Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Anne Baanen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro, Alexander Bentkamp, Anne Baanen | |
-/ | |
import algebra.big_operators.fin | |
import linear_algebra.finsupp | |
import linear_algebra.prod | |
import set_theory.cardinal.basic | |
/-! | |
# Linear independence | |
This file defines linear independence in a module or vector space. | |
It is inspired by Isabelle/HOL's linear algebra, and hence indirectly by HOL Light. | |
We define `linear_independent R v` as `ker (finsupp.total ι M R v) = ⊥`. Here `finsupp.total` is the | |
linear map sending a function `f : ι →₀ R` with finite support to the linear combination of vectors | |
from `v` with these coefficients. Then we prove that several other statements are equivalent to this | |
one, including injectivity of `finsupp.total ι M R v` and some versions with explicitly written | |
linear combinations. | |
## Main definitions | |
All definitions are given for families of vectors, i.e. `v : ι → M` where `M` is the module or | |
vector space and `ι : Type*` is an arbitrary indexing type. | |
* `linear_independent R v` states that the elements of the family `v` are linearly independent. | |
* `linear_independent.repr hv x` returns the linear combination representing `x : span R (range v)` | |
on the linearly independent vectors `v`, given `hv : linear_independent R v` | |
(using classical choice). `linear_independent.repr hv` is provided as a linear map. | |
## Main statements | |
We prove several specialized tests for linear independence of families of vectors and of sets of | |
vectors. | |
* `fintype.linear_independent_iff`: if `ι` is a finite type, then any function `f : ι → R` has | |
finite support, so we can reformulate the statement using `∑ i : ι, f i • v i` instead of a sum | |
over an auxiliary `s : finset ι`; | |
* `linear_independent_empty_type`: a family indexed by an empty type is linearly independent; | |
* `linear_independent_unique_iff`: if `ι` is a singleton, then `linear_independent K v` is | |
equivalent to `v default ≠ 0`; | |
* linear_independent_option`, `linear_independent_sum`, `linear_independent_fin_cons`, | |
`linear_independent_fin_succ`: type-specific tests for linear independence of families of vector | |
fields; | |
* `linear_independent_insert`, `linear_independent_union`, `linear_independent_pair`, | |
`linear_independent_singleton`: linear independence tests for set operations. | |
In many cases we additionally provide dot-style operations (e.g., `linear_independent.union`) to | |
make the linear independence tests usable as `hv.insert ha` etc. | |
We also prove that, when working over a division ring, | |
any family of vectors includes a linear independent subfamily spanning the same subspace. | |
## Implementation notes | |
We use families instead of sets because it allows us to say that two identical vectors are linearly | |
dependent. | |
If you want to use sets, use the family `(λ x, x : s → M)` given a set `s : set M`. The lemmas | |
`linear_independent.to_subtype_range` and `linear_independent.of_subtype_range` connect those two | |
worlds. | |
## Tags | |
linearly dependent, linear dependence, linearly independent, linear independence | |
-/ | |
noncomputable theory | |
open function set submodule | |
open_locale classical big_operators cardinal | |
universes u | |
variables {ι : Type*} {ι' : Type*} {R : Type*} {K : Type*} | |
variables {M : Type*} {M' M'' : Type*} {V : Type u} {V' : Type*} | |
section module | |
variables {v : ι → M} | |
variables [semiring R] [add_comm_monoid M] [add_comm_monoid M'] [add_comm_monoid M''] | |
variables [module R M] [module R M'] [module R M''] | |
variables {a b : R} {x y : M} | |
variables (R) (v) | |
/-- `linear_independent R v` states the family of vectors `v` is linearly independent over `R`. -/ | |
def linear_independent : Prop := (finsupp.total ι M R v).ker = ⊥ | |
variables {R} {v} | |
theorem linear_independent_iff : linear_independent R v ↔ | |
∀l, finsupp.total ι M R v l = 0 → l = 0 := | |
by simp [linear_independent, linear_map.ker_eq_bot'] | |
theorem linear_independent_iff' : linear_independent R v ↔ | |
∀ s : finset ι, ∀ g : ι → R, ∑ i in s, g i • v i = 0 → ∀ i ∈ s, g i = 0 := | |
linear_independent_iff.trans | |
⟨λ hf s g hg i his, have h : _ := hf (∑ i in s, finsupp.single i (g i)) $ | |
by simpa only [linear_map.map_sum, finsupp.total_single] using hg, calc | |
g i = (finsupp.lapply i : (ι →₀ R) →ₗ[R] R) (finsupp.single i (g i)) : | |
by rw [finsupp.lapply_apply, finsupp.single_eq_same] | |
... = ∑ j in s, (finsupp.lapply i : (ι →₀ R) →ₗ[R] R) (finsupp.single j (g j)) : | |
eq.symm $ finset.sum_eq_single i | |
(λ j hjs hji, by rw [finsupp.lapply_apply, finsupp.single_eq_of_ne hji]) | |
(λ hnis, hnis.elim his) | |
... = (∑ j in s, finsupp.single j (g j)) i : (finsupp.lapply i : (ι →₀ R) →ₗ[R] R).map_sum.symm | |
... = 0 : finsupp.ext_iff.1 h i, | |
λ hf l hl, finsupp.ext $ λ i, classical.by_contradiction $ λ hni, hni $ hf _ _ hl _ $ | |
finsupp.mem_support_iff.2 hni⟩ | |
theorem linear_independent_iff'' : | |
linear_independent R v ↔ ∀ (s : finset ι) (g : ι → R) (hg : ∀ i ∉ s, g i = 0), | |
∑ i in s, g i • v i = 0 → ∀ i, g i = 0 := | |
linear_independent_iff'.trans ⟨λ H s g hg hv i, if his : i ∈ s then H s g hv i his else hg i his, | |
λ H s g hg i hi, by { convert H s (λ j, if j ∈ s then g j else 0) (λ j hj, if_neg hj) | |
(by simp_rw [ite_smul, zero_smul, finset.sum_extend_by_zero, hg]) i, | |
exact (if_pos hi).symm }⟩ | |
theorem not_linear_independent_iff : ¬ linear_independent R v ↔ | |
