraction_ring R₁ K] | |
open_locale classical | |
variables (R₁) | |
/-- `fractional_ideal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ | |
@[simps] def span_finset {ι : Type*} (s : finset ι) (f : ι → K) : | |
fractional_ideal R₁⁰ K := | |
⟨submodule.span R₁ (f '' s), begin | |
obtain ⟨a', ha'⟩ := is_localization.exist_integer_multiples R₁⁰ s f, | |
refine ⟨a', a'.2, λ x hx, submodule.span_induction hx _ _ _ _⟩, | |
{ rintro _ ⟨i, hi, rfl⟩, exact ha' i hi }, | |
{ rw smul_zero, exact is_localization.is_integer_zero }, | |
{ intros x y hx hy, rw smul_add, exact is_localization.is_integer_add hx hy }, | |
{ intros c x hx, rw smul_comm, exact is_localization.is_integer_smul hx } | |
end⟩ | |
variables {R₁} | |
@[simp] lemma span_finset_eq_zero {ι : Type*} {s : finset ι} {f : ι → K} : | |
span_finset R₁ s f = 0 ↔ ∀ j ∈ s, f j = 0 := | |
by simp only [← coe_to_submodule_injective.eq_iff, span_finset_coe, coe_zero, submodule.span_eq_bot, | |
set.mem_image, finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] | |
lemma span_finset_ne_zero {ι : Type*} {s : finset ι} {f : ι → K} : | |
span_finset R₁ s f ≠ 0 ↔ ∃ j ∈ s, f j ≠ 0 := | |
by simp | |
open submodule.is_principal | |
include loc | |
lemma is_fractional_span_singleton (x : P) : is_fractional S (span R {x} : submodule R P) := | |
let ⟨a, ha⟩ := exists_integer_multiple S x in | |
is_fractional_span_iff.mpr ⟨a, a.2, λ x' hx', (set.mem_singleton_iff.mp hx').symm ▸ ha⟩ | |
variables (S) | |
/-- `span_singleton x` is the fractional ideal generated by `x` if `0 ∉ S` -/ | |
@[irreducible] | |
def span_singleton (x : P) : fractional_ideal S P := | |
⟨span R {x}, is_fractional_span_singleton x⟩ | |
local attribute [semireducible] span_singleton | |
@[simp] lemma coe_span_singleton (x : P) : | |
(span_singleton S x : submodule R P) = span R {x} := rfl | |
@[simp] lemma mem_span_singleton {x y : P} : | |
x ∈ span_singleton S y ↔ ∃ (z : R), z • y = x := | |
submodule.mem_span_singleton | |
lemma mem_span_singleton_self (x : P) : | |
x ∈ span_singleton S x := | |
(mem_span_singleton S).mpr ⟨1, one_smul _ _⟩ | |
variables {S} | |
lemma span_singleton_eq_span_singleton [no_zero_smul_divisors R P] {x y : P} : | |
span_singleton S x = span_singleton S y ↔ ∃ z : Rˣ, z • x = y := | |
by { rw [← submodule.span_singleton_eq_span_singleton], exact subtype.mk_eq_mk } | |
lemma eq_span_singleton_of_principal (I : fractional_ideal S P) | |
[is_principal (I : submodule R P)] : | |
I = span_singleton S (generator (I : submodule R P)) := | |
coe_to_submodule_injective (span_singleton_generator ↑I).symm | |
lemma is_principal_iff (I : fractional_ideal S P) : | |
is_principal (I : submodule R P) ↔ ∃ x, I = span_singleton S x := | |
⟨λ h, ⟨@generator _ _ _ _ _ ↑I h, @eq_span_singleton_of_principal _ _ _ _ _ _ _ I h⟩, | |
λ ⟨x, hx⟩, { principal := ⟨x, trans (congr_arg _ hx) (coe_span_singleton _ x)⟩ } ⟩ | |
@[simp] lemma span_singleton_zero : span_singleton S (0 : P) = 0 := | |
by { ext, simp [submodule.mem_span_singleton, eq_comm] } | |
