Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
31.7 kB
/-
Copyright (c) 2018 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Chris Hughes, Tim Baanen
-/
import data.matrix.pequiv
import data.matrix.block
import data.matrix.notation
import data.fintype.card
import group_theory.perm.fin
import group_theory.perm.sign
import algebra.algebra.basic
import tactic.ring
import linear_algebra.alternating
import linear_algebra.pi
/-!
# Determinant of a matrix
This file defines the determinant of a matrix, `matrix.det`, and its essential properties.
## Main definitions
- `matrix.det`: the determinant of a square matrix, as a sum over permutations
- `matrix.det_row_alternating`: the determinant, as an `alternating_map` in the rows of the matrix
## Main results
- `det_mul`: the determinant of `A ⬝ B` is the product of determinants
- `det_zero_of_row_eq`: the determinant is zero if there is a repeated row
- `det_block_diagonal`: the determinant of a block diagonal matrix is a product
of the blocks' determinants
## Implementation notes
It is possible to configure `simp` to compute determinants. See the file
`test/matrix.lean` for some examples.
-/
universes u v w z
open equiv equiv.perm finset function
namespace matrix
open_locale matrix big_operators
variables {m n : Type*} [decidable_eq n] [fintype n] [decidable_eq m] [fintype m]
variables {R : Type v} [comm_ring R]
local notation `ε` σ:max := ((sign σ : ℤ ) : R)
/-- `det` is an `alternating_map` in the rows of the matrix. -/
def det_row_alternating : alternating_map R (n → R) R n :=
((multilinear_map.mk_pi_algebra R n R).comp_linear_map (linear_map.proj)).alternatization
/-- The determinant of a matrix given by the Leibniz formula. -/
abbreviation det (M : matrix n n R) : R :=
det_row_alternating M
lemma det_apply (M : matrix n n R) :
M.det = ∑ σ : perm n, σ.sign • ∏ i, M (σ i) i :=
multilinear_map.alternatization_apply _ M
-- This is what the old definition was. We use it to avoid having to change the old proofs below
lemma det_apply' (M : matrix n n R) :
M.det = ∑ σ : perm n, ε σ * ∏ i, M (σ i) i :=
by simp [det_apply, units.smul_def]
@[simp] lemma det_diagonal {d : n → R} : det (diagonal d) = ∏ i, d i :=
begin
rw det_apply',
refine (finset.sum_eq_single 1 _ _).trans _,
{ intros σ h1 h2,
cases not_forall.1 (mt equiv.ext h2) with x h3,
convert mul_zero _,
apply finset.prod_eq_zero,
{ change x ∈ _, simp },
exact if_neg h3 },
{ simp },
{ simp }
end
@[simp] lemma det_zero (h : nonempty n) : det (0 : matrix n n R) = 0 :=
(det_row_alternating : alternating_map R (n → R) R n).map_zero
@[simp] lemma det_one : det (1 : matrix n n R) = 1 :=
by rw [← diagonal_one]; simp [-diagonal_one]
lemma det_is_empty [is_empty n] {A : matrix n n R} : det A = 1 :=
by simp [det_apply]
@[simp] lemma coe_det_is_empty [is_empty n] : (det : matrix n n R → R) = function.const _ 1 :=
by { ext, exact det_is_empty, }
lemma det_eq_one_of_card_eq_zero {A : matrix n n R} (h : fintype.card n = 0) : det A = 1 :=
begin
haveI : is_empty n := fintype.card_eq_zero_iff.mp h,
exact det_is_empty,
end
/-- If `n` has only one element, the determinant of an `n` by `n` matrix is just that element.
