Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.19 kB
/-
Copyright (c) 2019 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import tactic.basic
import logic.is_empty
/-!
# Types with a unique term
In this file we define a typeclass `unique`,
which expresses that a type has a unique term.
In other words, a type that is `inhabited` and a `subsingleton`.
## Main declaration
* `unique`: a typeclass that expresses that a type has a unique term.
## Main statements
* `unique.mk'`: an inhabited subsingleton type is `unique`. This can not be an instance because it
would lead to loops in typeclass inference.
* `function.surjective.unique`: if the domain of a surjective function is `unique`, then its
codomain is `unique` as well.
* `function.injective.subsingleton`: if the codomain of an injective function is `subsingleton`,
then its domain is `subsingleton` as well.
* `function.injective.unique`: if the codomain of an injective function is `subsingleton` and its
domain is `inhabited`, then its domain is `unique`.
## Implementation details
The typeclass `unique α` is implemented as a type,
rather than a `Prop`-valued predicate,
for good definitional properties of the default term.
-/
universes u v w
variables {α : Sort u} {β : Sort v} {γ : Sort w}
/-- `unique α` expresses that `α` is a type with a unique term `default`.
This is implemented as a type, rather than a `Prop`-valued predicate,
for good definitional properties of the default term. -/
@[ext]
structure unique (α : Sort u) extends inhabited α :=
(uniq : ∀ a : α, a = default)
attribute [class] unique
lemma unique_iff_exists_unique (α : Sort u) : nonempty (unique α) ↔ ∃! a : α, true :=
⟨λ ⟨u⟩, ⟨u.default, trivial, λ a _, u.uniq a⟩, λ ⟨a,_,h⟩, ⟨⟨⟨a⟩, λ _, h _ trivial⟩⟩⟩
lemma unique_subtype_iff_exists_unique {α} (p : α → Prop) :
nonempty (unique (subtype p)) ↔ ∃! a, p a :=
⟨λ ⟨u⟩, ⟨u.default.1, u.default.2, λ a h, congr_arg subtype.val (u.uniq ⟨a,h⟩)⟩,
λ ⟨a,ha,he⟩, ⟨⟨⟨⟨a,ha⟩⟩, λ ⟨b,hb⟩, by { congr, exact he b hb }⟩⟩⟩
/-- Given an explicit `a : α` with `[subsingleton α]`, we can construct
a `[unique α]` instance. This is a def because the typeclass search cannot
arbitrarily invent the `a : α` term. Nevertheless, these instances are all
equivalent by `unique.subsingleton.unique`.
See note [reducible non-instances]. -/
@[reducible] def unique_of_subsingleton {α : Sort*} [subsingleton α] (a : α) : unique α :=
{ default := a,
uniq := λ _, subsingleton.elim _ _ }
instance punit.unique : unique punit.{u} :=
{ default := punit.star,
uniq := λ x, punit_eq x _ }
@[simp] lemma punit.default_eq_star : (default : punit) = punit.star := rfl
/-- Every provable proposition is unique, as all proofs are equal. -/
def unique_prop {p : Prop} (h : p) : unique p :=
{ default := h, uniq := λ x, rfl }
instance : unique true := unique_prop trivial
lemma fin.eq_zero : ∀ n : fin 1, n = 0
| ⟨n, hn⟩ := fin.eq_of_veq (nat.eq_zero_of_le_zero (nat.le_of_lt_succ hn))
instance {n : ℕ} : inhabited (fin n.succ) := ⟨0
instance inhabited_fin_one_add (n : ℕ) : inhabited (fin (1 + n)) := ⟨⟨0, nat.zero_lt_one_add n⟩⟩
@[simp] lemma fin.default_eq_zero (n : ℕ) : (default : fin n.succ) = 0 := rfl
instance fin.unique : unique (fin 1) :=
{ uniq := fin.eq_zero, .. fin.inhabited }
namespace unique
open function
section
variables [unique α]
@[priority 100] -- see Note [lower instance priority]
instance : inhabited α := to_inhabited ‹unique α›
lemma eq_default (a : α) : a = default := uniq _ a
lemma default_eq (a : α) : default = a := (uniq _ a).symm
@[priority 100] -- see Note [lower instance priority]
instance : subsingleton α := subsingleton_of_forall_eq _ eq_default
lemma forall_iff {p : α → Prop} : (∀ a, p a) ↔ p default :=
⟨λ h, h _, λ h x, by rwa [unique.eq_default x]⟩
lemma exists_iff {p : α → Prop} : Exists p ↔ p default :=
