Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Lu-Ming Zhang | |
-/ | |
import data.matrix.block | |
/-! | |
# Symmetric matrices | |
This file contains the definition and basic results about symmetric matrices. | |
## Main definition | |
* `matrix.is_symm `: a matrix `A : matrix n n α` is "symmetric" if `Aᵀ = A`. | |
## Tags | |
symm, symmetric, matrix | |
-/ | |
variables {α β n m R : Type*} | |
namespace matrix | |
open_locale matrix | |
/-- A matrix `A : matrix n n α` is "symmetric" if `Aᵀ = A`. -/ | |
def is_symm (A : matrix n n α) : Prop := Aᵀ = A | |
lemma is_symm.eq {A : matrix n n α} (h : A.is_symm) : Aᵀ = A := h | |
/-- A version of `matrix.ext_iff` that unfolds the `matrix.transpose`. -/ | |
lemma is_symm.ext_iff {A : matrix n n α} : A.is_symm ↔ ∀ i j, A j i = A i j := | |
matrix.ext_iff.symm | |
/-- A version of `matrix.ext` that unfolds the `matrix.transpose`. -/ | |
@[ext] | |
lemma is_symm.ext {A : matrix n n α} : (∀ i j, A j i = A i j) → A.is_symm := | |
matrix.ext | |
lemma is_symm.apply {A : matrix n n α} (h : A.is_symm) (i j : n) : A j i = A i j := | |
is_symm.ext_iff.1 h i j | |
lemma is_symm_mul_transpose_self [fintype n] [comm_semiring α] (A : matrix n n α) : | |
(A ⬝ Aᵀ).is_symm := | |
transpose_mul _ _ | |
lemma is_symm_transpose_mul_self [fintype n] [comm_semiring α] (A : matrix n n α) : | |
(Aᵀ ⬝ A).is_symm := | |
transpose_mul _ _ | |
lemma is_symm_add_transpose_self [add_comm_semigroup α] (A : matrix n n α) : | |
(A + Aᵀ).is_symm := | |
add_comm _ _ | |
lemma is_symm_transpose_add_self [add_comm_semigroup α] (A : matrix n n α) : | |
(Aᵀ + A).is_symm := | |
add_comm _ _ | |
@[simp] lemma is_symm_zero [has_zero α] : | |
(0 : matrix n n α).is_symm := | |
transpose_zero | |
@[simp] lemma is_symm_one [decidable_eq n] [has_zero α] [has_one α] : | |
(1 : matrix n n α).is_symm := | |
transpose_one | |
@[simp] lemma is_symm.map {A : matrix n n α} (h : A.is_symm) (f : α → β) : | |
(A.map f).is_symm := | |
transpose_map.symm.trans (h.symm ▸ rfl) | |
@[simp] lemma is_symm.transpose {A : matrix n n α} (h : A.is_symm) : | |
Aᵀ.is_symm := | |
congr_arg _ h | |
@[simp] lemma is_symm.conj_transpose [has_star α] {A : matrix n n α} (h : A.is_symm) : | |
Aᴴ.is_symm := | |
h.transpose.map _ | |
@[simp] lemma is_symm.neg [has_neg α] {A : matrix n n α} (h : A.is_symm) : | |
(-A).is_symm := | |
(transpose_neg _).trans (congr_arg _ h) | |
@[simp] lemma is_symm.add {A B : matrix n n α} [has_add α] (hA : A.is_symm) (hB : B.is_symm) : | |
(A + B).is_symm := | |
(transpose_add _ _).trans (hA.symm ▸ hB.symm ▸ rfl) | |
@[simp] lemma is_symm.sub {A B : matrix n n α} [has_sub α] (hA : A.is_symm) (hB : B.is_symm) : | |
(A - B).is_symm := | |
(transpose_sub _ _).trans (hA.symm ▸ hB.symm ▸ rfl) | |
@[simp] lemma is_symm.smul [has_smul R α] {A : matrix n n α} (h : A.is_symm) (k : R) : | |
(k • A).is_symm := | |
(transpose_smul _ _).trans (congr_arg _ h) | |
@[simp] lemma is_symm.minor {A : matrix n n α} (h : A.is_symm) (f : m → n) : | |
(A.minor f f).is_symm := | |
(transpose_minor _ _ _).trans (h.symm ▸ rfl) | |
/-- The diagonal matrix `diagonal v` is symmetric. -/ | |
@[simp] lemma is_symm_diagonal [decidable_eq n] [has_zero α] (v : n → α) : | |
(diagonal v).is_symm := | |
diagonal_transpose _ | |
/-- A block matrix `A.from_blocks B C D` is symmetric, | |
if `A` and `D` are symmetric and `Bᵀ = C`. -/ | |
lemma is_symm.from_blocks | |
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} | |
(hA : A.is_symm) (hBC : Bᵀ = C) (hD : D.is_symm) : | |
(A.from_blocks B C D).is_symm := | |
begin | |
have hCB : Cᵀ = B, {rw ← hBC, simp}, | |
unfold matrix.is_symm, | |
rw from_blocks_transpose, | |
congr; | |
assumption | |
end | |
/-- This is the `iff` version of `matrix.is_symm.from_blocks`. -/ | |
lemma is_symm_from_blocks_iff | |
{A : matrix m m α} {B : matrix m n α} {C : matrix n m α} {D : matrix n n α} : | |
(A.from_blocks B C D).is_symm ↔ A.is_symm ∧ Bᵀ = C ∧ Cᵀ = B ∧ D.is_symm := | |
⟨λ h, ⟨congr_arg to_blocks₁₁ h, congr_arg to_blocks₂₁ h, | |
congr_arg to_blocks₁₂ h, congr_arg to_blocks₂₂ h⟩, | |
λ ⟨hA, hBC, hCB, hD⟩, is_symm.from_blocks hA hBC hD⟩ | |
end matrix | |