Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Aaron Anderson, Jalex Stark. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson, Jalex Stark | |
-/ | |
import data.polynomial.expand | |
import linear_algebra.matrix.charpoly.basic | |
/-! | |
# Characteristic polynomials | |
We give methods for computing coefficients of the characteristic polynomial. | |
## Main definitions | |
- `matrix.charpoly_degree_eq_dim` proves that the degree of the characteristic polynomial | |
over a nonzero ring is the dimension of the matrix | |
- `matrix.det_eq_sign_charpoly_coeff` proves that the determinant is the constant term of the | |
characteristic polynomial, up to sign. | |
- `matrix.trace_eq_neg_charpoly_coeff` proves that the trace is the negative of the (d-1)th | |
coefficient of the characteristic polynomial, where d is the dimension of the matrix. | |
For a nonzero ring, this is the second-highest coefficient. | |
-/ | |
noncomputable theory | |
universes u v w z | |
open polynomial matrix | |
open_locale big_operators polynomial | |
variables {R : Type u} [comm_ring R] | |
variables {n G : Type v} [decidable_eq n] [fintype n] | |
variables {Ξ± Ξ² : Type v} [decidable_eq Ξ±] | |
open finset | |
variable {M : matrix n n R} | |
lemma charmatrix_apply_nat_degree [nontrivial R] (i j : n) : | |
(charmatrix M i j).nat_degree = ite (i = j) 1 0 := | |
by { by_cases i = j; simp [h, β degree_eq_iff_nat_degree_eq_of_pos (nat.succ_pos 0)], } | |
lemma charmatrix_apply_nat_degree_le (i j : n) : | |
(charmatrix M i j).nat_degree β€ ite (i = j) 1 0 := | |
by split_ifs; simp [h, nat_degree_X_sub_C_le] | |
namespace matrix | |
variable (M) | |
lemma charpoly_sub_diagonal_degree_lt : | |
(M.charpoly - β (i : n), (X - C (M i i))).degree < β(fintype.card n - 1) := | |
begin | |
rw [charpoly, det_apply', β insert_erase (mem_univ (equiv.refl n)), | |
sum_insert (not_mem_erase (equiv.refl n) univ), add_comm], | |
simp only [charmatrix_apply_eq, one_mul, equiv.perm.sign_refl, id.def, int.cast_one, | |
units.coe_one, add_sub_cancel, equiv.coe_refl], | |
rw β mem_degree_lt, apply submodule.sum_mem (degree_lt R (fintype.card n - 1)), | |
intros c hc, rw [β C_eq_int_cast, C_mul'], | |
apply submodule.smul_mem (degree_lt R (fintype.card n - 1)) ββ(equiv.perm.sign c), | |
rw mem_degree_lt, apply lt_of_le_of_lt degree_le_nat_degree _, rw with_bot.coe_lt_coe, | |
apply lt_of_le_of_lt _ (equiv.perm.fixed_point_card_lt_of_ne_one (ne_of_mem_erase hc)), | |
apply le_trans (polynomial.nat_degree_prod_le univ (Ξ» i : n, (charmatrix M (c i) i))) _, | |
rw card_eq_sum_ones, rw sum_filter, apply sum_le_sum, | |
intros, apply charmatrix_apply_nat_degree_le, | |
end | |
lemma charpoly_coeff_eq_prod_coeff_of_le {k : β} (h : fintype.card n - 1 β€ k) : | |
M.charpoly.coeff k = (β i : n, (X - C (M i i))).coeff k := | |
begin | |
apply eq_of_sub_eq_zero, rw β coeff_sub, apply polynomial.coeff_eq_zero_of_degree_lt, | |
apply lt_of_lt_of_le (charpoly_sub_diagonal_degree_lt M) _, rw with_bot.coe_le_coe, apply h, | |
end | |
