Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johan Commelin. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johan Commelin | |
-/ | |
import tactic.basic | |
import logic.is_empty | |
/-! | |
# Types with a unique term | |
In this file we define a typeclass `unique`, | |
which expresses that a type has a unique term. | |
In other words, a type that is `inhabited` and a `subsingleton`. | |
## Main declaration | |
* `unique`: a typeclass that expresses that a type has a unique term. | |
## Main statements | |
* `unique.mk'`: an inhabited subsingleton type is `unique`. This can not be an instance because it | |
would lead to loops in typeclass inference. | |
* `function.surjective.unique`: if the domain of a surjective function is `unique`, then its | |
codomain is `unique` as well. | |
* `function.injective.subsingleton`: if the codomain of an injective function is `subsingleton`, | |
then its domain is `subsingleton` as well. | |
* `function.injective.unique`: if the codomain of an injective function is `subsingleton` and its | |
domain is `inhabited`, then its domain is `unique`. | |
## Implementation details | |
The typeclass `unique α` is implemented as a type, | |
rather than a `Prop`-valued predicate, | |
for good definitional properties of the default term. | |
-/ | |
universes u v w | |
variables {α : Sort u} {β : Sort v} {γ : Sort w} | |
/-- `unique α` expresses that `α` is a type with a unique term `default`. | |
This is implemented as a type, rather than a `Prop`-valued predicate, | |
for good definitional properties of the default term. -/ | |
@[ext] | |
structure unique (α : Sort u) extends inhabited α := | |
(uniq : ∀ a : α, a = default) | |
attribute [class] unique | |
lemma unique_iff_exists_unique (α : Sort u) : nonempty (unique α) ↔ ∃! a : α, true := | |
⟨λ ⟨u⟩, ⟨u.default, trivial, λ a _, u.uniq a⟩, λ ⟨a,_,h⟩, ⟨⟨⟨a⟩, λ _, h _ trivial⟩⟩⟩ | |
lemma unique_subtype_iff_exists_unique {α} (p : α → Prop) : | |
nonempty (unique (subtype p)) ↔ ∃! a, p a := | |
⟨λ ⟨u⟩, ⟨u.default.1, u.default.2, λ a h, congr_arg subtype.val (u.uniq ⟨a,h⟩)⟩, | |
λ ⟨a,ha,he⟩, ⟨⟨⟨⟨a,ha⟩⟩, λ ⟨b,hb⟩, by { congr, exact he b hb }⟩⟩⟩ | |
/-- Given an explicit `a : α` with `[subsingleton α]`, we can construct | |
a `[unique α]` instance. This is a def because the typeclass search cannot | |
arbitrarily invent the `a : α` term. Nevertheless, these instances are all | |
equivalent by `unique.subsingleton.unique`. | |
See note [reducible non-instances]. -/ | |
@[reducible] def unique_of_subsingleton {α : Sort*} [subsingleton α] (a : α) : unique α := | |
{ default := a, | |
uniq := λ _, subsingleton.elim _ _ } | |
instance punit.unique : unique punit.{u} := | |
{ default := punit.star, | |
uniq := λ x, punit_eq x _ } | |
@[simp] lemma punit.default_eq_star : (default : punit) = punit.star := rfl | |
/-- Every provable proposition is unique, as all proofs are equal. -/ | |
def unique_prop {p : Prop} (h : p) : unique p := | |
{ default := h, uniq := λ x, rfl } | |
instance : unique true := unique_prop trivial | |
lemma fin.eq_zero : ∀ n : fin 1, n = 0 | |
| ⟨n, hn⟩ := fin.eq_of_veq (nat.eq_zero_of_le_zero (nat.le_of_lt_succ hn)) | |
instance {n : ℕ} : inhabited (fin n.succ) := ⟨0⟩ | |
instance inhabited_fin_one_add (n : ℕ) : inhabited (fin (1 + n)) := ⟨⟨0, nat.zero_lt_one_add n⟩⟩ | |
@[simp] lemma fin.default_eq_zero (n : ℕ) : (default : fin n.succ) = 0 := rfl | |
instance fin.unique : unique (fin 1) := | |
{ uniq := fin.eq_zero, .. fin.inhabited } | |
namespace unique | |
open function | |
section | |
variables [unique α] | |
@[priority 100] -- see Note [lower instance priority] | |
instance : inhabited α := to_inhabited ‹unique α› | |
lemma eq_default (a : α) : a = default := uniq _ a | |
lemma default_eq (a : α) : default = a := (uniq _ a).symm | |
@[priority 100] -- see Note [lower instance priority] | |
instance : subsingleton α := subsingleton_of_forall_eq _ eq_default | |
lemma forall_iff {p : α → Prop} : (∀ a, p a) ↔ p default := | |
⟨λ h, h _, λ h x, by rwa [unique.eq_default x]⟩ | |
lemma exists_iff {p : α → Prop} : Exists p ↔ p default := | |
