Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin | |
-/ | |
import order.conditionally_complete_lattice | |
/-! | |
# Tooling to make copies of lattice structures | |
Sometimes it is useful to make a copy of a lattice structure | |
where one replaces the data parts with provably equal definitions | |
that have better definitional properties. | |
-/ | |
open order | |
universe u | |
variables {α : Type u} | |
/-- A function to create a provable equal copy of a bounded order | |
with possibly different definitional equalities. -/ | |
def bounded_order.copy {h : has_le α} {h' : has_le α} (c : @bounded_order α h') | |
(top : α) (eq_top : top = @bounded_order.top α _ c) | |
(bot : α) (eq_bot : bot = @bounded_order.bot α _ c) | |
(le_eq : ∀ (x y : α), ((@has_le.le α h) x y) ↔ x ≤ y) : | |
@bounded_order α h := | |
begin | |
refine { top := top, bot := bot, .. }, | |
all_goals { abstract { subst_vars, casesI c, simp_rw le_eq, assumption } } | |
end | |
/-- A function to create a provable equal copy of a lattice | |
with possibly different definitional equalities. -/ | |
def lattice.copy (c : lattice α) | |
(le : α → α → Prop) (eq_le : le = @lattice.le α c) | |
(sup : α → α → α) (eq_sup : sup = @lattice.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @lattice.inf α c) : | |
lattice α := | |
begin | |
refine { le := le, sup := sup, inf := inf, .. }, | |
all_goals { abstract { subst_vars, casesI c, assumption } } | |
end | |
/-- A function to create a provable equal copy of a distributive lattice | |
with possibly different definitional equalities. -/ | |
def distrib_lattice.copy (c : distrib_lattice α) | |
(le : α → α → Prop) (eq_le : le = @distrib_lattice.le α c) | |
(sup : α → α → α) (eq_sup : sup = @distrib_lattice.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @distrib_lattice.inf α c) : | |
distrib_lattice α := | |
begin | |
refine { le := le, sup := sup, inf := inf, .. }, | |
all_goals { abstract { subst_vars, casesI c, assumption } } | |
end | |
/-- A function to create a provable equal copy of a complete lattice | |
with possibly different definitional equalities. -/ | |
def complete_lattice.copy (c : complete_lattice α) | |
(le : α → α → Prop) (eq_le : le = @complete_lattice.le α c) | |
(top : α) (eq_top : top = @complete_lattice.top α c) | |
(bot : α) (eq_bot : bot = @complete_lattice.bot α c) | |
(sup : α → α → α) (eq_sup : sup = @complete_lattice.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @complete_lattice.inf α c) | |
(Sup : set α → α) (eq_Sup : Sup = @complete_lattice.Sup α c) | |
(Inf : set α → α) (eq_Inf : Inf = @complete_lattice.Inf α c) : | |
complete_lattice α := | |
begin | |
refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, | |
.. lattice.copy (@complete_lattice.to_lattice α c) | |
le eq_le sup eq_sup inf eq_inf, | |
.. }, | |
all_goals { abstract { subst_vars, casesI c, assumption } } | |
end | |
/-- A function to create a provable equal copy of a frame with possibly different definitional | |
equalities. -/ | |
def frame.copy (c : frame α) | |
(le : α → α → Prop) (eq_le : le = @frame.le α c) | |
(top : α) (eq_top : top = @frame.top α c) | |
(bot : α) (eq_bot : bot = @frame.bot α c) | |
(sup : α → α → α) (eq_sup : sup = @frame.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @frame.inf α c) | |
(Sup : set α → α) (eq_Sup : Sup = @frame.Sup α c) | |
(Inf : set α → α) (eq_Inf : Inf = @frame.Inf α c) : | |
frame α := | |
begin | |
refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, | |
.. complete_lattice.copy (@frame.to_complete_lattice α c) | |
le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf, | |
.. }, | |
all_goals { abstract { subst_vars, casesI c, assumption } } | |
end | |
/-- A function to create a provable equal copy of a coframe with possibly different definitional | |
equalities. -/ | |
def coframe.copy (c : coframe α) | |
(le : α → α → Prop) (eq_le : le = @coframe.le α c) | |
(top : α) (eq_top : top = @coframe.top α c) | |
(bot : α) (eq_bot : bot = @coframe.bot α c) | |
(sup : α → α → α) (eq_sup : sup = @coframe.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @coframe.inf α c) | |
(Sup : set α → α) (eq_Sup : Sup = @coframe.Sup α c) | |
(Inf : set α → α) (eq_Inf : Inf = @coframe.Inf α c) : | |
coframe α := | |
begin | |
refine { le := le, top := top, bot := bot, sup := sup, inf := inf, Sup := Sup, Inf := Inf, | |
.. complete_lattice.copy (@coframe.to_complete_lattice α c) | |
le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf, | |
.. }, | |
all_goals { abstract { subst_vars, casesI c, assumption } } | |
end | |
/-- A function to create a provable equal copy of a complete distributive lattice | |
with possibly different definitional equalities. -/ | |
def complete_distrib_lattice.copy (c : complete_distrib_lattice α) | |
(le : α → α → Prop) (eq_le : le = @complete_distrib_lattice.le α c) | |
(top : α) (eq_top : top = @complete_distrib_lattice.top α c) | |
(bot : α) (eq_bot : bot = @complete_distrib_lattice.bot α c) | |
(sup : α → α → α) (eq_sup : sup = @complete_distrib_lattice.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @complete_distrib_lattice.inf α c) | |
(Sup : set α → α) (eq_Sup : Sup = @complete_distrib_lattice.Sup α c) | |
(Inf : set α → α) (eq_Inf : Inf = @complete_distrib_lattice.Inf α c) : | |
complete_distrib_lattice α := | |
{ .. frame.copy (@complete_distrib_lattice.to_frame α c) | |
le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf, | |
.. coframe.copy (@complete_distrib_lattice.to_coframe α c) | |
le eq_le top eq_top bot eq_bot sup eq_sup inf eq_inf Sup eq_Sup Inf eq_Inf} | |
/-- A function to create a provable equal copy of a conditionally complete lattice | |
with possibly different definitional equalities. -/ | |
def conditionally_complete_lattice.copy (c : conditionally_complete_lattice α) | |
(le : α → α → Prop) (eq_le : le = @conditionally_complete_lattice.le α c) | |
(sup : α → α → α) (eq_sup : sup = @conditionally_complete_lattice.sup α c) | |
(inf : α → α → α) (eq_inf : inf = @conditionally_complete_lattice.inf α c) | |
(Sup : set α → α) (eq_Sup : Sup = @conditionally_complete_lattice.Sup α c) | |
(Inf : set α → α) (eq_Inf : Inf = @conditionally_complete_lattice.Inf α c) : | |
conditionally_complete_lattice α := | |
begin | |
refine { le := le, sup := sup, inf := inf, Sup := Sup, Inf := Inf, ..}, | |
all_goals { abstract { subst_vars, casesI c, assumption } } | |
end | |