Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Anne Baanen | |
-/ | |
import data.matrix.basic | |
import linear_algebra.matrix.determinant | |
import linear_algebra.matrix.adjugate | |
/-! | |
# Matrices associated with non-degenerate bilinear forms | |
## Main definitions | |
* `matrix.nondegenerate A`: the proposition that when interpreted as a bilinear form, the matrix `A` | |
is nondegenerate. | |
-/ | |
namespace matrix | |
variables {m R A : Type*} [fintype m] [comm_ring R] | |
/-- A matrix `M` is nondegenerate if for all `v β 0`, there is a `w β 0` with `w β¬ M β¬ v β 0`. -/ | |
def nondegenerate (M : matrix m m R) := | |
β v, (β w, matrix.dot_product v (mul_vec M w) = 0) β v = 0 | |
/-- If `M` is nondegenerate and `w β¬ M β¬ v = 0` for all `w`, then `v = 0`. -/ | |
lemma nondegenerate.eq_zero_of_ortho {M : matrix m m R} (hM : nondegenerate M) | |
{v : m β R} (hv : β w, matrix.dot_product v (mul_vec M w) = 0) : v = 0 := | |
hM v hv | |
/-- If `M` is nondegenerate and `v β 0`, then there is some `w` such that `w β¬ M β¬ v β 0`. -/ | |
lemma nondegenerate.exists_not_ortho_of_ne_zero {M : matrix m m R} (hM : nondegenerate M) | |
{v : m β R} (hv : v β 0) : β w, matrix.dot_product v (mul_vec M w) β 0 := | |
not_forall.mp (mt hM.eq_zero_of_ortho hv) | |
variables [comm_ring A] [is_domain A] | |
/-- If `M` has a nonzero determinant, then `M` as a bilinear form on `n β A` is nondegenerate. | |
See also `bilin_form.nondegenerate_of_det_ne_zero'` and `bilin_form.nondegenerate_of_det_ne_zero`. | |
-/ | |
theorem nondegenerate_of_det_ne_zero [decidable_eq m] {M : matrix m m A} (hM : M.det β 0) : | |
nondegenerate M := | |
begin | |
intros v hv, | |
ext i, | |
specialize hv (M.cramer (pi.single i 1)), | |
refine (mul_eq_zero.mp _).resolve_right hM, | |
convert hv, | |
simp only [mul_vec_cramer M (pi.single i 1), dot_product, pi.smul_apply, smul_eq_mul], | |
rw [finset.sum_eq_single i, pi.single_eq_same, mul_one], | |
{ intros j _ hj, simp [hj] }, | |
{ intros, have := finset.mem_univ i, contradiction } | |
end | |
theorem eq_zero_of_vec_mul_eq_zero [decidable_eq m] {M : matrix m m A} (hM : M.det β 0) {v : m β A} | |
(hv : M.vec_mul v = 0) : v = 0 := | |
(nondegenerate_of_det_ne_zero hM).eq_zero_of_ortho | |
(Ξ» w, by rw [dot_product_mul_vec, hv, zero_dot_product]) | |
theorem eq_zero_of_mul_vec_eq_zero [decidable_eq m] {M : matrix m m A} (hM : M.det β 0) {v : m β A} | |
(hv : M.mul_vec v = 0) : | |
v = 0 := | |
eq_zero_of_vec_mul_eq_zero (by rwa det_transpose) ((vec_mul_transpose M v).trans hv) | |
end matrix | |