Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
17.1 kB
/-
Copyright (c) 2017 Johannes HΓΆlzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes HΓΆlzl, Mario Carneiro, Kevin Buzzard, Yury Kudryashov
-/
import group_theory.quotient_group
import linear_algebra.span
/-!
# Quotients by submodules
* If `p` is a submodule of `M`, `M β§Έ p` is the quotient of `M` with respect to `p`:
that is, elements of `M` are identified if their difference is in `p`. This is itself a module.
-/
-- For most of this file we work over a noncommutative ring
section ring
namespace submodule
variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M]
variables (p p' : submodule R M)
open linear_map quotient_add_group
/-- The equivalence relation associated to a submodule `p`, defined by `x β‰ˆ y` iff `-x + y ∈ p`.
Note this is equivalent to `y - x ∈ p`, but defined this way to be be defeq to the `add_subgroup`
version, where commutativity can't be assumed. -/
def quotient_rel : setoid M :=
quotient_add_group.left_rel p.to_add_subgroup
lemma quotient_rel_r_def {x y : M} : @setoid.r _ (p.quotient_rel) x y ↔ x - y ∈ p :=
iff.trans (by { rw [left_rel_apply, sub_eq_add_neg, neg_add, neg_neg], refl }) neg_mem_iff
/-- The quotient of a module `M` by a submodule `p βŠ† M`. -/
instance has_quotient : has_quotient M (submodule R M) := ⟨λ p, quotient (quotient_rel p)⟩
namespace quotient
/-- Map associating to an element of `M` the corresponding element of `M/p`,
when `p` is a submodule of `M`. -/
def mk {p : submodule R M} : M β†’ M β§Έ p := quotient.mk'
@[simp] theorem mk_eq_mk {p : submodule R M} (x : M) :
(@_root_.quotient.mk _ (quotient_rel p) x) = mk x := rfl
@[simp] theorem mk'_eq_mk {p : submodule R M} (x : M) : (quotient.mk' x : M β§Έ p) = mk x := rfl
@[simp] theorem quot_mk_eq_mk {p : submodule R M} (x : M) : (quot.mk _ x : M β§Έ p) = mk x := rfl
protected theorem eq' {x y : M} : (mk x : M β§Έ p) = mk y ↔ -x + y ∈ p := quotient_add_group.eq
protected theorem eq {x y : M} : (mk x : M β§Έ p) = mk y ↔ x - y ∈ p :=
(p^.quotient.eq').trans (left_rel_apply.symm.trans p.quotient_rel_r_def)
instance : has_zero (M ⧸ p) := ⟨mk 0⟩
instance : inhabited (M ⧸ p) := ⟨0⟩
@[simp] theorem mk_zero : mk 0 = (0 : M β§Έ p) := rfl
@[simp] theorem mk_eq_zero : (mk x : M β§Έ p) = 0 ↔ x ∈ p :=
by simpa using (quotient.eq p : mk x = 0 ↔ _)
instance add_comm_group : add_comm_group (M β§Έ p) :=
quotient_add_group.add_comm_group p.to_add_subgroup
@[simp] theorem mk_add : (mk (x + y) : M β§Έ p) = mk x + mk y := rfl
@[simp] theorem mk_neg : (mk (-x) : M β§Έ p) = -mk x := rfl
@[simp] theorem mk_sub : (mk (x - y) : M β§Έ p) = mk x - mk y := rfl
section has_smul
variables {S : Type*} [has_smul S R] [has_smul S M] [is_scalar_tower S R M] (P : submodule R M)
instance has_smul' : has_smul S (M β§Έ P) :=
