Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.category.Group.basic | |
import category_theory.single_obj | |
import category_theory.limits.functor_category | |
import category_theory.limits.preserves.basic | |
import category_theory.adjunction.limits | |
import category_theory.monoidal.functor_category | |
import category_theory.monoidal.transport | |
import category_theory.monoidal.rigid.of_equivalence | |
import category_theory.monoidal.rigid.functor_category | |
import category_theory.monoidal.linear | |
import category_theory.monoidal.braided | |
import category_theory.abelian.functor_category | |
import category_theory.abelian.transfer | |
import category_theory.conj | |
import category_theory.linear.functor_category | |
/-! | |
# `Action V G`, the category of actions of a monoid `G` inside some category `V`. | |
The prototypical example is `V = Module R`, | |
where `Action (Module R) G` is the category of `R`-linear representations of `G`. | |
We check `Action V G ≌ (single_obj G ⥤ V)`, | |
and construct the restriction functors `res {G H : Mon} (f : G ⟶ H) : Action V H ⥤ Action V G`. | |
* When `V` has (co)limits so does `Action V G`. | |
* When `V` is monoidal, braided, or symmetric, so is `Action V G`. | |
* When `V` is preadditive, linear, or abelian so is `Action V G`. | |
-/ | |
universes u | |
open category_theory | |
open category_theory.limits | |
variables (V : Type (u+1)) [large_category V] | |
/-- | |
An `Action V G` represents a bundled action of | |
the monoid `G` on an object of some category `V`. | |
As an example, when `V = Module R`, this is an `R`-linear representation of `G`, | |
while when `V = Type` this is a `G`-action. | |
-/ | |
-- Note: this is _not_ a categorical action of `G` on `V`. | |
structure Action (G : Mon.{u}) := | |
(V : V) | |
(ρ : G ⟶ Mon.of (End V)) | |
namespace Action | |
variable {V} | |
@[simp] | |
lemma ρ_one {G : Mon.{u}} (A : Action V G) : A.ρ 1 = 𝟙 A.V := | |
by { rw [monoid_hom.map_one], refl, } | |
/-- When a group acts, we can lift the action to the group of automorphisms. -/ | |
@[simps] | |
def ρ_Aut {G : Group.{u}} (A : Action V (Mon.of G)) : G ⟶ Group.of (Aut A.V) := | |
{ to_fun := λ g, | |
{ hom := A.ρ g, | |
inv := A.ρ (g⁻¹ : G), | |
hom_inv_id' := ((A.ρ).map_mul (g⁻¹ : G) g).symm.trans (by rw [inv_mul_self, ρ_one]), | |
inv_hom_id' := ((A.ρ).map_mul g (g⁻¹ : G)).symm.trans (by rw [mul_inv_self, ρ_one]), }, | |
map_one' := by { ext, exact A.ρ.map_one }, | |
map_mul' := λ x y, by { ext, exact A.ρ.map_mul x y }, } | |
variable (G : Mon.{u}) | |
section | |
/-- The trivial representation of a group. -/ | |
def trivial : Action AddCommGroup G := | |
{ V := AddCommGroup.of punit, | |
ρ := 1, } | |
instance : inhabited (Action AddCommGroup G) := ⟨trivial G⟩ | |
end | |
variables {G V} | |
/-- | |
A homomorphism of `Action V G`s is a morphism between the underlying objects, | |
commuting with the action of `G`. | |
-/ | |
@[ext] | |
structure hom (M N : Action V G) := | |
(hom : M.V ⟶ N.V) | |
(comm' : ∀ g : G, M.ρ g ≫ hom = hom ≫ N.ρ g . obviously) | |
restate_axiom hom.comm' | |
namespace hom | |
/-- The identity morphism on a `Action V G`. -/ | |
@[simps] | |
def id (M : Action V G) : Action.hom M M := | |
{ hom := 𝟙 M.V } | |
instance (M : Action V G) : inhabited (Action.hom M M) := ⟨id M⟩ | |
/-- | |
The composition of two `Action V G` homomorphisms is the composition of the underlying maps. | |
-/ | |
@[simps] | |
