Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.54 kB
/-
Copyright (c) 2021 Anne Baanen. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Anne Baanen
-/
import data.matrix.basic
import linear_algebra.matrix.determinant
import linear_algebra.matrix.adjugate
/-!
# Matrices associated with non-degenerate bilinear forms
## Main definitions
* `matrix.nondegenerate A`: the proposition that when interpreted as a bilinear form, the matrix `A`
is nondegenerate.
-/
namespace matrix
variables {m R A : Type*} [fintype m] [comm_ring R]
/-- A matrix `M` is nondegenerate if for all `v β‰  0`, there is a `w β‰  0` with `w ⬝ M ⬝ v β‰  0`. -/
def nondegenerate (M : matrix m m R) :=
βˆ€ v, (βˆ€ w, matrix.dot_product v (mul_vec M w) = 0) β†’ v = 0
/-- If `M` is nondegenerate and `w ⬝ M ⬝ v = 0` for all `w`, then `v = 0`. -/
lemma nondegenerate.eq_zero_of_ortho {M : matrix m m R} (hM : nondegenerate M)
{v : m β†’ R} (hv : βˆ€ w, matrix.dot_product v (mul_vec M w) = 0) : v = 0 :=
hM v hv
/-- If `M` is nondegenerate and `v β‰  0`, then there is some `w` such that `w ⬝ M ⬝ v β‰  0`. -/
lemma nondegenerate.exists_not_ortho_of_ne_zero {M : matrix m m R} (hM : nondegenerate M)
{v : m β†’ R} (hv : v β‰  0) : βˆƒ w, matrix.dot_product v (mul_vec M w) β‰  0 :=
not_forall.mp (mt hM.eq_zero_of_ortho hv)
variables [comm_ring A] [is_domain A]
/-- If `M` has a nonzero determinant, then `M` as a bilinear form on `n β†’ A` is nondegenerate.
See also `bilin_form.nondegenerate_of_det_ne_zero'` and `bilin_form.nondegenerate_of_det_ne_zero`.
-/
theorem nondegenerate_of_det_ne_zero [decidable_eq m] {M : matrix m m A} (hM : M.det β‰  0) :
nondegenerate M :=
begin
intros v hv,
ext i,
specialize hv (M.cramer (pi.single i 1)),
refine (mul_eq_zero.mp _).resolve_right hM,
convert hv,
simp only [mul_vec_cramer M (pi.single i 1), dot_product, pi.smul_apply, smul_eq_mul],
rw [finset.sum_eq_single i, pi.single_eq_same, mul_one],
{ intros j _ hj, simp [hj] },
{ intros, have := finset.mem_univ i, contradiction }
end
theorem eq_zero_of_vec_mul_eq_zero [decidable_eq m] {M : matrix m m A} (hM : M.det β‰  0) {v : m β†’ A}
(hv : M.vec_mul v = 0) : v = 0 :=
(nondegenerate_of_det_ne_zero hM).eq_zero_of_ortho
(Ξ» w, by rw [dot_product_mul_vec, hv, zero_dot_product])
theorem eq_zero_of_mul_vec_eq_zero [decidable_eq m] {M : matrix m m A} (hM : M.det β‰  0) {v : m β†’ A}
(hv : M.mul_vec v = 0) :
v = 0 :=
eq_zero_of_vec_mul_eq_zero (by rwa det_transpose) ((vec_mul_transpose M v).trans hv)
end matrix