⟨λ a, quotient.map' ((β€’) a) $ Ξ» x y h, left_rel_apply.mpr $
by simpa [smul_sub] using P.smul_mem (a β€’ 1 : R) (left_rel_apply.mp h)⟩
/-- Shortcut to help the elaborator in the common case. -/
instance has_smul : has_smul R (M β§Έ P) :=
quotient.has_smul' P
@[simp] theorem mk_smul (r : S) (x : M) : (mk (r β€’ x) : M β§Έ p) = r β€’ mk x := rfl
instance smul_comm_class (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M]
[smul_comm_class S T M] : smul_comm_class S T (M β§Έ P) :=
{ smul_comm := Ξ» x y, quotient.ind' $ by exact Ξ» z, congr_arg mk (smul_comm _ _ _) }
instance is_scalar_tower (T : Type*) [has_smul T R] [has_smul T M] [is_scalar_tower T R M]
[has_smul S T] [is_scalar_tower S T M] : is_scalar_tower S T (M β§Έ P) :=
{ smul_assoc := Ξ» x y, quotient.ind' $ by exact Ξ» z, congr_arg mk (smul_assoc _ _ _) }
instance is_central_scalar [has_smul Sᡐᡒᡖ R] [has_smul Sᡐᡒᡖ M] [is_scalar_tower Sᡐᡒᡖ R M]
[is_central_scalar S M] : is_central_scalar S (M β§Έ P) :=
{ op_smul_eq_smul := Ξ» x, quotient.ind' $ by exact Ξ» z, congr_arg mk $ op_smul_eq_smul _ _ }
end has_smul
section module
variables {S : Type*}
instance mul_action' [monoid S] [has_smul S R] [mul_action S M] [is_scalar_tower S R M]
(P : submodule R M) : mul_action S (M β§Έ P) :=
function.surjective.mul_action mk (surjective_quot_mk _) P^.quotient.mk_smul
instance mul_action (P : submodule R M) : mul_action R (M β§Έ P) :=
quotient.mul_action' P
instance distrib_mul_action' [monoid S] [has_smul S R] [distrib_mul_action S M]
[is_scalar_tower S R M]
(P : submodule R M) : distrib_mul_action S (M β§Έ P) :=
function.surjective.distrib_mul_action
⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul
instance distrib_mul_action (P : submodule R M) : distrib_mul_action R (M β§Έ P) :=
quotient.distrib_mul_action' P
instance module' [semiring S] [has_smul S R] [module S M] [is_scalar_tower S R M]
(P : submodule R M) : module S (M β§Έ P) :=
function.surjective.module _
⟨mk, rfl, λ _ _, rfl⟩ (surjective_quot_mk _) P^.quotient.mk_smul
instance module (P : submodule R M) : module R (M β§Έ P) :=
quotient.module' P
variables (S)
/-- The quotient of `P` as an `S`-submodule is the same as the quotient of `P` as an `R`-submodule,
where `P : submodule R M`.
-/
def restrict_scalars_equiv [ring S] [has_smul S R] [module S M] [is_scalar_tower S R M]
(P : submodule R M) :
(M β§Έ P.restrict_scalars S) ≃ₗ[S] M β§Έ P :=
{ map_add' := Ξ» x y, quotient.induction_onβ‚‚' x y (Ξ» x' y', rfl),
map_smul' := Ξ» c x, quotient.induction_on' x (Ξ» x', rfl),
..quotient.congr_right $ Ξ» _ _, iff.rfl }
@[simp] lemma restrict_scalars_equiv_mk
[ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M)
(x : M) : restrict_scalars_equiv S P (mk x) = mk x :=
rfl
@[simp] lemma restrict_scalars_equiv_symm_mk