Although `unique` implies `decidable_eq` and `fintype`, the instances might
not be syntactically equal. Thus, we need to fill in the args explicitly. -/
@[simp]
lemma det_unique {n : Type*} [unique n] [decidable_eq n] [fintype n] (A : matrix n n R) :
det A = A default default :=
by simp [det_apply, univ_unique]
lemma det_eq_elem_of_subsingleton [subsingleton n] (A : matrix n n R) (k : n) :
det A = A k k :=
begin
convert det_unique _,
exact unique_of_subsingleton k
end
lemma det_eq_elem_of_card_eq_one {A : matrix n n R} (h : fintype.card n = 1) (k : n) :
det A = A k k :=
begin
haveI : subsingleton n := fintype.card_le_one_iff_subsingleton.mp h.le,
exact det_eq_elem_of_subsingleton _ _
end
lemma det_mul_aux {M N : matrix n n R} {p : n → n} (H : ¬bijective p) :
∑ σ : perm n, (ε σ) * ∏ x, (M (σ x) (p x) * N (p x) x) = 0 :=
begin
obtain ⟨i, j, hpij, hij⟩ : ∃ i j, p i = p j ∧ i ≠ j,
{ rw [← fintype.injective_iff_bijective, injective] at H,
push_neg at H,
exact H },
exact sum_involution
(λ σ _, σ * swap i j)
(λ σ _,
have ∏ x, M (σ x) (p x) = ∏ x, M ((σ * swap i j) x) (p x),
from fintype.prod_equiv (swap i j) _ _ (by simp [apply_swap_eq_self hpij]),
by simp [this, sign_swap hij, prod_mul_distrib])
(λ σ _ _, (not_congr mul_swap_eq_iff).mpr hij)
_ _, mem_univ _)
(λ σ _, mul_swap_involutive i j σ)
end
@[simp] lemma det_mul (M N : matrix n n R) : det (M ⬝ N) = det M * det N :=
calc det (M ⬝ N) = ∑ p : n → n, ∑ σ : perm n, ε σ * ∏ i, (M (σ i) (p i) * N (p i) i) :
by simp only [det_apply', mul_apply, prod_univ_sum, mul_sum,
fintype.pi_finset_univ]; rw [finset.sum_comm]
... = ∑ p in (@univ (n → n) _).filter bijective, ∑ σ : perm n,
ε σ * ∏ i, (M (σ i) (p i) * N (p i) i) :
eq.symm $ sum_subset (filter_subset _ _)
(λ f _ hbij, det_mul_aux $ by simpa only [true_and, mem_filter, mem_univ] using hbij)
... = ∑ τ : perm n, ∑ σ : perm n, ε σ * ∏ i, (M (σ i) (τ i) * N (τ i) i) :
sum_bij (λ p h, equiv.of_bijective p (mem_filter.1 h).2) (λ _ _, mem_univ _)
_ _, rfl) (λ _ _ _ _ h, by injection h)
(λ b _, ⟨b, mem_filter.2 ⟨mem_univ _, b.bijective⟩, coe_fn_injective rfl⟩)
... = ∑ σ : perm n, ∑ τ : perm n, (∏ i, N (σ i) i) * ε τ * (∏ j, M (τ j) (σ j)) :
by simp only [mul_comm, mul_left_comm, prod_mul_distrib, mul_assoc]
... = ∑ σ : perm n, ∑ τ : perm n, (((∏ i, N (σ i) i) * (ε σ * ε τ)) * ∏ i, M (τ i) i) :
sum_congr rfl (λ σ _, fintype.sum_equiv (equiv.mul_right σ⁻¹) _ _
(λ τ,
have ∏ j, M (τ j) (σ j) = ∏ j, M ((τ * σ⁻¹) j) j,
by { rw ← (σ⁻¹ : __).prod_comp, simp only [equiv.perm.coe_mul, apply_inv_self] },
have h : ε σ * ε (τ * σ⁻¹) = ε τ :=
calc ε σ * ε (τ * σ⁻¹) = ε ((τ * σ⁻¹) * σ) :
by { rw [mul_comm, sign_mul (τ * σ⁻¹)], simp only [int.cast_mul, units.coe_mul] }
... = ε τ : by simp only [inv_mul_cancel_right],
by { simp_rw [equiv.coe_mul_right, h], simp only [this] }))
... = det M * det N : by simp only [det_apply', finset.mul_sum, mul_comm, mul_left_comm]
/-- The determinant of a matrix, as a monoid homomorphism. -/
def det_monoid_hom : matrix n n R →* R :=
{ to_fun := det,
map_one' := det_one,
map_mul' := det_mul }
@[simp] lemma coe_det_monoid_hom : (det_monoid_hom : matrix n n R → R) = det := rfl
/-- On square matrices, `mul_comm` applies under `det`. -/
lemma det_mul_comm (M N : matrix m m R) : det (M ⬝ N) = det (N ⬝ M) :=
by rw [det_mul, det_mul, mul_comm]
/-- On square matrices, `mul_left_comm` applies under `det`. -/
lemma det_mul_left_comm (M N P : matrix m m R) : det (M ⬝ (N ⬝ P)) = det (N ⬝ (M ⬝ P)) :=
by rw [←matrix.mul_assoc, ←matrix.mul_assoc, det_mul, det_mul_comm M N, ←det_mul]
/-- On square matrices, `mul_right_comm` applies under `det`. -/
lemma det_mul_right_comm (M N P : matrix m m R) :
det (M ⬝ N ⬝ P) = det (M ⬝ P ⬝ N) :=
by rw [matrix.mul_assoc, matrix.mul_assoc, det_mul, det_mul_comm N P, ←det_mul]
lemma det_units_conj (M : (matrix m m R)ˣ) (N : matrix m m R) :
det (↑M ⬝ N ⬝ ↑M⁻¹ : matrix m m R) = det N :=
by rw [det_mul_right_comm, ←mul_eq_mul, ←mul_eq_mul, units.mul_inv, one_mul]
lemma det_units_conj' (M : (matrix m m R)ˣ) (N : matrix m m R) :
det (↑M⁻¹ ⬝ N ⬝ ↑M : matrix m m R) = det N := det_units_conj M⁻¹ N
/-- Transposing a matrix preserves the determinant. -/
@[simp] lemma det_transpose (M : matrix n n R) : Mᵀ.det = M.det :=
begin
rw [det_apply', det_apply'],
refine fintype.sum_bijective _ inv_involutive.bijective _ _ _,
intros σ,
rw sign_inv,
congr' 1,
apply fintype.prod_equiv σ,
intros,
simp
end
/-- Permuting the columns changes the sign of the determinant. -/
lemma det_permute (σ : perm n) (M : matrix n n R) : matrix.det (λ i, M (σ i)) = σ.sign * M.det :=
((det_row_alternating : alternating_map R (n → R) R n).map_perm M σ).trans
(by simp [units.smul_def])
/-- Permuting rows and columns with the same equivalence has no effect. -/
@[simp]
lemma det_minor_equiv_self (e : n ≃ m) (A : matrix m m R) :
det (A.minor e e) = det A :=
begin
rw [det_apply', det_apply'],
apply fintype.sum_equiv (equiv.perm_congr e),
intro σ,
rw equiv.perm.sign_perm_congr e σ,
congr' 1,
apply fintype.prod_equiv e,
intro i,
rw [equiv.perm_congr_apply, equiv.symm_apply_apply, minor_apply],
end
/-- Reindexing both indices along the same equivalence preserves the determinant.