⟨λ ⟨a, ha⟩, eq_default a ▸ ha, exists.intro default⟩
end
@[ext] protected lemma subsingleton_unique' : ∀ (h₁ h₂ : unique α), h₁ = h₂
| ⟨⟨x⟩, h⟩ ⟨⟨y⟩, _⟩ := by congr; rw [h x, h y]
instance subsingleton_unique : subsingleton (unique α) :=
⟨unique.subsingleton_unique'⟩
/-- Construct `unique` from `inhabited` and `subsingleton`. Making this an instance would create
a loop in the class inheritance graph. -/
@[reducible] def mk' (α : Sort u) [h₁ : inhabited α] [subsingleton α] : unique α :=
{ uniq := λ x, subsingleton.elim _ _, .. h₁ }
end unique
lemma unique_iff_subsingleton_and_nonempty (α : Sort u) :
nonempty (unique α) ↔ subsingleton α ∧ nonempty α :=
⟨λ ⟨u⟩, by split; exactI infer_instance,
λ ⟨hs, hn⟩, ⟨by { resetI, inhabit α, exact unique.mk' α }⟩⟩
@[simp] lemma pi.default_def {β : α → Sort v} [Π a, inhabited (β a)] :
@default (Π a, β a) _ = λ a : α, @default (β a) _ := rfl
lemma pi.default_apply {β : α → Sort v} [Π a, inhabited (β a)] (a : α) :
@default (Π a, β a) _ a = default := rfl
instance pi.unique {β : α → Sort v} [Π a, unique (β a)] : unique (Π a, β a) :=
{ uniq := λ f, funext $ λ x, unique.eq_default _,
.. pi.inhabited α }
/-- There is a unique function on an empty domain. -/
instance pi.unique_of_is_empty [is_empty α] (β : α → Sort v) :
unique (Π a, β a) :=
{ default := is_empty_elim,
uniq := λ f, funext is_empty_elim }
lemma eq_const_of_unique [unique α] (f : α → β) : f = function.const α (f default) :=
by { ext x, rw subsingleton.elim x default }
lemma heq_const_of_unique [unique α] {β : α → Sort v}
(f : Π a, β a) : f == function.const α (f default) :=
function.hfunext rfl $ λ i _ _, by rw subsingleton.elim i default
namespace function
variable {f : α → β}
/-- If the codomain of an injective function is a subsingleton, then the domain
is a subsingleton as well. -/
protected lemma injective.subsingleton (hf : injective f) [subsingleton β] :
subsingleton α :=
⟨λ x y, hf $ subsingleton.elim _ _⟩
/-- If the domain of a surjective function is a subsingleton, then the codomain is a subsingleton as
well. -/
protected lemma surjective.subsingleton [subsingleton α] (hf : surjective f) :
subsingleton β :=
⟨hf.forall₂.2 $ λ x y, congr_arg f $ subsingleton.elim x y⟩
/-- If the domain of a surjective function is a singleton,
then the codomain is a singleton as well. -/
protected def surjective.unique (hf : surjective f) [unique α] : unique β :=
@unique.mk' _ ⟨f default⟩ hf.subsingleton
/-- If `α` is inhabited and admits an injective map to a subsingleton type, then `α` is `unique`. -/
protected def injective.unique [inhabited α] [subsingleton β] (hf : injective f) : unique α :=
@unique.mk' _ _ hf.subsingleton
/-- If a constant function is surjective, then the codomain is a singleton. -/
def surjective.unique_of_surjective_const (α : Type*) {β : Type*} (b : β)
(h : function.surjective (function.const α b)) : unique β :=
@unique_of_subsingleton _ (subsingleton_of_forall_eq b $ h.forall.mpr (λ _, rfl)) b
end function
lemma unique.bijective {A B} [unique A] [unique B] {f : A → B} : function.bijective f :=
begin
rw function.bijective_iff_has_inverse,
refine ⟨default, _, _⟩; intro x; simp
end
namespace option
/-- `option α` is a `subsingleton` if and only if `α` is empty. -/
lemma subsingleton_iff_is_empty {α} : subsingleton (option α) ↔ is_empty α :=
⟨λ h, ⟨λ x, option.no_confusion $ @subsingleton.elim _ h x none⟩,
λ h, ⟨λ x y, option.cases_on x (option.cases_on y rfl (λ x, h.elim x)) (λ x, h.elim x)⟩⟩
instance {α} [is_empty α] : unique (option α) := @unique.mk' _ _ (subsingleton_iff_is_empty.2 ‹_›)
end option
section subtype
instance unique.subtype_eq (y : α) : unique {x // x = y} :=
{ default := ⟨y, rfl⟩,
uniq := λ ⟨x, hx⟩, by simpa using hx }
instance unique.subtype_eq' (y : α) : unique {x // y = x} :=
{ default := ⟨y, rfl⟩,
uniq := λ ⟨x, hx⟩, by simpa using hx.symm }
end subtype