Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.81 kB
/-
Copyright (c) 2020 Aaron Anderson, Jalex Stark. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson, Jalex Stark
-/
import data.polynomial.expand
import linear_algebra.matrix.charpoly.basic
/-!
# Characteristic polynomials
We give methods for computing coefficients of the characteristic polynomial.
## Main definitions
- `matrix.charpoly_degree_eq_dim` proves that the degree of the characteristic polynomial
over a nonzero ring is the dimension of the matrix
- `matrix.det_eq_sign_charpoly_coeff` proves that the determinant is the constant term of the
characteristic polynomial, up to sign.
- `matrix.trace_eq_neg_charpoly_coeff` proves that the trace is the negative of the (d-1)th
coefficient of the characteristic polynomial, where d is the dimension of the matrix.
For a nonzero ring, this is the second-highest coefficient.
-/
noncomputable theory
universes u v w z
open polynomial matrix
open_locale big_operators polynomial
variables {R : Type u} [comm_ring R]
variables {n G : Type v} [decidable_eq n] [fintype n]
variables {Ξ± Ξ² : Type v} [decidable_eq Ξ±]
open finset
variable {M : matrix n n R}
lemma charmatrix_apply_nat_degree [nontrivial R] (i j : n) :
(charmatrix M i j).nat_degree = ite (i = j) 1 0 :=
by { by_cases i = j; simp [h, ← degree_eq_iff_nat_degree_eq_of_pos (nat.succ_pos 0)], }
lemma charmatrix_apply_nat_degree_le (i j : n) :
(charmatrix M i j).nat_degree ≀ ite (i = j) 1 0 :=
by split_ifs; simp [h, nat_degree_X_sub_C_le]
namespace matrix
variable (M)
lemma charpoly_sub_diagonal_degree_lt :
(M.charpoly - ∏ (i : n), (X - C (M i i))).degree < ↑(fintype.card n - 1) :=
begin
rw [charpoly, det_apply', ← insert_erase (mem_univ (equiv.refl n)),
sum_insert (not_mem_erase (equiv.refl n) univ), add_comm],
simp only [charmatrix_apply_eq, one_mul, equiv.perm.sign_refl, id.def, int.cast_one,
units.coe_one, add_sub_cancel, equiv.coe_refl],
rw ← mem_degree_lt, apply submodule.sum_mem (degree_lt R (fintype.card n - 1)),
intros c hc, rw [← C_eq_int_cast, C_mul'],
apply submodule.smul_mem (degree_lt R (fintype.card n - 1)) ↑↑(equiv.perm.sign c),
rw mem_degree_lt, apply lt_of_le_of_lt degree_le_nat_degree _, rw with_bot.coe_lt_coe,
apply lt_of_le_of_lt _ (equiv.perm.fixed_point_card_lt_of_ne_one (ne_of_mem_erase hc)),
apply le_trans (polynomial.nat_degree_prod_le univ (Ξ» i : n, (charmatrix M (c i) i))) _,
rw card_eq_sum_ones, rw sum_filter, apply sum_le_sum,
intros, apply charmatrix_apply_nat_degree_le,
end
lemma charpoly_coeff_eq_prod_coeff_of_le {k : β„•} (h : fintype.card n - 1 ≀ k) :
M.charpoly.coeff k = (∏ i : n, (X - C (M i i))).coeff k :=
begin
apply eq_of_sub_eq_zero, rw ← coeff_sub, apply polynomial.coeff_eq_zero_of_degree_lt,
apply lt_of_lt_of_le (charpoly_sub_diagonal_degree_lt M) _, rw with_bot.coe_le_coe, apply h,