[ring S] [has_smul S R] [module S M] [is_scalar_tower S R M] (P : submodule R M)
(x : M) : (restrict_scalars_equiv S P).symm (mk x) = mk x :=
rfl
end module
lemma mk_surjective : function.surjective (@mk _ _ _ _ _ p) :=
by { rintros ⟨x⟩, exact ⟨x, rfl⟩ }
lemma nontrivial_of_lt_top (h : p < ⊀) : nontrivial (M ⧸ p) :=
begin
obtain ⟨x, _, not_mem_s⟩ := set_like.exists_of_lt h,
refine ⟨⟨mk x, 0, _⟩⟩,
simpa using not_mem_s
end
end quotient
section
variables {Mβ‚‚ : Type*} [add_comm_group Mβ‚‚] [module R Mβ‚‚]
lemma quot_hom_ext ⦃f g : M β§Έ p β†’β‚—[R] M₂⦄ (h : βˆ€ x, f (quotient.mk x) = g (quotient.mk x)) :
f = g :=
linear_map.ext $ Ξ» x, quotient.induction_on' x h
/-- The map from a module `M` to the quotient of `M` by a submodule `p` as a linear map. -/
def mkq : M β†’β‚—[R] M β§Έ p :=
{ to_fun := quotient.mk, map_add' := by simp, map_smul' := by simp }
@[simp] theorem mkq_apply (x : M) : p.mkq x = quotient.mk x := rfl
lemma mkq_surjective (A : submodule R M) : function.surjective A.mkq :=
by rintro ⟨x⟩; exact ⟨x, rfl⟩
end
variables {Rβ‚‚ Mβ‚‚ : Type*} [ring Rβ‚‚] [add_comm_group Mβ‚‚] [module Rβ‚‚ Mβ‚‚] {τ₁₂ : R β†’+* Rβ‚‚}
/-- Two `linear_map`s from a quotient module are equal if their compositions with
`submodule.mkq` are equal.
See note [partially-applied ext lemmas]. -/
@[ext]
lemma linear_map_qext ⦃f g : M β§Έ p β†’β‚›β‚—[τ₁₂] M₂⦄ (h : f.comp p.mkq = g.comp p.mkq) : f = g :=
linear_map.ext $ Ξ» x, quotient.induction_on' x $ (linear_map.congr_fun h : _)
/-- The map from the quotient of `M` by a submodule `p` to `Mβ‚‚` induced by a linear map `f : M β†’ Mβ‚‚`
vanishing on `p`, as a linear map. -/
def liftq (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h : p ≀ f.ker) : M β§Έ p β†’β‚›β‚—[τ₁₂] Mβ‚‚ :=
{ map_smul' := by rintro a ⟨x⟩; exact f.map_smulβ‚›β‚— a x,
..quotient_add_group.lift p.to_add_subgroup f.to_add_monoid_hom h }
@[simp] theorem liftq_apply (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) {h} (x : M) :
p.liftq f h (quotient.mk x) = f x := rfl
@[simp] theorem liftq_mkq (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h) : (p.liftq f h).comp p.mkq = f :=
by ext; refl
/--Special case of `liftq` when `p` is the span of `x`. In this case, the condition on `f` simply
becomes vanishing at `x`.-/
def liftq_span_singleton (x : M) (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h : f x = 0) : (M β§Έ R βˆ™ x) β†’β‚›β‚—[τ₁₂] Mβ‚‚ :=
(R βˆ™ x).liftq f $ by rw [span_singleton_le_iff_mem, linear_map.mem_ker, h]
@[simp] lemma liftq_span_singleton_apply (x : M) (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h : f x = 0) (y : M) :
liftq_span_singleton x f h (quotient.mk y) = f y := rfl
@[simp] theorem range_mkq : p.mkq.range = ⊀ :=
eq_top_iff'.2 $ by rintro ⟨x⟩; exact ⟨x, rfl⟩
@[simp] theorem ker_mkq : p.mkq.ker = p :=
