Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Andrew Yang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Andrew Yang | |
-/ | |
import ring_theory.principal_ideal_domain | |
import algebra.gcd_monoid.integrally_closed | |
/-! | |
A Bézout ring (Bezout ring) is a ring whose finitely generated ideals are principal. | |
Notible examples include principal ideal rings, valuation rings, and the ring of algebraic integers. | |
- `is_bezout.iff_span_pair_is_principal`: It suffices to verify every `span {x, y}` is principal. | |
- `is_bezout.to_gcd_monoid`: Every Bézout domain is a GCD domain. This is not an instance. | |
- `is_bezout.tfae`: For a Bézout domain, noetherian ↔ PID ↔ UFD ↔ ACCP | |
-/ | |
universes u v | |
variables (R : Type u) [comm_ring R] | |
/-- A Bézout ring is a ring whose finitely generated ideals are principal. -/ | |
class is_bezout : Prop := | |
(is_principal_of_fg : ∀ I : ideal R, I.fg → I.is_principal) | |
namespace is_bezout | |
variables {R} | |
instance span_pair_is_principal [is_bezout R] (x y : R) : | |
(ideal.span {x, y} : ideal R).is_principal := | |
by { classical, exact is_principal_of_fg (ideal.span {x, y}) ⟨{x, y}, by simp⟩ } | |
lemma iff_span_pair_is_principal : | |
is_bezout R ↔ (∀ x y : R, (ideal.span {x, y} : ideal R).is_principal) := | |
begin | |
classical, | |
split, | |
{ introsI H x y, apply_instance }, | |
{ intro H, | |
constructor, | |
apply submodule.fg_induction, | |
{ exact λ _, ⟨⟨_, rfl⟩⟩ }, | |
{ rintro _ _ ⟨⟨x, rfl⟩⟩ ⟨⟨y, rfl⟩⟩, rw ← submodule.span_insert, exact H _ _ } }, | |
end | |
section gcd | |
variable [is_bezout R] | |
/-- The gcd of two elements in a bezout domain. -/ | |
noncomputable | |
def gcd (x y : R) : R := | |
submodule.is_principal.generator (ideal.span {x, y}) | |
lemma span_gcd (x y : R) : (ideal.span {gcd x y} : ideal R) = ideal.span {x, y} := | |
ideal.span_singleton_generator _ | |
lemma gcd_dvd_left (x y : R) : gcd x y ∣ x := | |
(submodule.is_principal.mem_iff_generator_dvd _).mp (ideal.subset_span (by simp)) | |
lemma gcd_dvd_right (x y : R) : gcd x y ∣ y := | |
(submodule.is_principal.mem_iff_generator_dvd _).mp (ideal.subset_span (by simp)) | |
lemma dvd_gcd {x y z : R} (hx : z ∣ x) (hy : z ∣ y) : z ∣ gcd x y := | |
begin | |
rw [← ideal.span_singleton_le_span_singleton] at hx hy ⊢, | |
rw [span_gcd, ideal.span_insert, sup_le_iff], | |
exact ⟨hx, hy⟩ | |
end | |
lemma gcd_eq_sum (x y : R) : ∃ a b : R, a * x + b * y = gcd x y := | |
ideal.mem_span_pair.mp (by { rw ← span_gcd, apply ideal.subset_span, simp }) | |
variable (R) | |
/-- Any bezout domain is a GCD domain. This is not an instance since `gcd_monoid` contains data, | |
and this might not be how we would like to construct it. -/ | |
noncomputable | |
def to_gcd_domain [is_domain R] [decidable_eq R] : | |
gcd_monoid R := | |
gcd_monoid_of_gcd gcd gcd_dvd_left gcd_dvd_right | |
(λ _ _ _, dvd_gcd) | |
end gcd | |
local attribute [instance] to_gcd_domain | |
-- Note that the proof, despite being `infer_instance`, depends on the `local attribute [instance]` | |
-- lemma above, and is thus necessary to be restated. | |
@[priority 100] | |
instance [is_domain R] [is_bezout R] : is_integrally_closed R := infer_instance | |
lemma _root_.function.surjective.is_bezout {S : Type v} [comm_ring S] (f : R →+* S) | |
(hf : function.surjective f) [is_bezout R] : is_bezout S := | |
begin | |
rw iff_span_pair_is_principal, | |
intros x y, | |
obtain ⟨⟨x, rfl⟩, ⟨y, rfl⟩⟩ := ⟨hf x, hf y⟩, | |
use f (gcd x y), | |
transitivity ideal.map f (ideal.span {gcd x y}), | |
{ rw [span_gcd, ideal.map_span, set.image_insert_eq, set.image_singleton] }, | |
{ rw [ideal.map_span, set.image_singleton], refl } | |
end | |
@[priority 100] | |
instance of_is_principal_ideal_ring [is_principal_ideal_ring R] : is_bezout R := | |
⟨λ I _, is_principal_ideal_ring.principal I⟩ | |
lemma tfae [is_bezout R] [is_domain R] : | |
tfae [is_noetherian_ring R, | |
is_principal_ideal_ring R, | |
unique_factorization_monoid R, | |
wf_dvd_monoid R] := | |
begin | |
classical, | |
tfae_have : 1 → 2, | |
{ introI H, exact ⟨λ I, is_principal_of_fg _ (is_noetherian.noetherian _)⟩ }, | |
tfae_have : 2 → 3, | |
{ introI _, apply_instance }, | |
tfae_have : 3 → 4, | |
{ introI _, apply_instance }, | |
tfae_have : 4 → 1, | |
{ rintro ⟨h⟩, | |
rw [is_noetherian_ring_iff, is_noetherian_iff_fg_well_founded], | |
apply rel_embedding.well_founded _ h, | |
have : ∀ I : { J : ideal R // J.fg }, ∃ x : R, (I : ideal R) = ideal.span {x} := | |
λ ⟨I, hI⟩, (is_bezout.is_principal_of_fg I hI).1, | |
choose f hf, | |
exact | |
{ to_fun := f, | |
inj' := λ x y e, by { ext1, rw [hf, hf, e] }, | |
map_rel_iff' := λ x y, | |
by { dsimp, rw [← ideal.span_singleton_lt_span_singleton, ← hf, ← hf], refl } } }, | |
tfae_finish | |
end | |
end is_bezout | |