end
lemma det_of_card_zero (h : fintype.card n = 0) (M : matrix n n R) : M.det = 1 :=
by { rw fintype.card_eq_zero_iff at h, suffices : M = 1, { simp [this] }, ext i, exact h.elim i }
theorem charpoly_degree_eq_dim [nontrivial R] (M : matrix n n R) :
M.charpoly.degree = fintype.card n :=
begin
by_cases fintype.card n = 0,
{ rw h, unfold charpoly, rw det_of_card_zero, {simp}, {assumption} },
rw ← sub_add_cancel M.charpoly (∏ (i : n), (X - C (M i i))),
have h1 : (∏ (i : n), (X - C (M i i))).degree = fintype.card n,
{ rw degree_eq_iff_nat_degree_eq_of_pos, swap, apply nat.pos_of_ne_zero h,
rw nat_degree_prod', simp_rw nat_degree_X_sub_C, unfold fintype.card, simp,
simp_rw (monic_X_sub_C _).leading_coeff, simp, },
rw degree_add_eq_right_of_degree_lt, exact h1, rw h1,
apply lt_trans (charpoly_sub_diagonal_degree_lt M), rw with_bot.coe_lt_coe,
rw ← nat.pred_eq_sub_one, apply nat.pred_lt, apply h,
end
theorem charpoly_nat_degree_eq_dim [nontrivial R] (M : matrix n n R) :
M.charpoly.nat_degree = fintype.card n :=
nat_degree_eq_of_degree_eq_some (charpoly_degree_eq_dim M)
lemma charpoly_monic (M : matrix n n R) : M.charpoly.monic :=
begin
nontriviality,
by_cases fintype.card n = 0, {rw [charpoly, det_of_card_zero h], apply monic_one},
have mon : (∏ (i : n), (X - C (M i i))).monic,
{ apply monic_prod_of_monic univ (Ξ» i : n, (X - C (M i i))), simp [monic_X_sub_C], },
rw ← sub_add_cancel (∏ (i : n), (X - C (M i i))) M.charpoly at mon,
rw monic at *, rw leading_coeff_add_of_degree_lt at mon, rw ← mon,
rw charpoly_degree_eq_dim, rw ← neg_sub, rw degree_neg,
apply lt_trans (charpoly_sub_diagonal_degree_lt M), rw with_bot.coe_lt_coe,
rw ← nat.pred_eq_sub_one, apply nat.pred_lt, apply h,
end
theorem trace_eq_neg_charpoly_coeff [nonempty n] (M : matrix n n R) :
trace M = -M.charpoly.coeff (fintype.card n - 1) :=
begin
rw charpoly_coeff_eq_prod_coeff_of_le, swap, refl,
rw [fintype.card, prod_X_sub_C_coeff_card_pred univ (Ξ» i : n, M i i) fintype.card_pos, neg_neg,
trace],
refl
end
-- I feel like this should use polynomial.alg_hom_evalβ‚‚_algebra_map
lemma mat_poly_equiv_eval (M : matrix n n R[X]) (r : R) (i j : n) :
(mat_poly_equiv M).eval ((scalar n) r) i j = (M i j).eval r :=
begin
unfold polynomial.eval, unfold evalβ‚‚,
transitivity polynomial.sum (mat_poly_equiv M) (Ξ» (e : β„•) (a : matrix n n R),
(a * (scalar n) r ^ e) i j),
{ unfold polynomial.sum, rw sum_apply, dsimp, refl },
{ simp_rw [←ring_hom.map_pow, ←(scalar.commute _ _).eq],
simp only [coe_scalar, matrix.one_mul, ring_hom.id_apply,
pi.smul_apply, smul_eq_mul, mul_eq_mul, algebra.smul_mul_assoc],
have h : βˆ€ x : β„•, (Ξ» (e : β„•) (a : R), r ^ e * a) x 0 = 0 := by simp,
simp only [polynomial.sum, mat_poly_equiv_coeff_apply, mul_comm],
apply (finset.sum_subset (support_subset_support_mat_poly_equiv _ _ _) _).symm,