∃ s : finset ι, ∃ g : ι → R, (∑ i in s, g i • v i) = 0 ∧ (∃ i ∈ s, g i ≠ 0) := | |
begin | |
rw linear_independent_iff', | |
simp only [exists_prop, not_forall], | |
end | |
theorem fintype.linear_independent_iff [fintype ι] : | |
linear_independent R v ↔ ∀ g : ι → R, ∑ i, g i • v i = 0 → ∀ i, g i = 0 := | |
begin | |
refine ⟨λ H g, by simpa using linear_independent_iff'.1 H finset.univ g, | |
λ H, linear_independent_iff''.2 $ λ s g hg hs i, H _ _ _⟩, | |
rw ← hs, | |
refine (finset.sum_subset (finset.subset_univ _) (λ i _ hi, _)).symm, | |
rw [hg i hi, zero_smul] | |
end | |
/-- A finite family of vectors `v i` is linear independent iff the linear map that sends | |
`c : ι → R` to `∑ i, c i • v i` has the trivial kernel. -/ | |
theorem fintype.linear_independent_iff' [fintype ι] : | |
linear_independent R v ↔ | |
(linear_map.lsum R (λ i : ι, R) ℕ (λ i, linear_map.id.smul_right (v i))).ker = ⊥ := | |
by simp [fintype.linear_independent_iff, linear_map.ker_eq_bot', funext_iff]; skip | |
lemma fintype.not_linear_independent_iff [fintype ι] : | |
¬linear_independent R v ↔ ∃ g : ι → R, (∑ i, g i • v i) = 0 ∧ (∃ i, g i ≠ 0) := | |
by simpa using (not_iff_not.2 fintype.linear_independent_iff) | |
lemma linear_independent_empty_type [is_empty ι] : linear_independent R v := | |
linear_independent_iff.mpr $ λ v hv, subsingleton.elim v 0 | |
lemma linear_independent.ne_zero [nontrivial R] | |
(i : ι) (hv : linear_independent R v) : v i ≠ 0 := | |
λ h, @zero_ne_one R _ _ $ eq.symm begin | |
suffices : (finsupp.single i 1 : ι →₀ R) i = 0, {simpa}, | |
rw linear_independent_iff.1 hv (finsupp.single i 1), | |
{ simp }, | |
{ simp [h] } | |
end | |
/-- A subfamily of a linearly independent family (i.e., a composition with an injective map) is a | |
linearly independent family. -/ | |
lemma linear_independent.comp | |
(h : linear_independent R v) (f : ι' → ι) (hf : injective f) : linear_independent R (v ∘ f) := | |
begin | |
rw [linear_independent_iff, finsupp.total_comp], | |
intros l hl, | |
have h_map_domain : ∀ x, (finsupp.map_domain f l) (f x) = 0, | |
by rw linear_independent_iff.1 h (finsupp.map_domain f l) hl; simp, | |
ext x, | |
convert h_map_domain x, | |
rw [finsupp.map_domain_apply hf] | |
end | |
lemma linear_independent.coe_range (i : linear_independent R v) : | |
linear_independent R (coe : range v → M) := | |
by simpa using i.comp _ (range_splitting_injective v) | |
/-- If `v` is a linearly independent family of vectors and the kernel of a linear map `f` is | |
disjoint with the submodule spanned by the vectors of `v`, then `f ∘ v` is a linearly independent | |
family of vectors. See also `linear_independent.map'` for a special case assuming `ker f = ⊥`. -/ | |
lemma linear_independent.map (hv : linear_independent R v) {f : M →ₗ[R] M'} | |
(hf_inj : disjoint (span R (range v)) f.ker) : linear_independent R (f ∘ v) := | |
begin | |
rw [disjoint, ← set.image_univ, finsupp.span_image_eq_map_total, map_inf_eq_map_inf_comap, | |
map_le_iff_le_comap, comap_bot, finsupp.supported_univ, top_inf_eq] at hf_inj, | |
unfold linear_independent at hv ⊢, | |
rw [hv, le_bot_iff] at hf_inj, | |
haveI : inhabited M := ⟨0⟩, | |
rw [finsupp.total_comp, @finsupp.lmap_domain_total _ _ R _ _ _ _ _ _ _ _ _ _ f, | |
linear_map.ker_comp, hf_inj], | |
exact λ _, rfl, | |
end | |
/-- An injective linear map sends linearly independent families of vectors to linearly independent | |
families of vectors. See also `linear_independent.map` for a more general statement. -/ | |
lemma linear_independent.map' (hv : linear_independent R v) (f : M →ₗ[R] M') | |
(hf_inj : f.ker = ⊥) : linear_independent R (f ∘ v) := | |
hv.map $ by simp [hf_inj] | |
/-- If the image of a family of vectors under a linear map is linearly independent, then so is | |
the original family. -/ | |
lemma linear_independent.of_comp (f : M →ₗ[R] M') (hfv : linear_independent R (f ∘ v)) : | |
linear_independent R v := | |
linear_independent_iff'.2 $ λ s g hg i his, | |
have ∑ (i : ι) in s, g i • f (v i) = 0, | |
by simp_rw [← f.map_smul, ← f.map_sum, hg, f.map_zero], | |
linear_independent_iff'.1 hfv s g this i his | |
/-- If `f` is an injective linear map, then the family `f ∘ v` is linearly independent | |
if and only if the family `v` is linearly independent. -/ | |
protected lemma linear_map.linear_independent_iff (f : M →ₗ[R] M') (hf_inj : f.ker = ⊥) : | |
linear_independent R (f ∘ v) ↔ linear_independent R v := | |
⟨λ h, h.of_comp f, λ h, h.map $ by simp only [hf_inj, disjoint_bot_right]⟩ | |
@[nontriviality] | |
lemma linear_independent_of_subsingleton [subsingleton R] : linear_independent R v := | |
linear_independent_iff.2 (λ l hl, subsingleton.elim _ _) | |
theorem linear_independent_equiv (e : ι ≃ ι') {f : ι' → M} : | |
linear_independent R (f ∘ e) ↔ linear_independent R f := | |
⟨λ h, function.comp.right_id f ▸ e.self_comp_symm ▸ h.comp _ e.symm.injective, | |
λ h, h.comp _ e.injective⟩ | |
theorem linear_independent_equiv' (e : ι ≃ ι') {f : ι' → M} {g : ι → M} (h : f ∘ e = g) : | |
linear_independent R g ↔ linear_independent R f := | |
h ▸ linear_independent_equiv e | |
theorem linear_independent_subtype_range {ι} {f : ι → M} (hf : injective f) : | |
linear_independent R (coe : range f → M) ↔ linear_independent R f := | |
iff.symm $ linear_independent_equiv' (equiv.of_injective f hf) rfl | |
alias linear_independent_subtype_range ↔ linear_independent.of_subtype_range _ | |
theorem linear_independent_image {ι} {s : set ι} {f : ι → M} (hf : set.inj_on f s) : | |
linear_independent R (λ x : s, f x) ↔ linear_independent R (λ x : f '' s, (x : M)) := | |
linear_independent_equiv' (equiv.set.image_of_inj_on _ _ hf) rfl | |