⟨λ ⟨a, ha⟩, eq_default a ▸ ha, exists.intro default⟩ | |
end | |
@[ext] protected lemma subsingleton_unique' : ∀ (h₁ h₂ : unique α), h₁ = h₂ | |
| ⟨⟨x⟩, h⟩ ⟨⟨y⟩, _⟩ := by congr; rw [h x, h y] | |
instance subsingleton_unique : subsingleton (unique α) := | |
⟨unique.subsingleton_unique'⟩ | |
/-- Construct `unique` from `inhabited` and `subsingleton`. Making this an instance would create | |
a loop in the class inheritance graph. -/ | |
@[reducible] def mk' (α : Sort u) [h₁ : inhabited α] [subsingleton α] : unique α := | |
{ uniq := λ x, subsingleton.elim _ _, .. h₁ } | |
end unique | |
lemma unique_iff_subsingleton_and_nonempty (α : Sort u) : | |
nonempty (unique α) ↔ subsingleton α ∧ nonempty α := | |
⟨λ ⟨u⟩, by split; exactI infer_instance, | |
λ ⟨hs, hn⟩, ⟨by { resetI, inhabit α, exact unique.mk' α }⟩⟩ | |
@[simp] lemma pi.default_def {β : α → Sort v} [Π a, inhabited (β a)] : | |
@default (Π a, β a) _ = λ a : α, @default (β a) _ := rfl | |
lemma pi.default_apply {β : α → Sort v} [Π a, inhabited (β a)] (a : α) : | |
@default (Π a, β a) _ a = default := rfl | |
instance pi.unique {β : α → Sort v} [Π a, unique (β a)] : unique (Π a, β a) := | |
{ uniq := λ f, funext $ λ x, unique.eq_default _, | |
.. pi.inhabited α } | |
/-- There is a unique function on an empty domain. -/ | |
instance pi.unique_of_is_empty [is_empty α] (β : α → Sort v) : | |
unique (Π a, β a) := | |
{ default := is_empty_elim, | |
uniq := λ f, funext is_empty_elim } | |
lemma eq_const_of_unique [unique α] (f : α → β) : f = function.const α (f default) := | |
by { ext x, rw subsingleton.elim x default } | |
lemma heq_const_of_unique [unique α] {β : α → Sort v} | |
(f : Π a, β a) : f == function.const α (f default) := | |
function.hfunext rfl $ λ i _ _, by rw subsingleton.elim i default | |
namespace function | |
variable {f : α → β} | |
/-- If the codomain of an injective function is a subsingleton, then the domain | |
is a subsingleton as well. -/ | |
protected lemma injective.subsingleton (hf : injective f) [subsingleton β] : | |
subsingleton α := | |
⟨λ x y, hf $ subsingleton.elim _ _⟩ | |
/-- If the domain of a surjective function is a subsingleton, then the codomain is a subsingleton as | |
well. -/ | |
protected lemma surjective.subsingleton [subsingleton α] (hf : surjective f) : | |
subsingleton β := | |
⟨hf.forall₂.2 $ λ x y, congr_arg f $ subsingleton.elim x y⟩ | |
/-- If the domain of a surjective function is a singleton, | |
then the codomain is a singleton as well. -/ | |
protected def surjective.unique (hf : surjective f) [unique α] : unique β := | |
@unique.mk' _ ⟨f default⟩ hf.subsingleton | |
/-- If `α` is inhabited and admits an injective map to a subsingleton type, then `α` is `unique`. -/ | |
protected def injective.unique [inhabited α] [subsingleton β] (hf : injective f) : unique α := | |
@unique.mk' _ _ hf.subsingleton | |
/-- If a constant function is surjective, then the codomain is a singleton. -/ | |
def surjective.unique_of_surjective_const (α : Type*) {β : Type*} (b : β) | |
(h : function.surjective (function.const α b)) : unique β := | |
@unique_of_subsingleton _ (subsingleton_of_forall_eq b $ h.forall.mpr (λ _, rfl)) b | |
end function | |
lemma unique.bijective {A B} [unique A] [unique B] {f : A → B} : function.bijective f := | |
begin | |
rw function.bijective_iff_has_inverse, | |
refine ⟨default, _, _⟩; intro x; simp | |
end | |
namespace option | |
/-- `option α` is a `subsingleton` if and only if `α` is empty. -/ | |
lemma subsingleton_iff_is_empty {α} : subsingleton (option α) ↔ is_empty α := | |
⟨λ h, ⟨λ x, option.no_confusion $ @subsingleton.elim _ h x none⟩, | |
λ h, ⟨λ x y, option.cases_on x (option.cases_on y rfl (λ x, h.elim x)) (λ x, h.elim x)⟩⟩ | |
instance {α} [is_empty α] : unique (option α) := @unique.mk' _ _ (subsingleton_iff_is_empty.2 ‹_›) | |
end option | |
section subtype | |
instance unique.subtype_eq (y : α) : unique {x // x = y} := | |
{ default := ⟨y, rfl⟩, | |
uniq := λ ⟨x, hx⟩, by simpa using hx } | |
instance unique.subtype_eq' (y : α) : unique {x // y = x} := | |
{ default := ⟨y, rfl⟩, | |
uniq := λ ⟨x, hx⟩, by simpa using hx.symm } | |
end subtype | |