For the `simp` version of this lemma, see `det_minor_equiv_self`; this one is unsuitable because
`matrix.reindex_apply` unfolds `reindex` first.
-/
lemma det_reindex_self (e : m ≃ n) (A : matrix m m R) : det (reindex e e A) = det A :=
det_minor_equiv_self e.symm A
/-- The determinant of a permutation matrix equals its sign. -/
@[simp] lemma det_permutation (σ : perm n) :
matrix.det (σ.to_pequiv.to_matrix : matrix n n R) = σ.sign :=
by rw [←matrix.mul_one (σ.to_pequiv.to_matrix : matrix n n R), pequiv.to_pequiv_mul_matrix,
det_permute, det_one, mul_one]
lemma det_smul (A : matrix n n R) (c : R) : det (c • A) = c ^ fintype.card n * det A :=
calc det (c • A) = det (matrix.mul (diagonal (λ _, c)) A) : by rw [smul_eq_diagonal_mul]
... = det (diagonal (λ _, c)) * det A : det_mul _ _
... = c ^ fintype.card n * det A : by simp [card_univ]
@[simp] lemma det_smul_of_tower {α} [monoid α] [distrib_mul_action α R] [is_scalar_tower α R R]
[smul_comm_class α R R] (c : α) (A : matrix n n R) :
det (c • A) = c ^ fintype.card n • det A :=
by rw [←smul_one_smul R c A, det_smul, smul_pow, one_pow, smul_mul_assoc, one_mul]
lemma det_neg (A : matrix n n R) : det (-A) = (-1) ^ fintype.card n * det A :=
by rw [←det_smul, neg_one_smul]
/-- A variant of `matrix.det_neg` with scalar multiplication by `units ℤ` instead of multiplication
by `R`. -/
lemma det_neg_eq_smul (A : matrix n n R) : det (-A) = (-1 : units ℤ) ^ fintype.card n • det A :=
by rw [←det_smul_of_tower, units.neg_smul, one_smul]
/-- Multiplying each row by a fixed `v i` multiplies the determinant by
the product of the `v`s. -/
lemma det_mul_row (v : n → R) (A : matrix n n R) :
det (of $ λ i j, v j * A i j) = (∏ i, v i) * det A :=
calc det (of $ λ i j, v j * A i j)
= det (A ⬝ diagonal v) : congr_arg det $ by { ext, simp [mul_comm] }
... = (∏ i, v i) * det A : by rw [det_mul, det_diagonal, mul_comm]
/-- Multiplying each column by a fixed `v j` multiplies the determinant by
the product of the `v`s. -/
lemma det_mul_column (v : n → R) (A : matrix n n R) :
det (of $ λ i j, v i * A i j) = (∏ i, v i) * det A :=
multilinear_map.map_smul_univ _ v A
@[simp] lemma det_pow (M : matrix m m R) (n : ℕ) : det (M ^ n) = (det M) ^ n :=
(det_monoid_hom : matrix m m R →* R).map_pow M n
section hom_map
variables {S : Type w} [comm_ring S]
lemma _root_.ring_hom.map_det (f : R →+* S) (M : matrix n n R) :
f M.det = matrix.det (f.map_matrix M) :=
by simp [matrix.det_apply', f.map_sum, f.map_prod]
lemma _root_.ring_equiv.map_det (f : R ≃+* S) (M : matrix n n R) :
f M.det = matrix.det (f.map_matrix M) :=
f.to_ring_hom.map_det _
lemma _root_.alg_hom.map_det [algebra R S] {T : Type z} [comm_ring T] [algebra R T]
(f : S →ₐ[R] T) (M : matrix n n S) :
f M.det = matrix.det (f.map_matrix M) :=
f.to_ring_hom.map_det _
lemma _root_.alg_equiv.map_det [algebra R S] {T : Type z} [comm_ring T] [algebra R T]
(f : S ≃ₐ[R] T) (M : matrix n n S) :
f M.det = matrix.det (f.map_matrix M) :=
f.to_alg_hom.map_det _
end hom_map
@[simp] lemma det_conj_transpose [star_ring R] (M : matrix m m R) : det (Mᴴ) = star (det M) :=
((star_ring_end R).map_det _).symm.trans $ congr_arg star M.det_transpose
section det_zero
/-!