assume n hn h'n,
rw not_mem_support_iff at h'n,
simp only [h'n, zero_mul] }
end
lemma eval_det (M : matrix n n R[X]) (r : R) :
polynomial.eval r M.det = (polynomial.eval (scalar n r) (mat_poly_equiv M)).det :=
begin
rw [polynomial.eval, ← coe_evalβ‚‚_ring_hom, ring_hom.map_det],
apply congr_arg det, ext, symmetry, convert mat_poly_equiv_eval _ _ _ _,
end
theorem det_eq_sign_charpoly_coeff (M : matrix n n R) :
M.det = (-1)^(fintype.card n) * M.charpoly.coeff 0:=
begin
rw [coeff_zero_eq_eval_zero, charpoly, eval_det, mat_poly_equiv_charmatrix, ← det_smul],
simp
end
end matrix
variables {p : β„•} [fact p.prime]
lemma mat_poly_equiv_eq_X_pow_sub_C {K : Type*} (k : β„•) [field K] (M : matrix n n K) :
mat_poly_equiv
((expand K (k) : K[X] β†’+* K[X]).map_matrix (charmatrix (M ^ k))) =
X ^ k - C (M ^ k) :=
begin
ext m,
rw [coeff_sub, coeff_C, mat_poly_equiv_coeff_apply, ring_hom.map_matrix_apply, matrix.map_apply,
alg_hom.coe_to_ring_hom, dmatrix.sub_apply, coeff_X_pow],
by_cases hij : i = j,
{ rw [hij, charmatrix_apply_eq, alg_hom.map_sub, expand_C, expand_X, coeff_sub, coeff_X_pow,
coeff_C],
split_ifs with mp m0;
simp only [matrix.one_apply_eq, dmatrix.zero_apply] },
{ rw [charmatrix_apply_ne _ _ _ hij, alg_hom.map_neg, expand_C, coeff_neg, coeff_C],
split_ifs with m0 mp;
simp only [hij, zero_sub, dmatrix.zero_apply, sub_zero, neg_zero, matrix.one_apply_ne, ne.def,
not_false_iff] }
end
namespace matrix
/-- Any matrix polynomial `p` is equivalent under evaluation to `p %β‚˜ M.charpoly`; that is, `p`
is equivalent to a polynomial with degree less than the dimension of the matrix. -/
lemma aeval_eq_aeval_mod_charpoly (M : matrix n n R) (p : R[X]) :
aeval M p = aeval M (p %β‚˜ M.charpoly) :=
(aeval_mod_by_monic_eq_self_of_root M.charpoly_monic M.aeval_self_charpoly).symm
/-- Any matrix power can be computed as the sum of matrix powers less than `fintype.card n`.
TODO: add the statement for negative powers phrased with `zpow`. -/
lemma pow_eq_aeval_mod_charpoly (M : matrix n n R) (k : β„•) : M^k = aeval M (X^k %β‚˜ M.charpoly) :=
by rw [←aeval_eq_aeval_mod_charpoly, map_pow, aeval_X]
end matrix
section ideal
lemma coeff_charpoly_mem_ideal_pow {I : ideal R} (h : βˆ€ i j, M i j ∈ I) (k : β„•) :
M.charpoly.coeff k ∈ I ^ (fintype.card n - k) :=
begin
delta charpoly,
rw [matrix.det_apply, finset_sum_coeff],
apply sum_mem,
rintro c -,
rw [coeff_smul, submodule.smul_mem_iff'],
have : βˆ‘ (x : n), 1 = fintype.card n := by rw [finset.sum_const, card_univ, smul_eq_mul, mul_one],
rw ← this,
apply coeff_prod_mem_ideal_pow_tsub,
rintro i - (_|k),
{ rw [tsub_zero, pow_one, charmatrix_apply, coeff_sub, coeff_X_mul_zero, coeff_C_zero, zero_sub,
neg_mem_iff],
exact h (c i) i },
{ rw [nat.succ_eq_one_add, tsub_self_add, pow_zero, ideal.one_eq_top],
exact submodule.mem_top }
end
end ideal