by ext; simp
lemma le_comap_mkq (p' : submodule R (M β§Έ p)) : p ≀ comap p.mkq p' :=
by simpa using (comap_mono bot_le : p.mkq.ker ≀ comap p.mkq p')
@[simp] theorem mkq_map_self : map p.mkq p = βŠ₯ :=
by rw [eq_bot_iff, map_le_iff_le_comap, comap_bot, ker_mkq]; exact le_rfl
@[simp] theorem comap_map_mkq : comap p.mkq (map p.mkq p') = p βŠ” p' :=
by simp [comap_map_eq, sup_comm]
@[simp] theorem map_mkq_eq_top : map p.mkq p' = ⊀ ↔ p βŠ” p' = ⊀ :=
by simp only [map_eq_top_iff p.range_mkq, sup_comm, ker_mkq]
variables (q : submodule Rβ‚‚ Mβ‚‚)
/-- The map from the quotient of `M` by submodule `p` to the quotient of `Mβ‚‚` by submodule `q` along
`f : M β†’ Mβ‚‚` is linear. -/
def mapq (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h : p ≀ comap f q) :
(M β§Έ p) β†’β‚›β‚—[τ₁₂] (Mβ‚‚ β§Έ q) :=
p.liftq (q.mkq.comp f) $ by simpa [ker_comp] using h
@[simp] theorem mapq_apply (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) {h} (x : M) :
mapq p q f h (quotient.mk x) = quotient.mk (f x) := rfl
theorem mapq_mkq (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) {h} : (mapq p q f h).comp p.mkq = q.mkq.comp f :=
by ext x; refl
@[simp] lemma mapq_zero (h : p ≀ q.comap (0 : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) := by simp) :
p.mapq q (0 : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) h = 0 :=
by { ext, simp, }
/-- Given submodules `p βŠ† M`, `pβ‚‚ βŠ† Mβ‚‚`, `p₃ βŠ† M₃` and maps `f : M β†’ Mβ‚‚`, `g : Mβ‚‚ β†’ M₃` inducing
`mapq f : M β§Έ p β†’ Mβ‚‚ β§Έ pβ‚‚` and `mapq g : Mβ‚‚ β§Έ pβ‚‚ β†’ M₃ β§Έ p₃` then
`mapq (g ∘ f) = (mapq g) ∘ (mapq f)`. -/
lemma mapq_comp {R₃ M₃ : Type*} [ring R₃] [add_comm_group M₃] [module R₃ M₃]
(pβ‚‚ : submodule Rβ‚‚ Mβ‚‚) (p₃ : submodule R₃ M₃)
{τ₂₃ : Rβ‚‚ β†’+* R₃} {τ₁₃ : R β†’+* R₃} [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃]
(f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (g : Mβ‚‚ β†’β‚›β‚—[τ₂₃] M₃) (hf : p ≀ pβ‚‚.comap f) (hg : pβ‚‚ ≀ p₃.comap g)
(h := (hf.trans (comap_mono hg))) :
p.mapq p₃ (g.comp f) h = (pβ‚‚.mapq p₃ g hg).comp (p.mapq pβ‚‚ f hf) :=
by { ext, simp, }
@[simp] lemma mapq_id (h : p ≀ p.comap linear_map.id := by simp) :
p.mapq p linear_map.id h = linear_map.id :=
by { ext, simp, }
lemma mapq_pow {f : M β†’β‚—[R] M} (h : p ≀ p.comap f) (k : β„•)
(h' : p ≀ p.comap (f^k) := p.le_comap_pow_of_le_comap h k) :
p.mapq p (f^k) h' = (p.mapq p f h)^k :=
begin
induction k with k ih,
{ simp [linear_map.one_eq_id], },
{ simp only [linear_map.iterate_succ, ← ih],
apply p.mapq_comp, },
end
theorem comap_liftq (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h) :
q.comap (p.liftq f h) = (q.comap f).map (mkq p) :=
le_antisymm
(by rintro ⟨x⟩ hx; exact ⟨_, hx, rfl⟩)
(by rw [map_le_iff_le_comap, ← comap_comp, liftq_mkq]; exact le_rfl)
