Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.09 kB
/-
Copyright (c) 2021 Lu-Ming Zhang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Lu-Ming Zhang
-/
import data.matrix.basic
/-!
# Orthogonal
This file contains definitions and properties concerning orthogonality of rows and columns.
## Main results
- `matrix.has_orthogonal_rows`:
`A.has_orthogonal_rows` means `A` has orthogonal (with respect to `dot_product`) rows.
- `matrix.has_orthogonal_cols`:
`A.has_orthogonal_cols` means `A` has orthogonal (with respect to `dot_product`) columns.
## Tags
orthogonal
-/
namespace matrix
variables {α n m : Type*}
variables [has_mul α] [add_comm_monoid α]
variables (A : matrix m n α)
open_locale matrix
/-- `A.has_orthogonal_rows` means matrix `A` has orthogonal rows (with respect to
`matrix.dot_product`). -/
def has_orthogonal_rows [fintype n] : Prop :=
∀ ⦃i₁ i₂⦄, i₁ ≠ i₂ → dot_product (A i₁) (A i₂) = 0
/-- `A.has_orthogonal_rows` means matrix `A` has orthogonal columns (with respect to
`matrix.dot_product`). -/
def has_orthogonal_cols [fintype m] : Prop :=
has_orthogonal_rows A
/-- `Aᵀ` has orthogonal rows iff `A` has orthogonal columns. -/
@[simp] lemma transpose_has_orthogonal_rows_iff_has_orthogonal_cols [fintype m] :
Aᵀ.has_orthogonal_rows ↔ A.has_orthogonal_cols :=
iff.rfl
/-- `Aᵀ` has orthogonal columns iff `A` has orthogonal rows. -/
@[simp] lemma transpose_has_orthogonal_cols_iff_has_orthogonal_rows [fintype n] :
Aᵀ.has_orthogonal_cols ↔ A.has_orthogonal_rows :=
iff.rfl
variables {A}
lemma has_orthogonal_rows.has_orthogonal_cols
[fintype m] (h : Aᵀ.has_orthogonal_rows) :
A.has_orthogonal_cols := h
lemma has_orthogonal_cols.transpose_has_orthogonal_rows
[fintype m] (h : A.has_orthogonal_cols) :
Aᵀ.has_orthogonal_rows := h
lemma has_orthogonal_cols.has_orthogonal_rows
[fintype n] (h : Aᵀ.has_orthogonal_cols) :
A.has_orthogonal_rows := h
lemma has_orthogonal_rows.transpose_has_orthogonal_cols
[fintype n] (h : A.has_orthogonal_rows) :
Aᵀ.has_orthogonal_cols := h
end matrix