lemma det_of_card_zero (h : fintype.card n = 0) (M : matrix n n R) : M.det = 1 := | |
by { rw fintype.card_eq_zero_iff at h, suffices : M = 1, { simp [this] }, ext i, exact h.elim i } | |
theorem charpoly_degree_eq_dim [nontrivial R] (M : matrix n n R) : | |
M.charpoly.degree = fintype.card n := | |
begin | |
by_cases fintype.card n = 0, | |
{ rw h, unfold charpoly, rw det_of_card_zero, {simp}, {assumption} }, | |
rw β sub_add_cancel M.charpoly (β (i : n), (X - C (M i i))), | |
have h1 : (β (i : n), (X - C (M i i))).degree = fintype.card n, | |
{ rw degree_eq_iff_nat_degree_eq_of_pos, swap, apply nat.pos_of_ne_zero h, | |
rw nat_degree_prod', simp_rw nat_degree_X_sub_C, unfold fintype.card, simp, | |
simp_rw (monic_X_sub_C _).leading_coeff, simp, }, | |
rw degree_add_eq_right_of_degree_lt, exact h1, rw h1, | |
apply lt_trans (charpoly_sub_diagonal_degree_lt M), rw with_bot.coe_lt_coe, | |
rw β nat.pred_eq_sub_one, apply nat.pred_lt, apply h, | |
end | |
theorem charpoly_nat_degree_eq_dim [nontrivial R] (M : matrix n n R) : | |
M.charpoly.nat_degree = fintype.card n := | |
nat_degree_eq_of_degree_eq_some (charpoly_degree_eq_dim M) | |
lemma charpoly_monic (M : matrix n n R) : M.charpoly.monic := | |
begin | |
nontriviality, | |
by_cases fintype.card n = 0, {rw [charpoly, det_of_card_zero h], apply monic_one}, | |
have mon : (β (i : n), (X - C (M i i))).monic, | |
{ apply monic_prod_of_monic univ (Ξ» i : n, (X - C (M i i))), simp [monic_X_sub_C], }, | |
rw β sub_add_cancel (β (i : n), (X - C (M i i))) M.charpoly at mon, | |
rw monic at *, rw leading_coeff_add_of_degree_lt at mon, rw β mon, | |
rw charpoly_degree_eq_dim, rw β neg_sub, rw degree_neg, | |
apply lt_trans (charpoly_sub_diagonal_degree_lt M), rw with_bot.coe_lt_coe, | |
rw β nat.pred_eq_sub_one, apply nat.pred_lt, apply h, | |
end | |
theorem trace_eq_neg_charpoly_coeff [nonempty n] (M : matrix n n R) : | |
trace M = -M.charpoly.coeff (fintype.card n - 1) := | |
begin | |
rw charpoly_coeff_eq_prod_coeff_of_le, swap, refl, | |
rw [fintype.card, prod_X_sub_C_coeff_card_pred univ (Ξ» i : n, M i i) fintype.card_pos, neg_neg, | |
trace], | |
refl | |
end | |
-- I feel like this should use polynomial.alg_hom_evalβ_algebra_map | |
lemma mat_poly_equiv_eval (M : matrix n n R[X]) (r : R) (i j : n) : | |
(mat_poly_equiv M).eval ((scalar n) r) i j = (M i j).eval r := | |
begin | |
unfold polynomial.eval, unfold evalβ, | |
transitivity polynomial.sum (mat_poly_equiv M) (Ξ» (e : β) (a : matrix n n R), | |
(a * (scalar n) r ^ e) i j), | |
{ unfold polynomial.sum, rw sum_apply, dsimp, refl }, | |
{ simp_rw [βring_hom.map_pow, β(scalar.commute _ _).eq], | |
simp only [coe_scalar, matrix.one_mul, ring_hom.id_apply, | |
pi.smul_apply, smul_eq_mul, mul_eq_mul, algebra.smul_mul_assoc], | |
have h : β x : β, (Ξ» (e : β) (a : R), r ^ e * a) x 0 = 0 := by simp, | |
simp only [polynomial.sum, mat_poly_equiv_coeff_apply, mul_comm], | |
apply (finset.sum_subset (support_subset_support_mat_poly_equiv _ _ _) _).symm, | |
assume n hn h'n, | |