theorem map_liftq [ring_hom_surjective τ₁₂] (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h) (q : submodule R (M β§Έ p)) :
q.map (p.liftq f h) = (q.comap p.mkq).map f :=
le_antisymm
(by rintro _ ⟨⟨x⟩, hxq, rfl⟩; exact ⟨x, hxq, rfl⟩)
(by rintro _ ⟨x, hxq, rfl⟩; exact ⟨quotient.mk x, hxq, rfl⟩)
theorem ker_liftq (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h) :
ker (p.liftq f h) = (ker f).map (mkq p) := comap_liftq _ _ _ _
theorem range_liftq [ring_hom_surjective τ₁₂] (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h) :
range (p.liftq f h) = range f :=
by simpa only [range_eq_map] using map_liftq _ _ _ _
theorem ker_liftq_eq_bot (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) (h) (h' : ker f ≀ p) : ker (p.liftq f h) = βŠ₯ :=
by rw [ker_liftq, le_antisymm h h', mkq_map_self]
/-- The correspondence theorem for modules: there is an order isomorphism between submodules of the
quotient of `M` by `p`, and submodules of `M` larger than `p`. -/
def comap_mkq.rel_iso :
submodule R (M β§Έ p) ≃o {p' : submodule R M // p ≀ p'} :=
{ to_fun := λ p', ⟨comap p.mkq p', le_comap_mkq p _⟩,
inv_fun := Ξ» q, map p.mkq q,
left_inv := Ξ» p', map_comap_eq_self $ by simp,
right_inv := λ ⟨q, hq⟩, subtype.ext_val $ by simpa [comap_map_mkq p],
map_rel_iff' := Ξ» p₁ pβ‚‚, comap_le_comap_iff $ range_mkq _ }
/-- The ordering on submodules of the quotient of `M` by `p` embeds into the ordering on submodules
of `M`. -/
def comap_mkq.order_embedding :
submodule R (M β§Έ p) β†ͺo submodule R M :=
(rel_iso.to_rel_embedding $ comap_mkq.rel_iso p).trans (subtype.rel_embedding _ _)
@[simp] lemma comap_mkq_embedding_eq (p' : submodule R (M β§Έ p)) :
comap_mkq.order_embedding p p' = comap p.mkq p' := rfl
lemma span_preimage_eq [ring_hom_surjective τ₁₂] {f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚} {s : set Mβ‚‚} (hβ‚€ : s.nonempty)
(h₁ : s βŠ† range f) :
span R (f ⁻¹' s) = (span Rβ‚‚ s).comap f :=
begin
suffices : (span Rβ‚‚ s).comap f ≀ span R (f ⁻¹' s),
{ exact le_antisymm (span_preimage_le f s) this, },
have hk : ker f ≀ span R (f ⁻¹' s),
{ let y := classical.some hβ‚€, have hy : y ∈ s, { exact classical.some_spec hβ‚€, },
rw ker_le_iff, use [y, h₁ hy], rw ← set.singleton_subset_iff at hy,
exact set.subset.trans subset_span (span_mono (set.preimage_mono hy)), },
rw ← left_eq_sup at hk, rw f.range_coe at h₁,
rw [hk, ←linear_map.map_le_map_iff, map_span, map_comap_eq, set.image_preimage_eq_of_subset h₁],
exact inf_le_right,
end
end submodule
open submodule
namespace linear_map
section ring
variables {R M Rβ‚‚ Mβ‚‚ R₃ M₃ : Type*}
variables [ring R] [ring Rβ‚‚] [ring R₃]
variables [add_comm_monoid M] [add_comm_group Mβ‚‚] [add_comm_monoid M₃]
variables [module R M] [module Rβ‚‚ Mβ‚‚] [module R₃ M₃]
variables {τ₁₂ : R β†’+* Rβ‚‚} {τ₂₃ : Rβ‚‚ β†’+* R₃} {τ₁₃ : R β†’+* R₃}