lemma linear_independent_span (hs : linear_independent R v) : | |
@linear_independent ι R (span R (range v)) | |
(λ i : ι, ⟨v i, subset_span (mem_range_self i)⟩) _ _ _ := | |
linear_independent.of_comp (span R (range v)).subtype hs | |
/-- See `linear_independent.fin_cons` for a family of elements in a vector space. -/ | |
lemma linear_independent.fin_cons' {m : ℕ} (x : M) (v : fin m → M) | |
(hli : linear_independent R v) | |
(x_ortho : (∀ (c : R) (y : submodule.span R (set.range v)), c • x + y = (0 : M) → c = 0)) : | |
linear_independent R (fin.cons x v : fin m.succ → M) := | |
begin | |
rw fintype.linear_independent_iff at hli ⊢, | |
rintros g total_eq j, | |
simp_rw [fin.sum_univ_succ, fin.cons_zero, fin.cons_succ] at total_eq, | |
have : g 0 = 0, | |
{ refine x_ortho (g 0) ⟨∑ (i : fin m), g i.succ • v i, _⟩ total_eq, | |
exact sum_mem (λ i _, smul_mem _ _ (subset_span ⟨i, rfl⟩)) }, | |
rw [this, zero_smul, zero_add] at total_eq, | |
exact fin.cases this (hli _ total_eq) j, | |
end | |
/-- A set of linearly independent vectors in a module `M` over a semiring `K` is also linearly | |
independent over a subring `R` of `K`. | |
The implementation uses minimal assumptions about the relationship between `R`, `K` and `M`. | |
The version where `K` is an `R`-algebra is `linear_independent.restrict_scalars_algebras`. | |
-/ | |
lemma linear_independent.restrict_scalars [semiring K] [smul_with_zero R K] [module K M] | |
[is_scalar_tower R K M] | |
(hinj : function.injective (λ r : R, r • (1 : K))) (li : linear_independent K v) : | |
linear_independent R v := | |
begin | |
refine linear_independent_iff'.mpr (λ s g hg i hi, hinj (eq.trans _ (zero_smul _ _).symm)), | |
refine (linear_independent_iff'.mp li : _) _ _ _ i hi, | |
simp_rw [smul_assoc, one_smul], | |
exact hg, | |
end | |
/-- Every finite subset of a linearly independent set is linearly independent. -/ | |
lemma linear_independent_finset_map_embedding_subtype | |
(s : set M) (li : linear_independent R (coe : s → M)) (t : finset s) : | |
linear_independent R (coe : (finset.map (embedding.subtype s) t) → M) := | |
begin | |
let f : t.map (embedding.subtype s) → s := λ x, ⟨x.1, begin | |
obtain ⟨x, h⟩ := x, | |
rw [finset.mem_map] at h, | |
obtain ⟨a, ha, rfl⟩ := h, | |
simp only [subtype.coe_prop, embedding.coe_subtype], | |
end⟩, | |
convert linear_independent.comp li f _, | |
rintros ⟨x, hx⟩ ⟨y, hy⟩, | |
rw [finset.mem_map] at hx hy, | |
obtain ⟨a, ha, rfl⟩ := hx, | |
obtain ⟨b, hb, rfl⟩ := hy, | |
simp only [imp_self, subtype.mk_eq_mk], | |
end | |
/-- | |
If every finite set of linearly independent vectors has cardinality at most `n`, | |
then the same is true for arbitrary sets of linearly independent vectors. | |
-/ | |
lemma linear_independent_bounded_of_finset_linear_independent_bounded {n : ℕ} | |
(H : ∀ s : finset M, linear_independent R (λ i : s, (i : M)) → s.card ≤ n) : | |
∀ s : set M, linear_independent R (coe : s → M) → #s ≤ n := | |
begin | |
intros s li, | |
apply cardinal.card_le_of, | |
intro t, | |
rw ← finset.card_map (embedding.subtype s), | |
apply H, | |
apply linear_independent_finset_map_embedding_subtype _ li, | |
end | |
section subtype | |
/-! The following lemmas use the subtype defined by a set in `M` as the index set `ι`. -/ | |
theorem linear_independent_comp_subtype {s : set ι} : | |
linear_independent R (v ∘ coe : s → M) ↔ | |
∀ l ∈ (finsupp.supported R R s), (finsupp.total ι M R v) l = 0 → l = 0 := | |
begin | |
simp only [linear_independent_iff, (∘), finsupp.mem_supported, finsupp.total_apply, | |
set.subset_def, finset.mem_coe], | |
split, | |
{ intros h l hl₁ hl₂, | |
have := h (l.subtype_domain s) ((finsupp.sum_subtype_domain_index hl₁).trans hl₂), | |
exact (finsupp.subtype_domain_eq_zero_iff hl₁).1 this }, | |
{ intros h l hl, | |
refine finsupp.emb_domain_eq_zero.1 (h (l.emb_domain $ function.embedding.subtype s) _ _), | |
{ suffices : ∀ i hi, ¬l ⟨i, hi⟩ = 0 → i ∈ s, by simpa, | |
intros, assumption }, | |
{ rwa [finsupp.emb_domain_eq_map_domain, finsupp.sum_map_domain_index], | |
exacts [λ _, zero_smul _ _, λ _ _ _, add_smul _ _ _] } } | |
end | |
lemma linear_dependent_comp_subtype' {s : set ι} : | |
¬ linear_independent R (v ∘ coe : s → M) ↔ | |
∃ f : ι →₀ R, f ∈ finsupp.supported R R s ∧ finsupp.total ι M R v f = 0 ∧ f ≠ 0 := | |
by simp [linear_independent_comp_subtype] | |
/-- A version of `linear_dependent_comp_subtype'` with `finsupp.total` unfolded. -/ | |
lemma linear_dependent_comp_subtype {s : set ι} : | |
¬ linear_independent R (v ∘ coe : s → M) ↔ | |
∃ f : ι →₀ R, f ∈ finsupp.supported R R s ∧ ∑ i in f.support, f i • v i = 0 ∧ f ≠ 0 := | |
linear_dependent_comp_subtype' | |
theorem linear_independent_subtype {s : set M} : | |
linear_independent R (λ x, x : s → M) ↔ | |
∀ l ∈ (finsupp.supported R R s), (finsupp.total M M R id) l = 0 → l = 0 := | |
by apply @linear_independent_comp_subtype _ _ _ id | |
theorem linear_independent_comp_subtype_disjoint {s : set ι} : | |
linear_independent R (v ∘ coe : s → M) ↔ | |
disjoint (finsupp.supported R R s) (finsupp.total ι M R v).ker := | |
by rw [linear_independent_comp_subtype, linear_map.disjoint_ker] | |
theorem linear_independent_subtype_disjoint {s : set M} : | |
linear_independent R (λ x, x : s → M) ↔ | |
disjoint (finsupp.supported R R s) (finsupp.total M M R id).ker := | |
by apply @linear_independent_comp_subtype_disjoint _ _ _ id | |
theorem linear_independent_iff_total_on {s : set M} : | |
linear_independent R (λ x, x : s → M) ↔ (finsupp.total_on M M R id s).ker = ⊥ := | |
by rw [finsupp.total_on, linear_map.ker, linear_map.comap_cod_restrict, map_bot, comap_bot, | |