### `det_zero` section
Prove that a matrix with a repeated column has determinant equal to zero.
-/
lemma det_eq_zero_of_row_eq_zero {A : matrix n n R} (i : n) (h : ∀ j, A i j = 0) : det A = 0 :=
(det_row_alternating : alternating_map R (n → R) R n).map_coord_zero i (funext h)
lemma det_eq_zero_of_column_eq_zero {A : matrix n n R} (j : n) (h : ∀ i, A i j = 0) : det A = 0 :=
by { rw ← det_transpose, exact det_eq_zero_of_row_eq_zero j h, }
variables {M : matrix n n R} {i j : n}
/-- If a matrix has a repeated row, the determinant will be zero. -/
theorem det_zero_of_row_eq (i_ne_j : i ≠ j) (hij : M i = M j) : M.det = 0 :=
(det_row_alternating : alternating_map R (n → R) R n).map_eq_zero_of_eq M hij i_ne_j
/-- If a matrix has a repeated column, the determinant will be zero. -/
theorem det_zero_of_column_eq (i_ne_j : i ≠ j) (hij : ∀ k, M k i = M k j) : M.det = 0 :=
by { rw [← det_transpose, det_zero_of_row_eq i_ne_j], exact funext hij }
end det_zero
lemma det_update_row_add (M : matrix n n R) (j : n) (u v : n → R) :
det (update_row M j $ u + v) = det (update_row M j u) + det (update_row M j v) :=
(det_row_alternating : alternating_map R (n → R) R n).map_add M j u v
lemma det_update_column_add (M : matrix n n R) (j : n) (u v : n → R) :
det (update_column M j $ u + v) = det (update_column M j u) + det (update_column M j v) :=
begin
rw [← det_transpose, ← update_row_transpose, det_update_row_add],
simp [update_row_transpose, det_transpose]
end
lemma det_update_row_smul (M : matrix n n R) (j : n) (s : R) (u : n → R) :
det (update_row M j $ s • u) = s * det (update_row M j u) :=
(det_row_alternating : alternating_map R (n → R) R n).map_smul M j s u
lemma det_update_column_smul (M : matrix n n R) (j : n) (s : R) (u : n → R) :
det (update_column M j $ s • u) = s * det (update_column M j u) :=
begin
rw [← det_transpose, ← update_row_transpose, det_update_row_smul],
simp [update_row_transpose, det_transpose]
end
lemma det_update_row_smul' (M : matrix n n R) (j : n) (s : R) (u : n → R) :
det (update_row (s • M) j u) = s ^ (fintype.card n - 1) * det (update_row M j u) :=
multilinear_map.map_update_smul _ M j s u
lemma det_update_column_smul' (M : matrix n n R) (j : n) (s : R) (u : n → R) :
det (update_column (s • M) j u) = s ^ (fintype.card n - 1) * det (update_column M j u) :=
begin
rw [← det_transpose, ← update_row_transpose, transpose_smul, det_update_row_smul'],
simp [update_row_transpose, det_transpose]
end
section det_eq
/-! ### `det_eq` section
Lemmas showing the determinant is invariant under a variety of operations.
-/
lemma det_eq_of_eq_mul_det_one {A B : matrix n n R}
(C : matrix n n R) (hC : det C = 1) (hA : A = B ⬝ C) : det A = det B :=
calc det A = det (B ⬝ C) : congr_arg _ hA
... = det B * det C : det_mul _ _
... = det B : by rw [hC, mul_one]
lemma det_eq_of_eq_det_one_mul {A B : matrix n n R}
(C : matrix n n R) (hC : det C = 1) (hA : A = C ⬝ B) : det A = det B :=
calc det A = det (C ⬝ B) : congr_arg _ hA
... = det C * det B : det_mul _ _
... = det B : by rw [hC, one_mul]
lemma det_update_row_add_self (A : matrix n n R) {i j : n} (hij : i ≠ j) :
det (update_row A i (A i + A j)) = det A :=
by simp [det_update_row_add,
det_zero_of_row_eq hij ((update_row_self).trans (update_row_ne hij.symm).symm)]
lemma det_update_column_add_self (A : matrix n n R) {i j : n} (hij : i ≠ j) :
det (update_column A i (λ k, A k i + A k j)) = det A :=
by { rw [← det_transpose, ← update_row_transpose, ← det_transpose A],
exact det_update_row_add_self Aᵀ hij }
lemma det_update_row_add_smul_self (A : matrix n n R) {i j : n} (hij : i ≠ j) (c : R) :
det (update_row A i (A i + c • A j)) = det A :=
by simp [det_update_row_add, det_update_row_smul,
det_zero_of_row_eq hij ((update_row_self).trans (update_row_ne hij.symm).symm)]
lemma det_update_column_add_smul_self (A : matrix n n R) {i j : n} (hij : i ≠ j) (c : R) :
det (update_column A i (λ k, A k i + c • A k j)) = det A :=
by { rw [← det_transpose, ← update_row_transpose, ← det_transpose A],
exact det_update_row_add_smul_self Aᵀ hij c }
lemma det_eq_of_forall_row_eq_smul_add_const_aux
{A B : matrix n n R} {s : finset n} : ∀ (c : n → R) (hs : ∀ i, i ∉ s → c i = 0)