variables [ring_hom_comp_triple τ₁₂ τ₂₃ τ₁₃] [ring_hom_surjective τ₁₂]
lemma range_mkq_comp (f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚) : f.range.mkq.comp f = 0 :=
linear_map.ext $ Ξ» x, by simp
lemma ker_le_range_iff {f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚} {g : Mβ‚‚ β†’β‚›β‚—[τ₂₃] M₃} :
g.ker ≀ f.range ↔ f.range.mkq.comp g.ker.subtype = 0 :=
by rw [←range_le_ker_iff, submodule.ker_mkq, submodule.range_subtype]
/-- An epimorphism is surjective. -/
lemma range_eq_top_of_cancel {f : M β†’β‚›β‚—[τ₁₂] Mβ‚‚}
(h : βˆ€ (u v : Mβ‚‚ β†’β‚—[Rβ‚‚] Mβ‚‚ β§Έ f.range), u.comp f = v.comp f β†’ u = v) : f.range = ⊀ :=
begin
have h₁ : (0 : Mβ‚‚ β†’β‚—[Rβ‚‚] Mβ‚‚ β§Έ f.range).comp f = 0 := zero_comp _,
rw [←submodule.ker_mkq f.range, ←h 0 f.range.mkq (eq.trans h₁ (range_mkq_comp _).symm)],
exact ker_zero
end
end ring
end linear_map
open linear_map
namespace submodule
variables {R M : Type*} {r : R} {x y : M} [ring R] [add_comm_group M] [module R M]
variables (p p' : submodule R M)
/-- If `p = βŠ₯`, then `M / p ≃ₗ[R] M`. -/
def quot_equiv_of_eq_bot (hp : p = βŠ₯) : (M β§Έ p) ≃ₗ[R] M :=
linear_equiv.of_linear (p.liftq id $ hp.symm β–Έ bot_le) p.mkq (liftq_mkq _ _ _) $
p.quot_hom_ext $ Ξ» x, rfl
@[simp] lemma quot_equiv_of_eq_bot_apply_mk (hp : p = βŠ₯) (x : M) :
p.quot_equiv_of_eq_bot hp (quotient.mk x) = x := rfl
@[simp] lemma quot_equiv_of_eq_bot_symm_apply (hp : p = βŠ₯) (x : M) :
(p.quot_equiv_of_eq_bot hp).symm x = quotient.mk x := rfl
@[simp] lemma coe_quot_equiv_of_eq_bot_symm (hp : p = βŠ₯) :
((p.quot_equiv_of_eq_bot hp).symm : M β†’β‚—[R] M β§Έ p) = p.mkq := rfl
/-- Quotienting by equal submodules gives linearly equivalent quotients. -/
def quot_equiv_of_eq (h : p = p') : (M β§Έ p) ≃ₗ[R] M β§Έ p' :=
{ map_add' := by { rintros ⟨x⟩ ⟨y⟩, refl }, map_smul' := by { rintros x ⟨y⟩, refl },
..@quotient.congr _ _ (quotient_rel p) (quotient_rel p') (equiv.refl _) $
Ξ» a b, by { subst h, refl } }
@[simp]
lemma quot_equiv_of_eq_mk (h : p = p') (x : M) :
submodule.quot_equiv_of_eq p p' h (submodule.quotient.mk x) = submodule.quotient.mk x :=
rfl
end submodule
end ring
section comm_ring
variables {R M Mβ‚‚ : Type*} {r : R} {x y : M} [comm_ring R]
[add_comm_group M] [module R M] [add_comm_group Mβ‚‚] [module R Mβ‚‚]
(p : submodule R M) (q : submodule R Mβ‚‚)
namespace submodule
/-- Given modules `M`, `Mβ‚‚` over a commutative ring, together with submodules `p βŠ† M`, `q βŠ† Mβ‚‚`,
the natural map $\{f ∈ Hom(M, Mβ‚‚) | f(p) βŠ† q \} \to Hom(M/p, Mβ‚‚/q)$ is linear. -/
def mapq_linear : compatible_maps p q β†’β‚—[R] (M β§Έ p) β†’β‚—[R] (Mβ‚‚ β§Έ q) :=
{ to_fun := Ξ» f, mapq _ _ f.val f.property,
map_add' := Ξ» x y, by { ext, refl, },
map_smul' := Ξ» c f, by { ext, refl, } }
end submodule
end comm_ring