def comp {M N K : Action V G} (p : Action.hom M N) (q : Action.hom N K) : | |
Action.hom M K := | |
{ hom := p.hom ≫ q.hom, | |
comm' := λ g, by rw [←category.assoc, p.comm, category.assoc, q.comm, ←category.assoc] } | |
end hom | |
instance : category (Action V G) := | |
{ hom := λ M N, hom M N, | |
id := λ M, hom.id M, | |
comp := λ M N K f g, hom.comp f g, } | |
@[simp] | |
lemma id_hom (M : Action V G) : (𝟙 M : hom M M).hom = 𝟙 M.V := rfl | |
@[simp] | |
lemma comp_hom {M N K : Action V G} (f : M ⟶ N) (g : N ⟶ K) : | |
(f ≫ g : hom M K).hom = f.hom ≫ g.hom := | |
rfl | |
/-- Construct an isomorphism of `G` actions/representations | |
from an isomorphism of the the underlying objects, | |
where the forward direction commutes with the group action. -/ | |
@[simps] | |
def mk_iso {M N : Action V G} (f : M.V ≅ N.V) (comm : ∀ g : G, M.ρ g ≫ f.hom = f.hom ≫ N.ρ g) : | |
M ≅ N := | |
{ hom := | |
{ hom := f.hom, | |
comm' := comm, }, | |
inv := | |
{ hom := f.inv, | |
comm' := λ g, by { have w := comm g =≫ f.inv, simp at w, simp [w], }, }} | |
@[priority 100] | |
instance is_iso_of_hom_is_iso {M N : Action V G} (f : M ⟶ N) [is_iso f.hom] : is_iso f := | |
by { convert is_iso.of_iso (mk_iso (as_iso f.hom) f.comm), ext, refl, } | |
instance is_iso_hom_mk {M N : Action V G} (f : M.V ⟶ N.V) [is_iso f] (w) : | |
@is_iso _ _ M N ⟨f, w⟩ := | |
is_iso.of_iso (mk_iso (as_iso f) w) | |
namespace functor_category_equivalence | |
/-- Auxilliary definition for `functor_category_equivalence`. -/ | |
@[simps] | |
def functor : Action V G ⥤ (single_obj G ⥤ V) := | |
{ obj := λ M, | |
{ obj := λ _, M.V, | |
map := λ _ _ g, M.ρ g, | |
map_id' := λ _, M.ρ.map_one, | |
map_comp' := λ _ _ _ g h, M.ρ.map_mul h g, }, | |
map := λ M N f, | |
{ app := λ _, f.hom, | |
naturality' := λ _ _ g, f.comm g, } } | |
/-- Auxilliary definition for `functor_category_equivalence`. -/ | |
@[simps] | |
def inverse : (single_obj G ⥤ V) ⥤ Action V G := | |
{ obj := λ F, | |
{ V := F.obj punit.star, | |
ρ := | |
{ to_fun := λ g, F.map g, | |
map_one' := F.map_id punit.star, | |
map_mul' := λ g h, F.map_comp h g, } }, | |
map := λ M N f, | |
{ hom := f.app punit.star, | |
comm' := λ g, f.naturality g, } }. | |
/-- Auxilliary definition for `functor_category_equivalence`. -/ | |
@[simps] | |
def unit_iso : 𝟭 (Action V G) ≅ functor ⋙ inverse := | |
nat_iso.of_components (λ M, mk_iso ((iso.refl _)) (by tidy)) (by tidy). | |
/-- Auxilliary definition for `functor_category_equivalence`. -/ | |
@[simps] | |
def counit_iso : inverse ⋙ functor ≅ 𝟭 (single_obj G ⥤ V) := | |
nat_iso.of_components (λ M, nat_iso.of_components (by tidy) (by tidy)) (by tidy). | |
end functor_category_equivalence | |
section | |
open functor_category_equivalence | |
variables (V G) | |
/-- | |
The category of actions of `G` in the category `V` | |
is equivalent to the functor category `single_obj G ⥤ V`. | |
-/ | |
def functor_category_equivalence : Action V G ≌ (single_obj G ⥤ V) := | |
{ functor := functor, | |
inverse := inverse, | |
unit_iso := unit_iso, | |
counit_iso := counit_iso, } | |
attribute [simps] functor_category_equivalence | |
instance [has_finite_products V] : has_finite_products (Action V G) := | |
{ out := λ J _, by exactI | |
adjunction.has_limits_of_shape_of_equivalence (Action.functor_category_equivalence _ _).functor } | |
instance [has_limits V] : has_limits (Action V G) := | |
adjunction.has_limits_of_equivalence (Action.functor_category_equivalence _ _).functor | |