(k : n) (hk : k ∉ s) (A_eq : ∀ i j, A i j = B i j + c i * B k j),
det A = det B :=
begin
revert B,
refine s.induction_on _ _,
{ intros A c hs k hk A_eq,
have : ∀ i, c i = 0,
{ intros i,
specialize hs i,
contrapose! hs,
simp [hs] },
congr,
ext i j,
rw [A_eq, this, zero_mul, add_zero], },
{ intros i s hi ih B c hs k hk A_eq,
have hAi : A i = B i + c i • B k := funext (A_eq i),
rw [@ih (update_row B i (A i)) (function.update c i 0), hAi,
det_update_row_add_smul_self],
{ exact mt (λ h, show k ∈ insert i s, from h ▸ finset.mem_insert_self _ _) hk },
{ intros i' hi',
rw function.update_apply,
split_ifs with hi'i, { refl },
{ exact hs i' (λ h, hi' ((finset.mem_insert.mp h).resolve_left hi'i)) } },
{ exact λ h, hk (finset.mem_insert_of_mem h) },
{ intros i' j',
rw [update_row_apply, function.update_apply],
split_ifs with hi'i,
{ simp [hi'i] },
rw [A_eq, update_row_ne (λ (h : k = i), hk $ h ▸ finset.mem_insert_self k s)] } }
end
/-- If you add multiples of row `B k` to other rows, the determinant doesn't change. -/
lemma det_eq_of_forall_row_eq_smul_add_const
{A B : matrix n n R} (c : n → R) (k : n) (hk : c k = 0)
(A_eq : ∀ i j, A i j = B i j + c i * B k j) :
det A = det B :=
det_eq_of_forall_row_eq_smul_add_const_aux c
(λ i, not_imp_comm.mp $ λ hi, finset.mem_erase.mpr
⟨mt (λ (h : i = k), show c i = 0, from h.symm ▸ hk) hi, finset.mem_univ i⟩)
k (finset.not_mem_erase k finset.univ) A_eq
lemma det_eq_of_forall_row_eq_smul_add_pred_aux {n : ℕ} (k : fin (n + 1)) :
∀ (c : fin n → R) (hc : ∀ (i : fin n), k < i.succ → c i = 0)
{M N : matrix (fin n.succ) (fin n.succ) R}
(h0 : ∀ j, M 0 j = N 0 j)
(hsucc : ∀ (i : fin n) j, M i.succ j = N i.succ j + c i * M i.cast_succ j),
det M = det N :=
begin
refine fin.induction _ (λ k ih, _) k;
intros c hc M N h0 hsucc,
{ congr,
ext i j,
refine fin.cases (h0 j) (λ i, _) i,
rw [hsucc, hc i (fin.succ_pos _), zero_mul, add_zero] },
set M' := update_row M k.succ (N k.succ) with hM',
have hM : M = update_row M' k.succ (M' k.succ + c k • M k.cast_succ),
{ ext i j,
by_cases hi : i = k.succ,
{ simp [hi, hM', hsucc, update_row_self] },
rw [update_row_ne hi, hM', update_row_ne hi] },
have k_ne_succ : k.cast_succ ≠ k.succ := (fin.cast_succ_lt_succ k).ne,
have M_k : M k.cast_succ = M' k.cast_succ := (update_row_ne k_ne_succ).symm,
rw [hM, M_k, det_update_row_add_smul_self M' k_ne_succ.symm, ih (function.update c k 0)],
{ intros i hi,
rw [fin.lt_iff_coe_lt_coe, fin.coe_cast_succ, fin.coe_succ, nat.lt_succ_iff] at hi,
rw function.update_apply,
split_ifs with hik, { refl },
exact hc _ (fin.succ_lt_succ_iff.mpr (lt_of_le_of_ne hi (ne.symm hik))) },
{ rwa [hM', update_row_ne (fin.succ_ne_zero _).symm] },
intros i j,
rw function.update_apply,
split_ifs with hik,
{ rw [zero_mul, add_zero, hM', hik, update_row_self] },
rw [hM', update_row_ne ((fin.succ_injective _).ne hik), hsucc],
by_cases hik2 : k < i,
{ simp [hc i (fin.succ_lt_succ_iff.mpr hik2)] },
rw update_row_ne,
apply ne_of_lt,
rwa [fin.lt_iff_coe_lt_coe, fin.coe_cast_succ, fin.coe_succ, nat.lt_succ_iff, ← not_lt]
end
/-- If you add multiples of previous rows to the next row, the determinant doesn't change. -/
lemma det_eq_of_forall_row_eq_smul_add_pred {n : ℕ}
{A B : matrix (fin (n + 1)) (fin (n + 1)) R} (c : fin n → R)
(A_zero : ∀ j, A 0 j = B 0 j)
(A_succ : ∀ (i : fin n) j, A i.succ j = B i.succ j + c i * A i.cast_succ j) :
det A = det B :=
det_eq_of_forall_row_eq_smul_add_pred_aux (fin.last _) c
(λ i hi, absurd hi (not_lt_of_ge (fin.le_last _)))
A_zero A_succ
/-- If you add multiples of previous columns to the next columns, the determinant doesn't change. -/
lemma det_eq_of_forall_col_eq_smul_add_pred {n : ℕ}
{A B : matrix (fin (n + 1)) (fin (n + 1)) R} (c : fin n → R)
(A_zero : ∀ i, A i 0 = B i 0)
(A_succ : ∀ i (j : fin n), A i j.succ = B i j.succ + c j * A i j.cast_succ) :
det A = det B :=
by { rw [← det_transpose A, ← det_transpose B],
exact det_eq_of_forall_row_eq_smul_add_pred c A_zero (λ i j, A_succ j i) }
end det_eq
@[simp] lemma det_block_diagonal {o : Type*} [fintype o] [decidable_eq o] (M : o → matrix n n R) :
(block_diagonal M).det = ∏ k, (M k).det :=
begin
-- Rewrite the determinants as a sum over permutations.