linear_map.ker_comp, linear_independent_subtype_disjoint, disjoint, ← map_comap_subtype, | |
map_le_iff_le_comap, comap_bot, ker_subtype, le_bot_iff] | |
lemma linear_independent.restrict_of_comp_subtype {s : set ι} | |
(hs : linear_independent R (v ∘ coe : s → M)) : | |
linear_independent R (s.restrict v) := | |
hs | |
variables (R M) | |
lemma linear_independent_empty : linear_independent R (λ x, x : (∅ : set M) → M) := | |
by simp [linear_independent_subtype_disjoint] | |
variables {R M} | |
lemma linear_independent.mono {t s : set M} (h : t ⊆ s) : | |
linear_independent R (λ x, x : s → M) → linear_independent R (λ x, x : t → M) := | |
begin | |
simp only [linear_independent_subtype_disjoint], | |
exact (disjoint.mono_left (finsupp.supported_mono h)) | |
end | |
lemma linear_independent_of_finite (s : set M) | |
(H : ∀ t ⊆ s, set.finite t → linear_independent R (λ x, x : t → M)) : | |
linear_independent R (λ x, x : s → M) := | |
linear_independent_subtype.2 $ | |
λ l hl, linear_independent_subtype.1 (H _ hl (finset.finite_to_set _)) l (subset.refl _) | |
lemma linear_independent_Union_of_directed {η : Type*} | |
{s : η → set M} (hs : directed (⊆) s) | |
(h : ∀ i, linear_independent R (λ x, x : s i → M)) : | |
linear_independent R (λ x, x : (⋃ i, s i) → M) := | |
begin | |
by_cases hη : nonempty η, | |
{ resetI, | |
refine linear_independent_of_finite (⋃ i, s i) (λ t ht ft, _), | |
rcases finite_subset_Union ft ht with ⟨I, fi, hI⟩, | |
rcases hs.finset_le fi.to_finset with ⟨i, hi⟩, | |
exact (h i).mono (subset.trans hI $ Union₂_subset $ | |
λ j hj, hi j (fi.mem_to_finset.2 hj)) }, | |
{ refine (linear_independent_empty _ _).mono _, | |
rintro _ ⟨_, ⟨i, _⟩, _⟩, exact hη ⟨i⟩ } | |
end | |
lemma linear_independent_sUnion_of_directed {s : set (set M)} | |
(hs : directed_on (⊆) s) | |
(h : ∀ a ∈ s, linear_independent R (λ x, x : (a : set M) → M)) : | |
linear_independent R (λ x, x : (⋃₀ s) → M) := | |
by rw sUnion_eq_Union; exact | |
linear_independent_Union_of_directed hs.directed_coe (by simpa using h) | |
lemma linear_independent_bUnion_of_directed {η} {s : set η} {t : η → set M} | |
(hs : directed_on (t ⁻¹'o (⊆)) s) (h : ∀a∈s, linear_independent R (λ x, x : t a → M)) : | |
linear_independent R (λ x, x : (⋃a∈s, t a) → M) := | |
by rw bUnion_eq_Union; exact | |
linear_independent_Union_of_directed (directed_comp.2 $ hs.directed_coe) (by simpa using h) | |
end subtype | |
end module | |
/-! ### Properties which require `ring R` -/ | |
section module | |
variables {v : ι → M} | |
variables [ring R] [add_comm_group M] [add_comm_group M'] [add_comm_group M''] | |
variables [module R M] [module R M'] [module R M''] | |
variables {a b : R} {x y : M} | |
theorem linear_independent_iff_injective_total : linear_independent R v ↔ | |
function.injective (finsupp.total ι M R v) := | |
linear_independent_iff.trans | |
(injective_iff_map_eq_zero (finsupp.total ι M R v).to_add_monoid_hom).symm | |
alias linear_independent_iff_injective_total ↔ linear_independent.injective_total _ | |
lemma linear_independent.injective [nontrivial R] (hv : linear_independent R v) : | |
injective v := | |
begin | |
intros i j hij, | |
let l : ι →₀ R := finsupp.single i (1 : R) - finsupp.single j 1, | |
have h_total : finsupp.total ι M R v l = 0, | |
{ simp_rw [linear_map.map_sub, finsupp.total_apply], | |
simp [hij] }, | |
have h_single_eq : finsupp.single i (1 : R) = finsupp.single j 1, | |
{ rw linear_independent_iff at hv, | |
simp [eq_add_of_sub_eq' (hv l h_total)] }, | |
simpa [finsupp.single_eq_single_iff] using h_single_eq | |
end | |
theorem linear_independent.to_subtype_range {ι} {f : ι → M} (hf : linear_independent R f) : | |
linear_independent R (coe : range f → M) := | |
begin | |
nontriviality R, | |
exact (linear_independent_subtype_range hf.injective).2 hf | |
end | |
theorem linear_independent.to_subtype_range' {ι} {f : ι → M} (hf : linear_independent R f) | |
{t} (ht : range f = t) : | |
linear_independent R (coe : t → M) := | |
ht ▸ hf.to_subtype_range | |
theorem linear_independent.image_of_comp {ι ι'} (s : set ι) (f : ι → ι') (g : ι' → M) | |
(hs : linear_independent R (λ x : s, g (f x))) : | |
linear_independent R (λ x : f '' s, g x) := | |
begin | |
nontriviality R, | |
have : inj_on f s, from inj_on_iff_injective.2 hs.injective.of_comp, | |
exact (linear_independent_equiv' (equiv.set.image_of_inj_on f s this) rfl).1 hs | |
end | |
theorem linear_independent.image {ι} {s : set ι} {f : ι → M} | |
(hs : linear_independent R (λ x : s, f x)) : linear_independent R (λ x : f '' s, (x : M)) := | |
by convert linear_independent.image_of_comp s f id hs | |
lemma linear_independent.group_smul | |
{G : Type*} [hG : group G] [distrib_mul_action G R] [distrib_mul_action G M] | |
[is_scalar_tower G R M] [smul_comm_class G R M] {v : ι → M} (hv : linear_independent R v) | |
(w : ι → G) : linear_independent R (w • v) := | |
begin | |
rw linear_independent_iff'' at hv ⊢, | |
intros s g hgs hsum i, | |
refine (smul_eq_zero_iff_eq (w i)).1 _, | |
refine hv s (λ i, w i • g i) (λ i hi, _) _ i, | |
{ dsimp only, | |
exact (hgs i hi).symm ▸ smul_zero _ }, | |
{ rw [← hsum, finset.sum_congr rfl _], | |
intros, erw [pi.smul_apply, smul_assoc, smul_comm] }, | |
end | |
-- This lemma cannot be proved with `linear_independent.group_smul` since the action of | |
-- `Rˣ` on `R` is not commutative. | |
lemma linear_independent.units_smul {v : ι → M} (hv : linear_independent R v) | |
(w : ι → Rˣ) : linear_independent R (w • v) := | |
begin | |
rw linear_independent_iff'' at hv ⊢, | |
intros s g hgs hsum i, | |
rw ← (w i).mul_left_eq_zero, | |
refine hv s (λ i, g i • w i) (λ i hi, _) _ i, | |