instance [has_colimits V] : has_colimits (Action V G) := | |
adjunction.has_colimits_of_equivalence (Action.functor_category_equivalence _ _).functor | |
end | |
section forget | |
variables (V G) | |
/-- (implementation) The forgetful functor from bundled actions to the underlying objects. | |
Use the `category_theory.forget` API provided by the `concrete_category` instance below, | |
rather than using this directly. | |
-/ | |
@[simps] | |
def forget : Action V G ⥤ V := | |
{ obj := λ M, M.V, | |
map := λ M N f, f.hom, } | |
instance : faithful (forget V G) := | |
{ map_injective' := λ X Y f g w, hom.ext _ _ w, } | |
instance [concrete_category V] : concrete_category (Action V G) := | |
{ forget := forget V G ⋙ (concrete_category.forget V), } | |
instance has_forget_to_V [concrete_category V] : has_forget₂ (Action V G) V := | |
{ forget₂ := forget V G } | |
/-- The forgetful functor is intertwined by `functor_category_equivalence` with | |
evaluation at `punit.star`. -/ | |
def functor_category_equivalence_comp_evaluation : | |
(functor_category_equivalence V G).functor ⋙ (evaluation _ _).obj punit.star ≅ forget V G := | |
iso.refl _ | |
noncomputable instance [has_limits V] : limits.preserves_limits (forget V G) := | |
limits.preserves_limits_of_nat_iso | |
(Action.functor_category_equivalence_comp_evaluation V G) | |
noncomputable instance [has_colimits V] : preserves_colimits (forget V G) := | |
preserves_colimits_of_nat_iso | |
(Action.functor_category_equivalence_comp_evaluation V G) | |
-- TODO construct categorical images? | |
end forget | |
lemma iso.conj_ρ {M N : Action V G} (f : M ≅ N) (g : G) : | |
N.ρ g = (((forget V G).map_iso f).conj (M.ρ g)) := | |
by { rw [iso.conj_apply, iso.eq_inv_comp], simp [f.hom.comm'] } | |
section has_zero_morphisms | |
variables [has_zero_morphisms V] | |
instance : has_zero_morphisms (Action V G) := | |
{ has_zero := λ X Y, ⟨⟨0, by tidy⟩⟩, } | |
instance : functor.preserves_zero_morphisms (functor_category_equivalence V G).functor := {} | |
end has_zero_morphisms | |
section preadditive | |
variables [preadditive V] | |
instance : preadditive (Action V G) := | |
{ hom_group := λ X Y, | |
{ zero := ⟨0, by simp⟩, | |
add := λ f g, ⟨f.hom + g.hom, by simp [f.comm, g.comm]⟩, | |
neg := λ f, ⟨-f.hom, by simp [f.comm]⟩, | |
zero_add := by { intros, ext, exact zero_add _, }, | |
add_zero := by { intros, ext, exact add_zero _, }, | |
add_assoc := by { intros, ext, exact add_assoc _ _ _, }, | |
add_left_neg := by { intros, ext, exact add_left_neg _, }, | |
add_comm := by { intros, ext, exact add_comm _ _, }, }, | |
add_comp' := by { intros, ext, exact preadditive.add_comp _ _ _ _ _ _, }, | |
comp_add' := by { intros, ext, exact preadditive.comp_add _ _ _ _ _ _, }, } | |
instance : functor.additive (functor_category_equivalence V G).functor := {} | |
@[simp] lemma zero_hom {X Y : Action V G} : (0 : X ⟶ Y).hom = 0 := rfl | |
@[simp] lemma neg_hom {X Y : Action V G} (f : X ⟶ Y) : (-f).hom = -f.hom := rfl | |
@[simp] lemma add_hom {X Y : Action V G} (f g : X ⟶ Y) : (f + g).hom = f.hom + g.hom := rfl | |
end preadditive | |
section linear | |
variables [preadditive V] {R : Type*} [semiring R] [linear R V] | |
instance : linear R (Action V G) := | |
{ hom_module := λ X Y, | |
{ smul := λ r f, ⟨r • f.hom, by simp [f.comm]⟩, | |
one_smul := by { intros, ext, exact one_smul _ _, }, | |
smul_zero := by { intros, ext, exact smul_zero _, }, | |