lemma span_singleton_eq_zero_iff {y : P} : span_singleton S y = 0 ↔ y = 0 := | |
⟨λ h, span_eq_bot.mp (by simpa using congr_arg subtype.val h : span R {y} = ⊥) y (mem_singleton y), | |
λ h, by simp [h] ⟩ | |
lemma span_singleton_ne_zero_iff {y : P} : span_singleton S y ≠ 0 ↔ y ≠ 0 := | |
not_congr span_singleton_eq_zero_iff | |
@[simp] lemma span_singleton_one : span_singleton S (1 : P) = 1 := | |
begin | |
ext, | |
refine (mem_span_singleton S).trans ((exists_congr _).trans (mem_one_iff S).symm), | |
intro x', | |
rw [algebra.smul_def, mul_one] | |
end | |
@[simp] | |
lemma span_singleton_mul_span_singleton (x y : P) : | |
span_singleton S x * span_singleton S y = span_singleton S (x * y) := | |
begin | |
apply coe_to_submodule_injective, | |
simp only [coe_mul, coe_span_singleton, span_mul_span, singleton_mul_singleton], | |
end | |
@[simp] | |
lemma span_singleton_pow (x : P) (n : ℕ) : span_singleton S x ^ n = span_singleton S (x ^ n) := | |
begin | |
induction n with n hn, | |
{ rw [pow_zero, pow_zero, span_singleton_one] }, | |
{ rw [pow_succ, hn, span_singleton_mul_span_singleton, pow_succ] } | |
end | |
@[simp] | |
lemma coe_ideal_span_singleton (x : R) : | |
(↑(ideal.span {x} : ideal R) : fractional_ideal S P) = span_singleton S (algebra_map R P x) := | |
begin | |
ext y, | |
refine (mem_coe_ideal S).trans (iff.trans _ (mem_span_singleton S).symm), | |
split, | |
{ rintros ⟨y', hy', rfl⟩, | |
obtain ⟨x', rfl⟩ := submodule.mem_span_singleton.mp hy', | |
use x', | |
rw [smul_eq_mul, ring_hom.map_mul, algebra.smul_def] }, | |
{ rintros ⟨y', rfl⟩, | |
refine ⟨y' * x, submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩, | |
rw [ring_hom.map_mul, algebra.smul_def] } | |
end | |
@[simp] | |
lemma canonical_equiv_span_singleton {P'} [comm_ring P'] [algebra R P'] [is_localization S P'] | |
(x : P) : | |
canonical_equiv S P P' (span_singleton S x) = | |
span_singleton S (is_localization.map P' (ring_hom.id R) | |
(λ y (hy : y ∈ S), show ring_hom.id R y ∈ S, from hy) x) := | |
begin | |
apply set_like.ext_iff.mpr, | |
intro y, | |
split; intro h, | |
{ rw mem_span_singleton, | |
obtain ⟨x', hx', rfl⟩ := (mem_canonical_equiv_apply _ _ _).mp h, | |
obtain ⟨z, rfl⟩ := (mem_span_singleton _).mp hx', | |
use z, | |
rw is_localization.map_smul, | |
refl }, | |
{ rw mem_canonical_equiv_apply, | |
obtain ⟨z, rfl⟩ := (mem_span_singleton _).mp h, | |
use z • x, | |
use (mem_span_singleton _).mpr ⟨z, rfl⟩, | |
simp [is_localization.map_smul] } | |
end | |
lemma mem_singleton_mul {x y : P} {I : fractional_ideal S P} : | |
y ∈ span_singleton S x * I ↔ ∃ y' ∈ I, y = x * y' := | |
begin | |
split, | |
{ intro h, | |
apply fractional_ideal.mul_induction_on h, | |
{ intros x' hx' y' hy', | |
obtain ⟨a, ha⟩ := (mem_span_singleton S).mp hx', | |
use [a • y', submodule.smul_mem I a hy'], | |
rw [←ha, algebra.mul_smul_comm, algebra.smul_mul_assoc] }, | |
{ rintros _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩, | |
exact ⟨y + y', submodule.add_mem I hy hy', (mul_add _ _ _).symm⟩ } }, | |