{ dsimp only, | |
exact (hgs i hi).symm ▸ zero_smul _ _ }, | |
{ rw [← hsum, finset.sum_congr rfl _], | |
intros, | |
erw [pi.smul_apply, smul_assoc], | |
refl } | |
end | |
section maximal | |
universes v w | |
/-- | |
A linearly independent family is maximal if there is no strictly larger linearly independent family. | |
-/ | |
@[nolint unused_arguments] | |
def linear_independent.maximal {ι : Type w} {R : Type u} [semiring R] | |
{M : Type v} [add_comm_monoid M] [module R M] {v : ι → M} (i : linear_independent R v) : Prop := | |
∀ (s : set M) (i' : linear_independent R (coe : s → M)) (h : range v ≤ s), range v = s | |
/-- | |
An alternative characterization of a maximal linearly independent family, | |
quantifying over types (in the same universe as `M`) into which the indexing family injects. | |
-/ | |
lemma linear_independent.maximal_iff {ι : Type w} {R : Type u} [ring R] [nontrivial R] | |
{M : Type v} [add_comm_group M] [module R M] {v : ι → M} (i : linear_independent R v) : | |
i.maximal ↔ ∀ (κ : Type v) (w : κ → M) (i' : linear_independent R w) | |
(j : ι → κ) (h : w ∘ j = v), surjective j := | |
begin | |
fsplit, | |
{ rintros p κ w i' j rfl, | |
specialize p (range w) i'.coe_range (range_comp_subset_range _ _), | |
rw [range_comp, ←@image_univ _ _ w] at p, | |
exact range_iff_surjective.mp (image_injective.mpr i'.injective p), }, | |
{ intros p w i' h, | |
specialize p w (coe : w → M) i' | |
(λ i, ⟨v i, range_subset_iff.mp h i⟩) | |
(by { ext, simp, }), | |
have q := congr_arg (λ s, (coe : w → M) '' s) p.range_eq, | |
dsimp at q, | |
rw [←image_univ, image_image] at q, | |
simpa using q, }, | |
end | |
end maximal | |
/-- Linear independent families are injective, even if you multiply either side. -/ | |
lemma linear_independent.eq_of_smul_apply_eq_smul_apply {M : Type*} [add_comm_group M] [module R M] | |
{v : ι → M} (li : linear_independent R v) (c d : R) (i j : ι) | |
(hc : c ≠ 0) (h : c • v i = d • v j) : i = j := | |
begin | |
let l : ι →₀ R := finsupp.single i c - finsupp.single j d, | |
have h_total : finsupp.total ι M R v l = 0, | |
{ simp_rw [linear_map.map_sub, finsupp.total_apply], | |
simp [h] }, | |
have h_single_eq : finsupp.single i c = finsupp.single j d, | |
{ rw linear_independent_iff at li, | |
simp [eq_add_of_sub_eq' (li l h_total)] }, | |
rcases (finsupp.single_eq_single_iff _ _ _ _).mp h_single_eq with ⟨this, _⟩ | ⟨hc, _⟩, | |
{ exact this }, | |
{ contradiction }, | |
end | |
section subtype | |
/-! The following lemmas use the subtype defined by a set in `M` as the index set `ι`. -/ | |
lemma linear_independent.disjoint_span_image (hv : linear_independent R v) {s t : set ι} | |
(hs : disjoint s t) : | |
disjoint (submodule.span R $ v '' s) (submodule.span R $ v '' t) := | |
begin | |
simp only [disjoint_def, finsupp.mem_span_image_iff_total], | |
rintros _ ⟨l₁, hl₁, rfl⟩ ⟨l₂, hl₂, H⟩, | |
rw [hv.injective_total.eq_iff] at H, subst l₂, | |
have : l₁ = 0 := finsupp.disjoint_supported_supported hs (submodule.mem_inf.2 ⟨hl₁, hl₂⟩), | |
simp [this] | |
end | |
lemma linear_independent.not_mem_span_image [nontrivial R] (hv : linear_independent R v) {s : set ι} | |
{x : ι} (h : x ∉ s) : | |
v x ∉ submodule.span R (v '' s) := | |
begin | |
have h' : v x ∈ submodule.span R (v '' {x}), | |
{ rw set.image_singleton, | |
exact mem_span_singleton_self (v x), }, | |
intro w, | |
apply linear_independent.ne_zero x hv, | |
refine disjoint_def.1 (hv.disjoint_span_image _) (v x) h' w, | |
simpa using h, | |
end | |
lemma linear_independent.total_ne_of_not_mem_support [nontrivial R] (hv : linear_independent R v) | |
{x : ι} (f : ι →₀ R) (h : x ∉ f.support) : | |
finsupp.total ι M R v f ≠ v x := | |
begin | |
replace h : x ∉ (f.support : set ι) := h, | |
have p := hv.not_mem_span_image h, | |
intro w, | |
rw ←w at p, | |
rw finsupp.span_image_eq_map_total at p, | |
simp only [not_exists, not_and, mem_map] at p, | |
exact p f (f.mem_supported_support R) rfl, | |
end | |
lemma linear_independent_sum {v : ι ⊕ ι' → M} : | |
linear_independent R v ↔ linear_independent R (v ∘ sum.inl) ∧ | |
linear_independent R (v ∘ sum.inr) ∧ | |
disjoint (submodule.span R (range (v ∘ sum.inl))) (submodule.span R (range (v ∘ sum.inr))) := | |
begin | |
rw [range_comp v, range_comp v], | |
refine ⟨λ h, ⟨h.comp _ sum.inl_injective, h.comp _ sum.inr_injective, | |
h.disjoint_span_image is_compl_range_inl_range_inr.1⟩, _⟩, | |
rintro ⟨hl, hr, hlr⟩, | |
rw [linear_independent_iff'] at *, | |
intros s g hg i hi, | |
have : ∑ i in s.preimage sum.inl (sum.inl_injective.inj_on _), (λ x, g x • v x) (sum.inl i) + | |
∑ i in s.preimage sum.inr (sum.inr_injective.inj_on _), (λ x, g x • v x) (sum.inr i) = 0, | |
{ rw [finset.sum_preimage', finset.sum_preimage', ← finset.sum_union, ← finset.filter_or], | |
{ simpa only [← mem_union, range_inl_union_range_inr, mem_univ, finset.filter_true] }, | |
{ exact finset.disjoint_filter.2 | |
(λ x _ hx, disjoint_left.1 is_compl_range_inl_range_inr.1 hx) } }, | |
{ rw ← eq_neg_iff_add_eq_zero at this, | |
rw [disjoint_def'] at hlr, | |
have A := hlr _ (sum_mem $ λ i hi, _) _ (neg_mem $ sum_mem $ λ i hi, _) this, | |
{ cases i with i i, | |
{ exact hl _ _ A i (finset.mem_preimage.2 hi) }, | |
{ rw [this, neg_eq_zero] at A, | |
exact hr _ _ A i (finset.mem_preimage.2 hi) } }, | |
{ exact smul_mem _ _ (subset_span ⟨sum.inl i, mem_range_self _, rfl⟩) }, | |
{ exact smul_mem _ _ (subset_span ⟨sum.inr i, mem_range_self _, rfl⟩) } } | |
end | |
lemma linear_independent.sum_type {v' : ι' → M} (hv : linear_independent R v) | |
(hv' : linear_independent R v') | |
(h : disjoint (submodule.span R (range v)) (submodule.span R (range v'))) : | |