simp_rw [det_apply'],
-- The right hand side is a product of sums, rewrite it as a sum of products.
rw finset.prod_sum,
simp_rw [finset.mem_univ, finset.prod_attach_univ, finset.univ_pi_univ],
-- We claim that the only permutations contributing to the sum are those that
-- preserve their second component.
let preserving_snd : finset (equiv.perm (n × o)) :=
finset.univ.filter (λ σ, ∀ x, (σ x).snd = x.snd),
have mem_preserving_snd : ∀ {σ : equiv.perm (n × o)},
σ ∈ preserving_snd ↔ ∀ x, (σ x).snd = x.snd :=
λ σ, finset.mem_filter.trans ⟨λ h, h.2, λ h, ⟨finset.mem_univ _, h⟩⟩,
rw ← finset.sum_subset (finset.subset_univ preserving_snd) _,
-- And that these are in bijection with `o → equiv.perm m`.
rw (finset.sum_bij (λ (σ : ∀ (k : o), k ∈ finset.univ → equiv.perm n) _,
prod_congr_left (λ k, σ k (finset.mem_univ k))) _ _ _ _).symm,
{ intros σ _,
rw mem_preserving_snd,
rintros ⟨k, x⟩,
simp only [prod_congr_left_apply] },
{ intros σ _,
rw [finset.prod_mul_distrib, ←finset.univ_product_univ, finset.prod_product_right],
simp only [sign_prod_congr_left, units.coe_prod, int.cast_prod, block_diagonal_apply_eq,
prod_congr_left_apply] },
{ intros σ σ' _ _ eq,
ext x hx k,
simp only at eq,
have : ∀ k x, prod_congr_left (λ k, σ k (finset.mem_univ _)) (k, x) =
prod_congr_left (λ k, σ' k (finset.mem_univ _)) (k, x) :=
λ k x, by rw eq,
simp only [prod_congr_left_apply, prod.mk.inj_iff] at this,
exact (this k x).1 },
{ intros σ hσ,
rw mem_preserving_snd at hσ,
have hσ' : ∀ x, (σ⁻¹ x).snd = x.snd,
{ intro x, conv_rhs { rw [← perm.apply_inv_self σ x, hσ] } },
have mk_apply_eq : ∀ k x, ((σ (x, k)).fst, k) = σ (x, k),
{ intros k x,
ext,
{ simp only},
{ simp only [hσ] } },
have mk_inv_apply_eq : ∀ k x, ((σ⁻¹ (x, k)).fst, k) = σ⁻¹ (x, k),
{ intros k x,
conv_lhs { rw ← perm.apply_inv_self σ (x, k) },
ext,
{ simp only [apply_inv_self] },
{ simp only [hσ'] } },
refine ⟨λ k _, ⟨λ x, (σ (x, k)).fst, λ x, (σ⁻¹ (x, k)).fst, _, _⟩, _, _⟩,
{ intro x,
simp only [mk_apply_eq, inv_apply_self] },
{ intro x,
simp only [mk_inv_apply_eq, apply_inv_self] },
{ apply finset.mem_univ },
{ ext ⟨k, x⟩,
{ simp only [coe_fn_mk, prod_congr_left_apply] },
{ simp only [prod_congr_left_apply, hσ] } } },
{ intros σ _ hσ,
rw mem_preserving_snd at hσ,
obtain ⟨⟨k, x⟩, hkx⟩ := not_forall.mp hσ,
rw [finset.prod_eq_zero (finset.mem_univ (k, x)), mul_zero],
rw [← @prod.mk.eta _ _ (σ (k, x)), block_diagonal_apply_ne],
exact hkx }
end
/-- The determinant of a 2×2 block matrix with the lower-left block equal to zero is the product of
the determinants of the diagonal blocks. For the generalization to any number of blocks, see
`matrix.det_of_upper_triangular`. -/
@[simp] lemma det_from_blocks_zero₂₁
(A : matrix m m R) (B : matrix m n R) (D : matrix n n R) :
(matrix.from_blocks A B 0 D).det = A.det * D.det :=
begin
classical,
simp_rw det_apply',
convert
(sum_subset (subset_univ ((sum_congr_hom m n).range : set (perm (m ⊕ n))).to_finset) _).symm,