zero_smul := by { intros, ext, exact zero_smul _ _, }, | |
add_smul := by { intros, ext, exact add_smul _ _ _, }, | |
smul_add := by { intros, ext, exact smul_add _ _ _, }, | |
mul_smul := by { intros, ext, exact mul_smul _ _ _, }, }, | |
smul_comp' := by { intros, ext, exact linear.smul_comp _ _ _ _ _ _, }, | |
comp_smul' := by { intros, ext, exact linear.comp_smul _ _ _ _ _ _, }, } | |
instance : functor.linear R (functor_category_equivalence V G).functor := {} | |
@[simp] lemma smul_hom {X Y : Action V G} (r : R) (f : X ⟶ Y) : (r • f).hom = r • f.hom := rfl | |
end linear | |
section abelian | |
/-- Auxilliary construction for the `abelian (Action V G)` instance. -/ | |
def abelian_aux : Action V G ≌ (ulift.{u} (single_obj G) ⥤ V) := | |
(functor_category_equivalence V G).trans (equivalence.congr_left ulift.equivalence) | |
noncomputable instance [abelian V] : abelian (Action V G) := | |
abelian_of_equivalence abelian_aux.functor | |
end abelian | |
section monoidal | |
variables [monoidal_category V] | |
instance : monoidal_category (Action V G) := | |
monoidal.transport (Action.functor_category_equivalence _ _).symm | |
@[simp] lemma tensor_unit_V : (𝟙_ (Action V G)).V = 𝟙_ V := rfl | |
@[simp] lemma tensor_unit_rho {g : G} : (𝟙_ (Action V G)).ρ g = 𝟙 (𝟙_ V) := rfl | |
@[simp] lemma tensor_V {X Y : Action V G} : (X ⊗ Y).V = X.V ⊗ Y.V := rfl | |
@[simp] lemma tensor_rho {X Y : Action V G} {g : G} : (X ⊗ Y).ρ g = X.ρ g ⊗ Y.ρ g := rfl | |
@[simp] lemma tensor_hom {W X Y Z : Action V G} (f : W ⟶ X) (g : Y ⟶ Z) : | |
(f ⊗ g).hom = f.hom ⊗ g.hom := rfl | |
@[simp] lemma associator_hom_hom {X Y Z : Action V G} : | |
hom.hom (α_ X Y Z).hom = (α_ X.V Y.V Z.V).hom := | |
begin | |
dsimp [monoidal.transport_associator], | |
simp, | |
end | |
@[simp] lemma associator_inv_hom {X Y Z : Action V G} : | |
hom.hom (α_ X Y Z).inv = (α_ X.V Y.V Z.V).inv := | |
begin | |
dsimp [monoidal.transport_associator], | |
simp, | |
end | |
@[simp] lemma left_unitor_hom_hom {X : Action V G} : | |
hom.hom (λ_ X).hom = (λ_ X.V).hom := | |
begin | |
dsimp [monoidal.transport_left_unitor], | |
simp, | |
end | |
@[simp] lemma left_unitor_inv_hom {X : Action V G} : | |
hom.hom (λ_ X).inv = (λ_ X.V).inv := | |
begin | |
dsimp [monoidal.transport_left_unitor], | |
simp, | |
end | |
@[simp] lemma right_unitor_hom_hom {X : Action V G} : | |
hom.hom (ρ_ X).hom = (ρ_ X.V).hom := | |
begin | |
dsimp [monoidal.transport_right_unitor], | |
simp, | |
end | |
@[simp] lemma right_unitor_inv_hom {X : Action V G} : | |
hom.hom (ρ_ X).inv = (ρ_ X.V).inv := | |
begin | |
dsimp [monoidal.transport_right_unitor], | |
simp, | |
end | |
variables (V G) | |
/-- When `V` is monoidal the forgetful functor `Action V G` to `V` is monoidal. -/ | |
@[simps] | |
def forget_monoidal : monoidal_functor (Action V G) V := | |
{ ε := 𝟙 _, | |
μ := λ X Y, 𝟙 _, | |
..Action.forget _ _, } | |
instance forget_monoidal_faithful : faithful (forget_monoidal V G).to_functor := | |
by { change faithful (forget V G), apply_instance, } | |
section | |
variables [braided_category V] | |
instance : braided_category (Action V G) := | |
braided_category_of_faithful (forget_monoidal V G) (λ X Y, mk_iso (β_ _ _) (by tidy)) (by tidy) | |
/-- When `V` is braided the forgetful functor `Action V G` to `V` is braided. -/ | |
@[simps] | |
def forget_braided : braided_functor (Action V G) V := | |
{ ..forget_monoidal _ _, } | |
instance forget_braided_faithful : faithful (forget_braided V G).to_functor := | |