linear_independent R (sum.elim v v') := | |
linear_independent_sum.2 ⟨hv, hv', h⟩ | |
lemma linear_independent.union {s t : set M} | |
(hs : linear_independent R (λ x, x : s → M)) (ht : linear_independent R (λ x, x : t → M)) | |
(hst : disjoint (span R s) (span R t)) : | |
linear_independent R (λ x, x : (s ∪ t) → M) := | |
(hs.sum_type ht $ by simpa).to_subtype_range' $ by simp | |
lemma linear_independent_Union_finite_subtype {ι : Type*} {f : ι → set M} | |
(hl : ∀i, linear_independent R (λ x, x : f i → M)) | |
(hd : ∀i, ∀t:set ι, t.finite → i ∉ t → disjoint (span R (f i)) (⨆i∈t, span R (f i))) : | |
linear_independent R (λ x, x : (⋃i, f i) → M) := | |
begin | |
rw [Union_eq_Union_finset f], | |
apply linear_independent_Union_of_directed, | |
{ apply directed_of_sup, | |
exact (λ t₁ t₂ ht, Union_mono $ λ i, Union_subset_Union_const $ λ h, ht h) }, | |
assume t, | |
induction t using finset.induction_on with i s his ih, | |
{ refine (linear_independent_empty _ _).mono _, | |
simp }, | |
{ rw [finset.set_bUnion_insert], | |
refine (hl _).union ih _, | |
rw span_Union₂, | |
exact hd i s s.finite_to_set his } | |
end | |
lemma linear_independent_Union_finite {η : Type*} {ιs : η → Type*} | |
{f : Π j : η, ιs j → M} | |
(hindep : ∀j, linear_independent R (f j)) | |
(hd : ∀i, ∀t:set η, t.finite → i ∉ t → | |
disjoint (span R (range (f i))) (⨆i∈t, span R (range (f i)))) : | |
linear_independent R (λ ji : Σ j, ιs j, f ji.1 ji.2) := | |
begin | |
nontriviality R, | |
apply linear_independent.of_subtype_range, | |
{ rintros ⟨x₁, x₂⟩ ⟨y₁, y₂⟩ hxy, | |
by_cases h_cases : x₁ = y₁, | |
subst h_cases, | |
{ apply sigma.eq, | |
rw linear_independent.injective (hindep _) hxy, | |
refl }, | |
{ have h0 : f x₁ x₂ = 0, | |
{ apply disjoint_def.1 (hd x₁ {y₁} (finite_singleton y₁) | |
(λ h, h_cases (eq_of_mem_singleton h))) (f x₁ x₂) (subset_span (mem_range_self _)), | |
rw supr_singleton, | |
simp only at hxy, | |
rw hxy, | |
exact (subset_span (mem_range_self y₂)) }, | |
exact false.elim ((hindep x₁).ne_zero _ h0) } }, | |
rw range_sigma_eq_Union_range, | |
apply linear_independent_Union_finite_subtype (λ j, (hindep j).to_subtype_range) hd, | |
end | |
end subtype | |
section repr | |
variables (hv : linear_independent R v) | |
/-- Canonical isomorphism between linear combinations and the span of linearly independent vectors. | |
-/ | |
@[simps {rhs_md := semireducible}] | |
def linear_independent.total_equiv (hv : linear_independent R v) : | |
(ι →₀ R) ≃ₗ[R] span R (range v) := | |
begin | |
apply linear_equiv.of_bijective | |
(linear_map.cod_restrict (span R (range v)) (finsupp.total ι M R v) _), | |
{ rw [← linear_map.ker_eq_bot, linear_map.ker_cod_restrict], | |
apply hv }, | |
{ rw [← linear_map.range_eq_top, linear_map.range_eq_map, linear_map.map_cod_restrict, | |
← linear_map.range_le_iff_comap, range_subtype, map_top], | |
rw finsupp.range_total, | |
exact le_rfl }, | |
{ intro l, | |
rw ← finsupp.range_total, | |
rw linear_map.mem_range, | |
apply mem_range_self l } | |
end | |
/-- Linear combination representing a vector in the span of linearly independent vectors. | |
Given a family of linearly independent vectors, we can represent any vector in their span as | |
a linear combination of these vectors. These are provided by this linear map. | |
It is simply one direction of `linear_independent.total_equiv`. -/ | |
def linear_independent.repr (hv : linear_independent R v) : | |
span R (range v) →ₗ[R] ι →₀ R := hv.total_equiv.symm | |
@[simp] lemma linear_independent.total_repr (x) : finsupp.total ι M R v (hv.repr x) = x := | |
subtype.ext_iff.1 (linear_equiv.apply_symm_apply hv.total_equiv x) | |
lemma linear_independent.total_comp_repr : | |
(finsupp.total ι M R v).comp hv.repr = submodule.subtype _ := | |
linear_map.ext $ hv.total_repr | |
lemma linear_independent.repr_ker : hv.repr.ker = ⊥ := | |
by rw [linear_independent.repr, linear_equiv.ker] | |
lemma linear_independent.repr_range : hv.repr.range = ⊤ := | |
by rw [linear_independent.repr, linear_equiv.range] | |
lemma linear_independent.repr_eq | |
{l : ι →₀ R} {x} (eq : finsupp.total ι M R v l = ↑x) : | |
hv.repr x = l := | |
begin | |
have : ↑((linear_independent.total_equiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l) | |
= finsupp.total ι M R v l := rfl, | |
have : (linear_independent.total_equiv hv : (ι →₀ R) →ₗ[R] span R (range v)) l = x, | |
{ rw eq at this, | |
exact subtype.ext_iff.2 this }, | |
rw ←linear_equiv.symm_apply_apply hv.total_equiv l, | |
rw ←this, | |
refl, | |
end | |
lemma linear_independent.repr_eq_single (i) (x) (hx : ↑x = v i) : | |
hv.repr x = finsupp.single i 1 := | |
begin | |
apply hv.repr_eq, | |
simp [finsupp.total_single, hx] | |
end | |
lemma linear_independent.span_repr_eq [nontrivial R] (x) : | |
span.repr R (set.range v) x = (hv.repr x).equiv_map_domain (equiv.of_injective _ hv.injective) := | |
begin | |
have p : (span.repr R (set.range v) x).equiv_map_domain (equiv.of_injective _ hv.injective).symm = | |
hv.repr x, | |
{ apply (linear_independent.total_equiv hv).injective, | |
ext, | |
simp only [linear_independent.total_equiv_apply_coe, equiv.self_comp_of_injective_symm, | |
linear_independent.total_repr, finsupp.total_equiv_map_domain, span.finsupp_total_repr], }, | |
ext ⟨_, ⟨i, rfl⟩⟩, | |
simp [←p], | |
end | |
-- TODO: why is this so slow? | |
lemma linear_independent_iff_not_smul_mem_span : | |
linear_independent R v ↔ (∀ (i : ι) (a : R), a • (v i) ∈ span R (v '' (univ \ {i})) → a = 0) := | |
⟨ λ hv i a ha, begin | |
rw [finsupp.span_image_eq_map_total, mem_map] at ha, | |
rcases ha with ⟨l, hl, e⟩, | |