rw sum_mul_sum,
simp_rw univ_product_univ,
rw (sum_bij (λ (σ : perm m × perm n) _, equiv.sum_congr σ.fst σ.snd) _ _ _ _).symm,
{ intros σ₁₂ h,
simp only [],
erw [set.mem_to_finset, monoid_hom.mem_range],
use σ₁₂,
simp only [sum_congr_hom_apply] },
{ simp only [forall_prop_of_true, prod.forall, mem_univ],
intros σ₁ σ₂,
rw fintype.prod_sum_type,
simp_rw [equiv.sum_congr_apply, sum.map_inr, sum.map_inl, from_blocks_apply₁₁,
from_blocks_apply₂₂],
rw mul_mul_mul_comm,
congr,
rw [sign_sum_congr, units.coe_mul, int.cast_mul] },
{ intros σ₁ σ₂ h₁ h₂,
dsimp only [],
intro h,
have h2 : ∀ x, perm.sum_congr σ₁.fst σ₁.snd x = perm.sum_congr σ₂.fst σ₂.snd x,
{ intro x, exact congr_fun (congr_arg to_fun h) x },
simp only [sum.map_inr, sum.map_inl, perm.sum_congr_apply, sum.forall] at h2,
ext,
{ exact h2.left x },
{ exact h2.right x }},
{ intros σ hσ,
erw [set.mem_to_finset, monoid_hom.mem_range] at hσ,
obtain ⟨σ₁₂, hσ₁₂⟩ := hσ,
use σ₁₂,
rw ←hσ₁₂,
simp },
{ intros σ hσ hσn,
have h1 : ¬ (∀ x, ∃ y, sum.inl y = σ (sum.inl x)),
{ by_contradiction,
rw set.mem_to_finset at hσn,
apply absurd (mem_sum_congr_hom_range_of_perm_maps_to_inl _) hσn,
rintros x ⟨a, ha⟩,
rw [←ha], exact h a },
obtain ⟨a, ha⟩ := not_forall.mp h1,
cases hx : σ (sum.inl a) with a2 b,
{ have hn := (not_exists.mp ha) a2,
exact absurd hx.symm hn },
{ rw [finset.prod_eq_zero (finset.mem_univ (sum.inl a)), mul_zero],
rw [hx, from_blocks_apply₂₁], refl }}
end
/-- The determinant of a 2×2 block matrix with the upper-right block equal to zero is the product of
the determinants of the diagonal blocks. For the generalization to any number of blocks, see
`matrix.det_of_lower_triangular`. -/
@[simp] lemma det_from_blocks_zero₁₂
(A : matrix m m R) (C : matrix n m R) (D : matrix n n R) :
(matrix.from_blocks A 0 C D).det = A.det * D.det :=
by rw [←det_transpose, from_blocks_transpose, transpose_zero, det_from_blocks_zero₂₁,
det_transpose, det_transpose]
/-- Laplacian expansion of the determinant of an `n+1 × n+1` matrix along column 0. -/
lemma det_succ_column_zero {n : ℕ} (A : matrix (fin n.succ) (fin n.succ) R) :
det A = ∑ i : fin n.succ, (-1) ^ (i : ℕ) * A i 0 *
det (A.minor i.succ_above fin.succ) :=
begin
rw [matrix.det_apply, finset.univ_perm_fin_succ, ← finset.univ_product_univ],
simp only [finset.sum_map, equiv.to_embedding_apply, finset.sum_product, matrix.minor],
refine finset.sum_congr rfl (λ i _, fin.cases _ (λ i, _) i),
{ simp only [fin.prod_univ_succ, matrix.det_apply, finset.mul_sum,
equiv.perm.decompose_fin_symm_apply_zero, fin.coe_zero, one_mul,
equiv.perm.decompose_fin.symm_sign, equiv.swap_self, if_true, id.def, eq_self_iff_true,
equiv.perm.decompose_fin_symm_apply_succ, fin.succ_above_zero, equiv.coe_refl, pow_zero,
mul_smul_comm, of_apply] },
-- `univ_perm_fin_succ` gives a different embedding of `perm (fin n)` into
-- `perm (fin n.succ)` than the determinant of the submatrix we want,
-- permute `A` so that we get the correct one.