{ rintros ⟨y', hy', rfl⟩, | |
exact mul_mem_mul ((mem_span_singleton S).mpr ⟨1, one_smul _ _⟩) hy' } | |
end | |
omit loc | |
variables (K) | |
lemma mk'_mul_coe_ideal_eq_coe_ideal {I J : ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : | |
span_singleton R₁⁰ (is_localization.mk' K x ⟨y, hy⟩) * I = (J : fractional_ideal R₁⁰ K) ↔ | |
ideal.span {x} * I = ideal.span {y} * J := | |
begin | |
have inj : function.injective (coe : ideal R₁ → fractional_ideal R₁⁰ K) := | |
fractional_ideal.coe_ideal_injective, | |
have : span_singleton R₁⁰ (is_localization.mk' _ (1 : R₁) ⟨y, hy⟩) * | |
span_singleton R₁⁰ (algebra_map R₁ K y) = 1, | |
{ rw [span_singleton_mul_span_singleton, mul_comm, ← is_localization.mk'_eq_mul_mk'_one, | |
is_localization.mk'_self, span_singleton_one] }, | |
let y' : (fractional_ideal R₁⁰ K)ˣ := units.mk_of_mul_eq_one _ _ this, | |
have coe_y' : ↑y' = span_singleton R₁⁰ (is_localization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl, | |
refine iff.trans _ (y'.mul_right_inj.trans inj.eq_iff), | |
rw [coe_y', coe_ideal_mul, coe_ideal_span_singleton, coe_ideal_mul, coe_ideal_span_singleton, | |
←mul_assoc, span_singleton_mul_span_singleton, ←mul_assoc, span_singleton_mul_span_singleton, | |
mul_comm (mk' _ _ _), ← is_localization.mk'_eq_mul_mk'_one, | |
mul_comm (mk' _ _ _), ← is_localization.mk'_eq_mul_mk'_one, | |
is_localization.mk'_self, span_singleton_one, one_mul], | |
end | |
variables {K} | |
lemma span_singleton_mul_coe_ideal_eq_coe_ideal {I J : ideal R₁} {z : K} : | |
span_singleton R₁⁰ z * (I : fractional_ideal R₁⁰ K) = J ↔ | |
ideal.span {((is_localization.sec R₁⁰ z).1 : R₁)} * I = | |
ideal.span {(is_localization.sec R₁⁰ z).2} * J := | |
-- `erw` to deal with the distinction between `y` and `⟨y.1, y.2⟩` | |
by erw [← mk'_mul_coe_ideal_eq_coe_ideal K (is_localization.sec R₁⁰ z).2.prop, | |
is_localization.mk'_sec K z] | |
variables [is_domain R₁] | |
lemma one_div_span_singleton (x : K) : | |
1 / span_singleton R₁⁰ x = span_singleton R₁⁰ (x⁻¹) := | |
if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm | |
@[simp] lemma div_span_singleton (J : fractional_ideal R₁⁰ K) (d : K) : | |
J / span_singleton R₁⁰ d = span_singleton R₁⁰ (d⁻¹) * J := | |
begin | |
rw ← one_div_span_singleton, | |
by_cases hd : d = 0, | |
{ simp only [hd, span_singleton_zero, div_zero, zero_mul] }, | |
have h_spand : span_singleton R₁⁰ d ≠ 0 := mt span_singleton_eq_zero_iff.mp hd, | |
apply le_antisymm, | |
{ intros x hx, | |
rw [← mem_coe, coe_div h_spand, submodule.mem_div_iff_forall_mul_mem] at hx, | |
specialize hx d (mem_span_singleton_self R₁⁰ d), | |
have h_xd : x = d⁻¹ * (x * d), { field_simp }, | |
rw [← mem_coe, coe_mul, one_div_span_singleton, h_xd], | |
exact submodule.mul_mem_mul (mem_span_singleton_self R₁⁰ _) hx }, | |
{ rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_span_singleton, | |
span_singleton_mul_span_singleton, inv_mul_cancel hd, span_singleton_one, mul_one], | |
exact le_refl J }, | |
end | |
lemma exists_eq_span_singleton_mul (I : fractional_ideal R₁⁰ K) : | |