rw sub_eq_zero.1 (linear_independent_iff.1 hv (l - finsupp.single i a) (by simp [e])) at hl, | |
by_contra hn, | |
exact (not_mem_of_mem_diff (hl $ by simp [hn])) (mem_singleton _), | |
end, λ H, linear_independent_iff.2 $ λ l hl, begin | |
ext i, simp only [finsupp.zero_apply], | |
by_contra hn, | |
refine hn (H i _ _), | |
refine (finsupp.mem_span_image_iff_total _).2 ⟨finsupp.single i (l i) - l, _, _⟩, | |
{ rw finsupp.mem_supported', | |
intros j hj, | |
have hij : j = i := | |
not_not.1 | |
(λ hij : j ≠ i, hj ((mem_diff _).2 ⟨mem_univ _, λ h, hij (eq_of_mem_singleton h)⟩)), | |
simp [hij] }, | |
{ simp [hl] } | |
end⟩ | |
/-- See also `complete_lattice.independent_iff_linear_independent_of_ne_zero`. -/ | |
lemma linear_independent.independent_span_singleton (hv : linear_independent R v) : | |
complete_lattice.independent $ λ i, R ∙ v i := | |
begin | |
refine complete_lattice.independent_def.mp (λ i m hm, (mem_bot R).mpr _), | |
simp only [mem_inf, mem_span_singleton, supr_subtype', ← span_range_eq_supr] at hm, | |
obtain ⟨⟨r, rfl⟩, hm⟩ := hm, | |
suffices : r = 0, { simp [this], }, | |
apply linear_independent_iff_not_smul_mem_span.mp hv i, | |
convert hm, | |
ext, | |
simp, | |
end | |
variable (R) | |
lemma exists_maximal_independent' (s : ι → M) : | |
∃ I : set ι, linear_independent R (λ x : I, s x) ∧ | |
∀ J : set ι, I ⊆ J → linear_independent R (λ x : J, s x) → I = J := | |
begin | |
let indep : set ι → Prop := λ I, linear_independent R (s ∘ coe : I → M), | |
let X := { I : set ι // indep I }, | |
let r : X → X → Prop := λ I J, I.1 ⊆ J.1, | |
have key : ∀ c : set X, is_chain r c → indep (⋃ (I : X) (H : I ∈ c), I), | |
{ intros c hc, | |
dsimp [indep], | |
rw [linear_independent_comp_subtype], | |
intros f hsupport hsum, | |
rcases eq_empty_or_nonempty c with rfl | hn, | |
{ simpa using hsupport }, | |
haveI : is_refl X r := ⟨λ _, set.subset.refl _⟩, | |
obtain ⟨I, I_mem, hI⟩ : ∃ I ∈ c, (f.support : set ι) ⊆ I := | |
hc.directed_on.exists_mem_subset_of_finset_subset_bUnion hn hsupport, | |
exact linear_independent_comp_subtype.mp I.2 f hI hsum }, | |
have trans : transitive r := λ I J K, set.subset.trans, | |
obtain ⟨⟨I, hli : indep I⟩, hmax : ∀ a, r ⟨I, hli⟩ a → r a ⟨I, hli⟩⟩ := | |
@exists_maximal_of_chains_bounded _ r | |
(λ c hc, ⟨⟨⋃ I ∈ c, (I : set ι), key c hc⟩, λ I, set.subset_bUnion_of_mem⟩) trans, | |
exact ⟨I, hli, λ J hsub hli, set.subset.antisymm hsub (hmax ⟨J, hli⟩ hsub)⟩, | |
end | |
lemma exists_maximal_independent (s : ι → M) : ∃ I : set ι, linear_independent R (λ x : I, s x) ∧ | |
∀ i ∉ I, ∃ a : R, a ≠ 0 ∧ a • s i ∈ span R (s '' I) := | |
begin | |
classical, | |
rcases exists_maximal_independent' R s with ⟨I, hIlinind, hImaximal⟩, | |
use [I, hIlinind], | |
intros i hi, | |
specialize hImaximal (I ∪ {i}) (by simp), | |
set J := I ∪ {i} with hJ, | |
have memJ : ∀ {x}, x ∈ J ↔ x = i ∨ x ∈ I, by simp [hJ], | |
have hiJ : i ∈ J := by simp, | |
have h := mt hImaximal _, swap, | |
{ intro h2, | |
rw h2 at hi, | |
exact absurd hiJ hi }, | |
obtain ⟨f, supp_f, sum_f, f_ne⟩ := linear_dependent_comp_subtype.mp h, | |
have hfi : f i ≠ 0, | |
{ contrapose hIlinind, | |
refine linear_dependent_comp_subtype.mpr ⟨f, _, sum_f, f_ne⟩, | |
simp only [finsupp.mem_supported, hJ] at ⊢ supp_f, | |
rintro x hx, | |
refine (memJ.mp (supp_f hx)).resolve_left _, | |
rintro rfl, | |
exact hIlinind (finsupp.mem_support_iff.mp hx) }, | |
use [f i, hfi], | |
have hfi' : i ∈ f.support := finsupp.mem_support_iff.mpr hfi, | |
rw [← finset.insert_erase hfi', finset.sum_insert (finset.not_mem_erase _ _), | |
add_eq_zero_iff_eq_neg] at sum_f, | |
rw sum_f, | |
refine neg_mem (sum_mem (λ c hc, smul_mem _ _ (subset_span ⟨c, _, rfl⟩))), | |
exact (memJ.mp (supp_f (finset.erase_subset _ _ hc))).resolve_left (finset.ne_of_mem_erase hc), | |
end | |
end repr | |
lemma surjective_of_linear_independent_of_span [nontrivial R] | |
(hv : linear_independent R v) (f : ι' ↪ ι) | |
(hss : range v ⊆ span R (range (v ∘ f))) : | |
surjective f := | |
begin | |
intros i, | |
let repr : (span R (range (v ∘ f)) : Type*) → ι' →₀ R := (hv.comp f f.injective).repr, | |
let l := (repr ⟨v i, hss (mem_range_self i)⟩).map_domain f, | |
have h_total_l : finsupp.total ι M R v l = v i, | |
{ dsimp only [l], | |
rw finsupp.total_map_domain, | |
rw (hv.comp f f.injective).total_repr, | |
{ refl }, | |
{ exact f.injective } }, | |
have h_total_eq : (finsupp.total ι M R v) l = (finsupp.total ι M R v) (finsupp.single i 1), | |
by rw [h_total_l, finsupp.total_single, one_smul], | |
have l_eq : l = _ := linear_map.ker_eq_bot.1 hv h_total_eq, | |
dsimp only [l] at l_eq, | |
rw ←finsupp.emb_domain_eq_map_domain at l_eq, | |
rcases finsupp.single_of_emb_domain_single (repr ⟨v i, _⟩) f i (1 : R) zero_ne_one.symm l_eq | |
with ⟨i', hi'⟩, | |
use i', | |
exact hi'.2 | |
end | |
lemma eq_of_linear_independent_of_span_subtype [nontrivial R] {s t : set M} | |
(hs : linear_independent R (λ x, x : s → M)) (h : t ⊆ s) (hst : s ⊆ span R t) : s = t := | |
begin | |
let f : t ↪ s := ⟨λ x, ⟨x.1, h x.2⟩, λ a b hab, subtype.coe_injective (subtype.mk.inj hab)⟩, | |
have h_surj : surjective f, | |
{ apply surjective_of_linear_independent_of_span hs f _, | |
convert hst; simp [f, comp], }, | |
show s = t, | |
{ apply subset.antisymm _ h, | |
intros x hx, | |
rcases h_surj ⟨x, hx⟩ with ⟨y, hy⟩, | |
convert y.mem, | |
rw ← subtype.mk.inj hy, | |
refl } | |
end | |
open linear_map | |
lemma linear_independent.image_subtype {s : set M} {f : M →ₗ[R] M'} | |
(hs : linear_independent R (λ x, x : s → M)) | |
(hf_inj : disjoint (span R s) f.ker) : linear_independent R (λ x, x : f '' s → M') := | |
begin | |