have : (-1 : R) ^ (i : ℕ) = i.cycle_range.sign,
{ simp [fin.sign_cycle_range] },
rw [fin.coe_succ, pow_succ, this, mul_assoc, mul_assoc, mul_left_comm ↑(equiv.perm.sign _),
← det_permute, matrix.det_apply, finset.mul_sum, finset.mul_sum],
-- now we just need to move the corresponding parts to the same place
refine finset.sum_congr rfl (λ σ _, _),
rw [equiv.perm.decompose_fin.symm_sign, if_neg (fin.succ_ne_zero i)],
calc ((-1) * σ.sign : ℤ) • ∏ i', A (equiv.perm.decompose_fin.symm (fin.succ i, σ) i') i'
= ((-1) * σ.sign : ℤ) • (A (fin.succ i) 0 *
∏ i', A (((fin.succ i).succ_above) (fin.cycle_range i (σ i'))) i'.succ) :
by simp only [fin.prod_univ_succ, fin.succ_above_cycle_range,
equiv.perm.decompose_fin_symm_apply_zero, equiv.perm.decompose_fin_symm_apply_succ]
... = (-1) * (A (fin.succ i) 0 * (σ.sign : ℤ) •
∏ i', A (((fin.succ i).succ_above) (fin.cycle_range i (σ i'))) i'.succ) :
by simp only [mul_assoc, mul_comm, _root_.neg_mul, one_mul, zsmul_eq_mul, neg_inj,
neg_smul, fin.succ_above_cycle_range],
end
/-- Laplacian expansion of the determinant of an `n+1 × n+1` matrix along row 0. -/
lemma det_succ_row_zero {n : ℕ} (A : matrix (fin n.succ) (fin n.succ) R) :
det A = ∑ j : fin n.succ, (-1) ^ (j : ℕ) * A 0 j *
det (A.minor fin.succ j.succ_above) :=
by { rw [← det_transpose A, det_succ_column_zero],
refine finset.sum_congr rfl (λ i _, _),
rw [← det_transpose],
simp only [transpose_apply, transpose_minor, transpose_transpose] }
/-- Laplacian expansion of the determinant of an `n+1 × n+1` matrix along row `i`. -/
lemma det_succ_row {n : ℕ} (A : matrix (fin n.succ) (fin n.succ) R) (i : fin n.succ) :
det A = ∑ j : fin n.succ, (-1) ^ (i + j : ℕ) * A i j *
det (A.minor i.succ_above j.succ_above) :=
begin
simp_rw [pow_add, mul_assoc, ← mul_sum],
have : det A = (-1 : R) ^ (i : ℕ) * (i.cycle_range⁻¹).sign * det A,
{ calc det A = ↑((-1 : ℤˣ) ^ (i : ℕ) * (-1 : ℤˣ) ^ (i : ℕ) : ℤˣ) * det A :
by simp
... = (-1 : R) ^ (i : ℕ) * (i.cycle_range⁻¹).sign * det A :
by simp [-int.units_mul_self] },
rw [this, mul_assoc],
congr,
rw [← det_permute, det_succ_row_zero],
refine finset.sum_congr rfl (λ j _, _),
rw [mul_assoc, matrix.minor, matrix.minor],
congr,
{ rw [equiv.perm.inv_def, fin.cycle_range_symm_zero] },
{ ext i' j',
rw [equiv.perm.inv_def, fin.cycle_range_symm_succ] },
end
/-- Laplacian expansion of the determinant of an `n+1 × n+1` matrix along column `j`. -/
lemma det_succ_column {n : ℕ} (A : matrix (fin n.succ) (fin n.succ) R) (j : fin n.succ) :
det A = ∑ i : fin n.succ, (-1) ^ (i + j : ℕ) * A i j *
det (A.minor i.succ_above j.succ_above) :=
by { rw [← det_transpose, det_succ_row _ j],
refine finset.sum_congr rfl (λ i _, _),
rw [add_comm, ← det_transpose, transpose_apply, transpose_minor, transpose_transpose] }
/-- Determinant of 0x0 matrix -/
@[simp] lemma det_fin_zero {A : matrix (fin 0) (fin 0) R} : det A = 1 :=
det_is_empty
/-- Determinant of 1x1 matrix -/
lemma det_fin_one (A : matrix (fin 1) (fin 1) R) : det A = A 0 0 := det_unique A
lemma det_fin_one_of (a : R) : det !![a] = a := det_fin_one _
/-- Determinant of 2x2 matrix -/
lemma det_fin_two (A : matrix (fin 2) (fin 2) R) :
det A = A 0 0 * A 1 1 - A 0 1 * A 1 0 :=
begin
simp [matrix.det_succ_row_zero, fin.sum_univ_succ],
ring
end
@[simp] lemma det_fin_two_of (a b c d : R) :
matrix.det !![a, b; c, d] = a * d - b * c :=
det_fin_two _
/-- Determinant of 3x3 matrix -/
lemma det_fin_three (A : matrix (fin 3) (fin 3) R) :
det A = A 0 0 * A 1 1 * A 2 2 - A 0 0 * A 1 2 * A 2 1 - A 0 1 * A 1 0 * A 2 2
+ A 0 1 * A 1 2 * A 2 0 + A 0 2 * A 1 0 * A 2 1 - A 0 2 * A 1 1 * A 2 0 :=
begin
simp [matrix.det_succ_row_zero, fin.sum_univ_succ],
ring
end
end matrix