rw not_mem_support_iff at h'n, | |
simp only [h'n, zero_mul] } | |
end | |
lemma eval_det (M : matrix n n R[X]) (r : R) : | |
polynomial.eval r M.det = (polynomial.eval (scalar n r) (mat_poly_equiv M)).det := | |
begin | |
rw [polynomial.eval, β coe_evalβ_ring_hom, ring_hom.map_det], | |
apply congr_arg det, ext, symmetry, convert mat_poly_equiv_eval _ _ _ _, | |
end | |
theorem det_eq_sign_charpoly_coeff (M : matrix n n R) : | |
M.det = (-1)^(fintype.card n) * M.charpoly.coeff 0:= | |
begin | |
rw [coeff_zero_eq_eval_zero, charpoly, eval_det, mat_poly_equiv_charmatrix, β det_smul], | |
simp | |
end | |
end matrix | |
variables {p : β} [fact p.prime] | |
lemma mat_poly_equiv_eq_X_pow_sub_C {K : Type*} (k : β) [field K] (M : matrix n n K) : | |
mat_poly_equiv | |
((expand K (k) : K[X] β+* K[X]).map_matrix (charmatrix (M ^ k))) = | |
X ^ k - C (M ^ k) := | |
begin | |
ext m, | |
rw [coeff_sub, coeff_C, mat_poly_equiv_coeff_apply, ring_hom.map_matrix_apply, matrix.map_apply, | |
alg_hom.coe_to_ring_hom, dmatrix.sub_apply, coeff_X_pow], | |
by_cases hij : i = j, | |
{ rw [hij, charmatrix_apply_eq, alg_hom.map_sub, expand_C, expand_X, coeff_sub, coeff_X_pow, | |
coeff_C], | |
split_ifs with mp m0; | |
simp only [matrix.one_apply_eq, dmatrix.zero_apply] }, | |
{ rw [charmatrix_apply_ne _ _ _ hij, alg_hom.map_neg, expand_C, coeff_neg, coeff_C], | |
split_ifs with m0 mp; | |
simp only [hij, zero_sub, dmatrix.zero_apply, sub_zero, neg_zero, matrix.one_apply_ne, ne.def, | |
not_false_iff] } | |
end | |
namespace matrix | |
/-- Any matrix polynomial `p` is equivalent under evaluation to `p %β M.charpoly`; that is, `p` | |
is equivalent to a polynomial with degree less than the dimension of the matrix. -/ | |
lemma aeval_eq_aeval_mod_charpoly (M : matrix n n R) (p : R[X]) : | |
aeval M p = aeval M (p %β M.charpoly) := | |
(aeval_mod_by_monic_eq_self_of_root M.charpoly_monic M.aeval_self_charpoly).symm | |
/-- Any matrix power can be computed as the sum of matrix powers less than `fintype.card n`. | |
TODO: add the statement for negative powers phrased with `zpow`. -/ | |
lemma pow_eq_aeval_mod_charpoly (M : matrix n n R) (k : β) : M^k = aeval M (X^k %β M.charpoly) := | |
by rw [βaeval_eq_aeval_mod_charpoly, map_pow, aeval_X] | |
end matrix | |
section ideal | |
lemma coeff_charpoly_mem_ideal_pow {I : ideal R} (h : β i j, M i j β I) (k : β) : | |
M.charpoly.coeff k β I ^ (fintype.card n - k) := | |
begin | |
delta charpoly, | |
rw [matrix.det_apply, finset_sum_coeff], | |
apply sum_mem, | |
rintro c -, | |
rw [coeff_smul, submodule.smul_mem_iff'], | |
have : β (x : n), 1 = fintype.card n := by rw [finset.sum_const, card_univ, smul_eq_mul, mul_one], | |
rw β this, | |
apply coeff_prod_mem_ideal_pow_tsub, | |
rintro i - (_|k), | |
{ rw [tsub_zero, pow_one, charmatrix_apply, coeff_sub, coeff_X_mul_zero, coeff_C_zero, zero_sub, | |
neg_mem_iff], | |
exact h (c i) i }, | |
{ rw [nat.succ_eq_one_add, tsub_self_add, pow_zero, ideal.one_eq_top], | |
exact submodule.mem_top } | |
end | |
end ideal | |