by { change faithful (forget V G), apply_instance, } | |
end | |
instance [symmetric_category V] : symmetric_category (Action V G) := | |
symmetric_category_of_faithful (forget_braided V G) | |
section | |
local attribute [simp] monoidal_preadditive.tensor_add monoidal_preadditive.add_tensor | |
variables [preadditive V] [monoidal_preadditive V] | |
instance : monoidal_preadditive (Action V G) := {} | |
variables {R : Type*} [semiring R] [linear R V] [monoidal_linear R V] | |
instance : monoidal_linear R (Action V G) := {} | |
end | |
variables (V G) | |
noncomputable theory | |
/-- Upgrading the functor `Action V G ⥤ (single_obj G ⥤ V)` to a monoidal functor. -/ | |
def functor_category_monoidal_equivalence : monoidal_functor (Action V G) (single_obj G ⥤ V) := | |
monoidal.from_transported (Action.functor_category_equivalence _ _).symm | |
instance : is_equivalence ((functor_category_monoidal_equivalence V G).to_functor) := | |
by { change is_equivalence (Action.functor_category_equivalence _ _).functor, apply_instance, } | |
variables (H : Group.{u}) | |
instance [right_rigid_category V] : right_rigid_category (single_obj (H : Mon.{u}) ⥤ V) := | |
by { change right_rigid_category (single_obj H ⥤ V), apply_instance } | |
/-- If `V` is right rigid, so is `Action V G`. -/ | |
instance [right_rigid_category V] : right_rigid_category (Action V H) := | |
right_rigid_category_of_equivalence (functor_category_monoidal_equivalence V _) | |
instance [left_rigid_category V] : left_rigid_category (single_obj (H : Mon.{u}) ⥤ V) := | |
by { change left_rigid_category (single_obj H ⥤ V), apply_instance } | |
/-- If `V` is left rigid, so is `Action V G`. -/ | |
instance [left_rigid_category V] : left_rigid_category (Action V H) := | |
left_rigid_category_of_equivalence (functor_category_monoidal_equivalence V _) | |
instance [rigid_category V] : rigid_category (single_obj (H : Mon.{u}) ⥤ V) := | |
by { change rigid_category (single_obj H ⥤ V), apply_instance } | |
/-- If `V` is rigid, so is `Action V G`. -/ | |
instance [rigid_category V] : rigid_category (Action V H) := | |
rigid_category_of_equivalence (functor_category_monoidal_equivalence V _) | |
variables {V H} (X : Action V H) | |
@[simp] lemma right_dual_V [right_rigid_category V] : (Xᘁ).V = (X.V)ᘁ := rfl | |
@[simp] lemma left_dual_V [left_rigid_category V] : (ᘁX).V = ᘁ(X.V) := rfl | |
@[simp] lemma right_dual_ρ [right_rigid_category V] (h : H) : (Xᘁ).ρ h = (X.ρ (h⁻¹ : H))ᘁ := | |
by { rw ←single_obj.inv_as_inv, refl } | |
@[simp] lemma left_dual_ρ [left_rigid_category V] (h : H) : (ᘁX).ρ h = ᘁ(X.ρ (h⁻¹ : H)) := | |
by { rw ←single_obj.inv_as_inv, refl } | |
end monoidal | |
/-- Actions/representations of the trivial group are just objects in the ambient category. -/ | |
def Action_punit_equivalence : Action V (Mon.of punit) ≌ V := | |
{ functor := forget V _, | |
inverse := | |
{ obj := λ X, ⟨X, 1⟩, | |
map := λ X Y f, ⟨f, λ ⟨⟩, by simp⟩, }, | |
unit_iso := nat_iso.of_components (λ X, mk_iso (iso.refl _) (λ ⟨⟩, by simpa using ρ_one X)) | |
(by tidy), | |
counit_iso := nat_iso.of_components (λ X, iso.refl _) (by tidy), } | |
variables (V) | |
/-- | |
The "restriction" functor along a monoid homomorphism `f : G ⟶ H`, | |
taking actions of `H` to actions of `G`. | |
(This makes sense for any homomorphism, but the name is natural when `f` is a monomorphism.) | |
-/ | |
@[simps] | |
def res {G H : Mon} (f : G ⟶ H) : Action V H ⥤ Action V G := | |
{ obj := λ M, | |