∃ (a : R₁) (aI : ideal R₁), a ≠ 0 ∧ I = span_singleton R₁⁰ (algebra_map R₁ K a)⁻¹ * aI := | |
begin | |
obtain ⟨a_inv, nonzero, ha⟩ := I.is_fractional, | |
have nonzero := mem_non_zero_divisors_iff_ne_zero.mp nonzero, | |
have map_a_nonzero : algebra_map R₁ K a_inv ≠ 0 := | |
mt is_fraction_ring.to_map_eq_zero_iff.mp nonzero, | |
refine ⟨a_inv, | |
submodule.comap (algebra.linear_map R₁ K) | |
↑(span_singleton R₁⁰ (algebra_map R₁ K a_inv) * I), | |
nonzero, | |
ext (λ x, iff.trans ⟨_, _⟩ mem_singleton_mul.symm)⟩, | |
{ intro hx, | |
obtain ⟨x', hx'⟩ := ha x hx, | |
rw algebra.smul_def at hx', | |
refine ⟨algebra_map R₁ K x', (mem_coe_ideal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩, | |
{ exact ⟨x, hx, hx'⟩ }, | |
{ rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] } }, | |
{ rintros ⟨y, hy, rfl⟩, | |
obtain ⟨x', hx', rfl⟩ := (mem_coe_ideal _).mp hy, | |
obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx', | |
rw algebra.linear_map_apply at hx', | |
rwa [hx', ←mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] } | |
end | |
instance is_principal {R} [comm_ring R] [is_domain R] [is_principal_ideal_ring R] | |
[algebra R K] [is_fraction_ring R K] | |
(I : fractional_ideal R⁰ K) : (I : submodule R K).is_principal := | |
begin | |
obtain ⟨a, aI, -, ha⟩ := exists_eq_span_singleton_mul I, | |
use (algebra_map R K a)⁻¹ * algebra_map R K (generator aI), | |
suffices : I = span_singleton R⁰ ((algebra_map R K a)⁻¹ * algebra_map R K (generator aI)), | |
{ exact congr_arg subtype.val this }, | |
conv_lhs { rw [ha, ←span_singleton_generator aI] }, | |
rw [ideal.submodule_span_eq, coe_ideal_span_singleton (generator aI), | |
span_singleton_mul_span_singleton] | |
end | |
include loc | |
lemma le_span_singleton_mul_iff {x : P} {I J : fractional_ideal S P} : | |
I ≤ span_singleton S x * J ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI := | |
show (∀ {zI} (hzI : zI ∈ I), zI ∈ span_singleton _ x * J) ↔ ∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI, | |
by simp only [fractional_ideal.mem_singleton_mul, eq_comm] | |
lemma span_singleton_mul_le_iff {x : P} {I J : fractional_ideal S P} : | |
span_singleton _ x * I ≤ J ↔ ∀ z ∈ I, x * z ∈ J := | |
begin | |
simp only [fractional_ideal.mul_le, fractional_ideal.mem_singleton_mul, | |
fractional_ideal.mem_span_singleton], | |
split, | |
{ intros h zI hzI, | |
exact h x ⟨1, one_smul _ _⟩ zI hzI }, | |
{ rintros h _ ⟨z, rfl⟩ zI hzI, | |
rw [algebra.smul_mul_assoc], | |
exact submodule.smul_mem J.1 _ (h zI hzI) }, | |
end | |
lemma eq_span_singleton_mul {x : P} {I J : fractional_ideal S P} : | |
I = span_singleton _ x * J ↔ (∀ zI ∈ I, ∃ zJ ∈ J, x * zJ = zI) ∧ ∀ z ∈ J, x * z ∈ I := | |
by simp only [le_antisymm_iff, fractional_ideal.le_span_singleton_mul_iff, | |
fractional_ideal.span_singleton_mul_le_iff] | |
end principal_ideal_ring | |
variables {R₁ : Type*} [comm_ring R₁] | |
variables {K : Type*} [field K] [algebra R₁ K] [frac : is_fraction_ring R₁ K] | |
