Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Yaël Dillies. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yaël Dillies | |
-/ | |
import tactic.split_ifs | |
/-! | |
# More basic logic properties | |
A few more logic lemmas. These are in their own file, rather than `logic.basic`, because it is | |
convenient to be able to use the `split_ifs` tactic. | |
## Implementation notes | |
We spell those lemmas out with `dite` and `ite` rather than the `if then else` notation because this | |
would result in less delta-reduced statements. | |
-/ | |
variables {α : Sort*} {p q r : Prop} [decidable p] [decidable q] {a b c : α} | |
lemma dite_dite_distrib_left {a : p → α} {b : ¬ p → q → α} {c : ¬ p → ¬ q → α} : | |
dite p a (λ hp, dite q (b hp) (c hp)) = | |
dite q (λ hq, dite p a $ λ hp, b hp hq) (λ hq, dite p a $ λ hp, c hp hq) := | |
by split_ifs; refl | |
lemma dite_dite_distrib_right {a : p → q → α} {b : p → ¬ q → α} {c : ¬ p → α} : | |
dite p (λ hp, dite q (a hp) (b hp)) c = | |
dite q (λ hq, dite p (λ hp, a hp hq) c) (λ hq, dite p (λ hp, b hp hq) c) := | |
by split_ifs; refl | |
lemma ite_dite_distrib_left {a : α} {b : q → α} {c : ¬ q → α} : | |
ite p a (dite q b c) = dite q (λ hq, ite p a $ b hq) (λ hq, ite p a $ c hq) := | |
dite_dite_distrib_left | |
lemma ite_dite_distrib_right {a : q → α} {b : ¬ q → α} {c : α} : | |
ite p (dite q a b) c = dite q (λ hq, ite p (a hq) c) (λ hq, ite p (b hq) c) := | |
dite_dite_distrib_right | |
lemma dite_ite_distrib_left {a : p → α} {b : ¬ p → α} {c : ¬ p → α} : | |
dite p a (λ hp, ite q (b hp) (c hp)) = ite q (dite p a b) (dite p a c) := | |
dite_dite_distrib_left | |
lemma dite_ite_distrib_right {a : p → α} {b : p → α} {c : ¬ p → α} : | |
dite p (λ hp, ite q (a hp) (b hp)) c = ite q (dite p a c) (dite p b c) := | |
dite_dite_distrib_right | |
lemma ite_ite_distrib_left : ite p a (ite q b c) = ite q (ite p a b) (ite p a c) := | |
dite_dite_distrib_left | |
lemma ite_ite_distrib_right : ite p (ite q a b) c = ite q (ite p a c) (ite p b c) := | |
dite_dite_distrib_right | |