{ V := M.V, | |
ρ := f ≫ M.ρ }, | |
map := λ M N p, | |
{ hom := p.hom, | |
comm' := λ g, p.comm (f g) } } | |
/-- | |
The natural isomorphism from restriction along the identity homomorphism to | |
the identity functor on `Action V G`. | |
-/ | |
def res_id {G : Mon} : res V (𝟙 G) ≅ 𝟭 (Action V G) := | |
nat_iso.of_components (λ M, mk_iso (iso.refl _) (by tidy)) (by tidy) | |
attribute [simps] res_id | |
/-- | |
The natural isomorphism from the composition of restrictions along homomorphisms | |
to the restriction along the composition of homomorphism. | |
-/ | |
def res_comp {G H K : Mon} (f : G ⟶ H) (g : H ⟶ K) : res V g ⋙ res V f ≅ res V (f ≫ g) := | |
nat_iso.of_components (λ M, mk_iso (iso.refl _) (by tidy)) (by tidy) | |
attribute [simps] res_comp | |
-- TODO promote `res` to a pseudofunctor from | |
-- the locally discrete bicategory constructed from `Monᵒᵖ` to `Cat`, sending `G` to `Action V G`. | |
variables {G} {H : Mon.{u}} (f : G ⟶ H) | |
instance res_additive [preadditive V] : (res V f).additive := {} | |
variables {R : Type*} [semiring R] | |
instance res_linear [preadditive V] [linear R V] : (res V f).linear R := {} | |
end Action | |
namespace category_theory.functor | |
variables {V} {W : Type (u+1)} [large_category W] | |
/-- A functor between categories induces a functor between | |
the categories of `G`-actions within those categories. -/ | |
@[simps] | |
def map_Action (F : V ⥤ W) (G : Mon.{u}) : Action V G ⥤ Action W G := | |
{ obj := λ M, | |
{ V := F.obj M.V, | |
ρ := | |
{ to_fun := λ g, F.map (M.ρ g), | |
map_one' := by simp only [End.one_def, Action.ρ_one, F.map_id], | |
map_mul' := λ g h, by simp only [End.mul_def, F.map_comp, map_mul], }, }, | |
map := λ M N f, | |
{ hom := F.map f.hom, | |
comm' := λ g, by { dsimp, rw [←F.map_comp, f.comm, F.map_comp], }, }, | |
map_id' := λ M, by { ext, simp only [Action.id_hom, F.map_id], }, | |
map_comp' := λ M N P f g, by { ext, simp only [Action.comp_hom, F.map_comp], }, } | |
variables (F : V ⥤ W) (G : Mon.{u}) [preadditive V] [preadditive W] | |
instance map_Action_preadditive [F.additive] : (F.map_Action G).additive := {} | |
variables {R : Type*} [semiring R] [category_theory.linear R V] [category_theory.linear R W] | |
instance map_Action_linear [F.additive] [F.linear R] : (F.map_Action G).linear R := {} | |
end category_theory.functor | |
namespace category_theory.monoidal_functor | |
open Action | |
variables {V} {W : Type (u+1)} [large_category W] [monoidal_category V] [monoidal_category W] | |
/-- A monoidal functor induces a monoidal functor between | |
the categories of `G`-actions within those categories. -/ | |
@[simps] def map_Action (F : monoidal_functor V W) (G : Mon.{u}) : | |
monoidal_functor (Action V G) (Action W G) := | |
{ ε := | |
{ hom := F.ε, | |
comm' := λ g, | |
by { dsimp, erw [category.id_comp, category_theory.functor.map_id, category.comp_id], }, }, | |
μ := λ X Y, | |
{ hom := F.μ X.V Y.V, | |
comm' := λ g, F.to_lax_monoidal_functor.μ_natural (X.ρ g) (Y.ρ g), }, | |
ε_is_iso := by apply_instance, | |
μ_is_iso := by apply_instance, | |
μ_natural' := by { intros, ext, dsimp, simp, }, | |
associativity' := by { intros, ext, dsimp, simp, dsimp, simp, }, -- See note [dsimp, simp]. | |
left_unitality' := by { intros, ext, dsimp, simp, dsimp, simp, }, | |
right_unitality' := by { intros, ext, dsimp, simp, dsimp, simp, }, | |
..F.to_functor.map_Action G, } | |
end category_theory.monoidal_functor | |