Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Patrick Massot, Casper Putz, Anne Baanen | |
-/ | |
import linear_algebra.matrix.to_lin | |
/-! | |
# Diagonal matrices | |
This file contains some results on the linear map corresponding to a | |
diagonal matrix (`range`, `ker` and `rank`). | |
## Tags | |
matrix, diagonal, linear_map | |
-/ | |
noncomputable theory | |
open linear_map matrix set submodule | |
open_locale big_operators | |
open_locale matrix | |
universes u v w | |
namespace matrix | |
section comm_ring | |
variables {n : Type*} [fintype n] [decidable_eq n] {R : Type v} [comm_ring R] | |
lemma proj_diagonal (i : n) (w : n → R) : | |
(proj i).comp (to_lin' (diagonal w)) = (w i) • proj i := | |
linear_map.ext $ λ j, mul_vec_diagonal _ _ _ | |
lemma diagonal_comp_std_basis (w : n → R) (i : n) : | |
(diagonal w).to_lin'.comp (linear_map.std_basis R (λ_:n, R) i) = | |
(w i) • linear_map.std_basis R (λ_:n, R) i := | |
linear_map.ext $ λ x, (diagonal_mul_vec_single w _ _).trans (pi.single_smul' i (w i) _) | |
lemma diagonal_to_lin' (w : n → R) : | |
(diagonal w).to_lin' = linear_map.pi (λi, w i • linear_map.proj i) := | |
linear_map.ext $ λ v, funext $ λ i, mul_vec_diagonal _ _ _ | |
end comm_ring | |
section field | |
variables {m n : Type*} [fintype m] [fintype n] | |
variables {K : Type u} [field K] -- maybe try to relax the universe constraint | |
lemma ker_diagonal_to_lin' [decidable_eq m] (w : m → K) : | |
ker (diagonal w).to_lin' = (⨆i∈{i | w i = 0 }, range (linear_map.std_basis K (λi, K) i)) := | |
begin | |
rw [← comap_bot, ← infi_ker_proj, comap_infi], | |
have := λ i : m, ker_comp (to_lin' (diagonal w)) (proj i), | |
simp only [comap_infi, ← this, proj_diagonal, ker_smul'], | |
have : univ ⊆ {i : m | w i = 0} ∪ {i : m | w i = 0}ᶜ, { rw set.union_compl_self }, | |
exact (supr_range_std_basis_eq_infi_ker_proj K (λi:m, K) | |
disjoint_compl_right this (set.to_finite _)).symm | |
end | |
lemma range_diagonal [decidable_eq m] (w : m → K) : | |
(diagonal w).to_lin'.range = (⨆ i ∈ {i | w i ≠ 0}, (linear_map.std_basis K (λi, K) i).range) := | |
begin | |
dsimp only [mem_set_of_eq], | |
rw [← map_top, ← supr_range_std_basis, map_supr], | |
congr, funext i, | |
rw [← linear_map.range_comp, diagonal_comp_std_basis, ← range_smul'] | |
end | |
lemma rank_diagonal [decidable_eq m] [decidable_eq K] (w : m → K) : | |
rank (diagonal w).to_lin' = fintype.card { i // w i ≠ 0 } := | |
begin | |
have hu : univ ⊆ {i : m | w i = 0}ᶜ ∪ {i : m | w i = 0}, { rw set.compl_union_self }, | |
have hd : disjoint {i : m | w i ≠ 0} {i : m | w i = 0} := disjoint_compl_left, | |
have B₁ := supr_range_std_basis_eq_infi_ker_proj K (λi:m, K) hd hu (set.to_finite _), | |
have B₂ := @infi_ker_proj_equiv K _ _ (λi:m, K) _ _ _ _ (by simp; apply_instance) hd hu, | |
rw [rank, range_diagonal, B₁, ←@dim_fun' K], | |
apply linear_equiv.dim_eq, | |
apply B₂, | |
end | |
end field | |
end matrix | |