local attribute [instance] classical.prop_decidable | |
lemma is_noetherian_zero : is_noetherian R₁ (0 : fractional_ideal R₁⁰ K) := | |
is_noetherian_submodule.mpr (λ I (hI : I ≤ (0 : fractional_ideal R₁⁰ K)), | |
by { rw coe_zero at hI, rw le_bot_iff.mp hI, exact fg_bot }) | |
lemma is_noetherian_iff {I : fractional_ideal R₁⁰ K} : | |
is_noetherian R₁ I ↔ ∀ J ≤ I, (J : submodule R₁ K).fg := | |
is_noetherian_submodule.trans ⟨λ h J hJ, h _ hJ, λ h J hJ, h ⟨J, is_fractional_of_le hJ⟩ hJ⟩ | |
lemma is_noetherian_coe_to_fractional_ideal [_root_.is_noetherian_ring R₁] (I : ideal R₁) : | |
is_noetherian R₁ (I : fractional_ideal R₁⁰ K) := | |
begin | |
rw is_noetherian_iff, | |
intros J hJ, | |
obtain ⟨J, rfl⟩ := le_one_iff_exists_coe_ideal.mp (le_trans hJ coe_ideal_le_one), | |
exact (is_noetherian.noetherian J).map _, | |
end | |
include frac | |
variables [is_domain R₁] | |
lemma is_noetherian_span_singleton_inv_to_map_mul (x : R₁) {I : fractional_ideal R₁⁰ K} | |
(hI : is_noetherian R₁ I) : | |
is_noetherian R₁ (span_singleton R₁⁰ (algebra_map R₁ K x)⁻¹ * I : fractional_ideal R₁⁰ K) := | |
begin | |
by_cases hx : x = 0, | |
{ rw [hx, ring_hom.map_zero, _root_.inv_zero, span_singleton_zero, zero_mul], | |
exact is_noetherian_zero }, | |
have h_gx : algebra_map R₁ K x ≠ 0, | |
from mt ((injective_iff_map_eq_zero (algebra_map R₁ K)).mp | |
(is_fraction_ring.injective _ _) x) hx, | |
have h_spanx : span_singleton R₁⁰ (algebra_map R₁ K x) ≠ 0, | |
from span_singleton_ne_zero_iff.mpr h_gx, | |
rw is_noetherian_iff at ⊢ hI, | |
intros J hJ, | |
rw [← div_span_singleton, le_div_iff_mul_le h_spanx] at hJ, | |
obtain ⟨s, hs⟩ := hI _ hJ, | |
use s * {(algebra_map R₁ K x)⁻¹}, | |
rw [finset.coe_mul, finset.coe_singleton, ← span_mul_span, hs, ← coe_span_singleton R₁⁰, | |
← coe_mul, mul_assoc, span_singleton_mul_span_singleton, mul_inv_cancel h_gx, | |
span_singleton_one, mul_one], | |
end | |
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ | |
theorem is_noetherian [_root_.is_noetherian_ring R₁] (I : fractional_ideal R₁⁰ K) : | |
is_noetherian R₁ I := | |
begin | |
obtain ⟨d, J, h_nzd, rfl⟩ := exists_eq_span_singleton_mul I, | |
apply is_noetherian_span_singleton_inv_to_map_mul, | |
apply is_noetherian_coe_to_fractional_ideal, | |
end | |
section adjoin | |
include loc | |
omit frac | |
variables {R P} (S) (x : P) (hx : is_integral R x) | |
/-- `A[x]` is a fractional ideal for every integral `x`. -/ | |
lemma is_fractional_adjoin_integral : | |
is_fractional S (algebra.adjoin R ({x} : set P)).to_submodule := | |
is_fractional_of_fg (fg_adjoin_singleton_of_integral x hx) | |
/-- `fractional_ideal.adjoin_integral (S : submonoid R) x hx` is `R[x]` as a fractional ideal, | |
where `hx` is a proof that `x : P` is integral over `R`. -/ | |
@[simps] | |
def adjoin_integral : fractional_ideal S P := | |
⟨_, is_fractional_adjoin_integral S x hx⟩ | |
lemma mem_adjoin_integral_self : | |
x ∈ adjoin_integral S x hx := | |
algebra.subset_adjoin (set.mem_singleton x) | |
end adjoin | |
end fractional_ideal | |