rw [← @subtype.range_coe _ s] at hf_inj, | |
refine (hs.map hf_inj).to_subtype_range' _, | |
simp [set.range_comp f] | |
end | |
lemma linear_independent.inl_union_inr {s : set M} {t : set M'} | |
(hs : linear_independent R (λ x, x : s → M)) | |
(ht : linear_independent R (λ x, x : t → M')) : | |
linear_independent R (λ x, x : inl R M M' '' s ∪ inr R M M' '' t → M × M') := | |
begin | |
refine (hs.image_subtype _).union (ht.image_subtype _) _; [simp, simp, skip], | |
simp only [span_image], | |
simp [disjoint_iff, prod_inf_prod] | |
end | |
lemma linear_independent_inl_union_inr' {v : ι → M} {v' : ι' → M'} | |
(hv : linear_independent R v) (hv' : linear_independent R v') : | |
linear_independent R (sum.elim (inl R M M' ∘ v) (inr R M M' ∘ v')) := | |
(hv.map' (inl R M M') ker_inl).sum_type (hv'.map' (inr R M M') ker_inr) $ | |
begin | |
refine is_compl_range_inl_inr.disjoint.mono _ _; | |
simp only [span_le, range_coe, range_comp_subset_range], | |
end | |
/-- Dedekind's linear independence of characters -/ | |
-- See, for example, Keith Conrad's note | |
-- <https://kconrad.math.uconn.edu/blurbs/galoistheory/linearchar.pdf> | |
theorem linear_independent_monoid_hom (G : Type*) [monoid G] (L : Type*) [comm_ring L] | |
[no_zero_divisors L] : | |
@linear_independent _ L (G → L) (λ f, f : (G →* L) → (G → L)) _ _ _ := | |
by letI := classical.dec_eq (G →* L); | |
letI : mul_action L L := distrib_mul_action.to_mul_action; | |
-- We prove linear independence by showing that only the trivial linear combination vanishes. | |
exact linear_independent_iff'.2 | |
-- To do this, we use `finset` induction, | |
(λ s, finset.induction_on s (λ g hg i, false.elim) $ λ a s has ih g hg, | |
-- Here | |
-- * `a` is a new character we will insert into the `finset` of characters `s`, | |
-- * `ih` is the fact that only the trivial linear combination of characters in `s` is zero | |
-- * `hg` is the fact that `g` are the coefficients of a linear combination summing to zero | |
-- and it remains to prove that `g` vanishes on `insert a s`. | |
-- We now make the key calculation: | |
-- For any character `i` in the original `finset`, we have `g i • i = g i • a` as functions on the | |
-- monoid `G`. | |
have h1 : ∀ i ∈ s, (g i • i : G → L) = g i • a, from λ i his, funext $ λ x : G, | |
-- We prove these expressions are equal by showing | |
-- the differences of their values on each monoid element `x` is zero | |
eq_of_sub_eq_zero $ ih (λ j, g j * j x - g j * a x) | |
(funext $ λ y : G, calc | |
-- After that, it's just a chase scene. | |
(∑ i in s, ((g i * i x - g i * a x) • i : G → L)) y | |
= ∑ i in s, (g i * i x - g i * a x) * i y : finset.sum_apply _ _ _ | |
... = ∑ i in s, (g i * i x * i y - g i * a x * i y) : finset.sum_congr rfl | |
(λ _ _, sub_mul _ _ _) | |
... = ∑ i in s, g i * i x * i y - ∑ i in s, g i * a x * i y : finset.sum_sub_distrib | |
... = (g a * a x * a y + ∑ i in s, g i * i x * i y) | |
- (g a * a x * a y + ∑ i in s, g i * a x * i y) : by rw add_sub_add_left_eq_sub | |
... = ∑ i in insert a s, g i * i x * i y - ∑ i in insert a s, g i * a x * i y : | |
by rw [finset.sum_insert has, finset.sum_insert has] | |
... = ∑ i in insert a s, g i * i (x * y) - ∑ i in insert a s, a x * (g i * i y) : | |
congr (congr_arg has_sub.sub (finset.sum_congr rfl $ λ i _, by rw [i.map_mul, mul_assoc])) | |
(finset.sum_congr rfl $ λ _ _, by rw [mul_assoc, mul_left_comm]) | |
... = (∑ i in insert a s, (g i • i : G → L)) (x * y) | |
- a x * (∑ i in insert a s, (g i • i : G → L)) y : | |
by rw [finset.sum_apply, finset.sum_apply, finset.mul_sum]; refl | |
... = 0 - a x * 0 : by rw hg; refl | |
... = 0 : by rw [mul_zero, sub_zero]) | |
i | |
his, | |
-- On the other hand, since `a` is not already in `s`, for any character `i ∈ s` | |
-- there is some element of the monoid on which it differs from `a`. | |
have h2 : ∀ i : G →* L, i ∈ s → ∃ y, i y ≠ a y, from λ i his, | |
classical.by_contradiction $ λ h, | |
have hia : i = a, from monoid_hom.ext $ λ y, classical.by_contradiction $ λ hy, h ⟨y, hy⟩, | |
has $ hia ▸ his, | |
-- From these two facts we deduce that `g` actually vanishes on `s`, | |
have h3 : ∀ i ∈ s, g i = 0, from λ i his, let ⟨y, hy⟩ := h2 i his in | |
have h : g i • i y = g i • a y, from congr_fun (h1 i his) y, | |
or.resolve_right (mul_eq_zero.1 $ by rw [mul_sub, sub_eq_zero]; exact h) (sub_ne_zero_of_ne hy), | |
-- And so, using the fact that the linear combination over `s` and over `insert a s` both vanish, | |
-- we deduce that `g a = 0`. | |
have h4 : g a = 0, from calc | |
g a = g a * 1 : (mul_one _).symm | |
... = (g a • a : G → L) 1 : by rw ← a.map_one; refl | |
... = (∑ i in insert a s, (g i • i : G → L)) 1 : begin | |
rw finset.sum_eq_single a, | |
{ intros i his hia, rw finset.mem_insert at his, | |
rw [h3 i (his.resolve_left hia), zero_smul] }, | |
{ intros haas, exfalso, apply haas, exact finset.mem_insert_self a s } | |
end | |
... = 0 : by rw hg; refl, | |
-- Now we're done; the last two facts together imply that `g` vanishes on every element | |
-- of `insert a s`. | |
(finset.forall_mem_insert _ _ _).2 ⟨h4, h3⟩) | |
lemma le_of_span_le_span [nontrivial R] {s t u: set M} | |
(hl : linear_independent R (coe : u → M )) (hsu : s ⊆ u) (htu : t ⊆ u) | |
(hst : span R s ≤ span R t) : s ⊆ t := | |
begin | |
have := eq_of_linear_independent_of_span_subtype | |
(hl.mono (set.union_subset hsu htu)) | |
(set.subset_union_right _ _) | |
(set.union_subset (set.subset.trans subset_span hst) subset_span), | |
rw ← this, apply set.subset_union_left | |
end | |
lemma span_le_span_iff [nontrivial R] {s t u: set M} | |
(hl : linear_independent R (coe : u → M)) (hsu : s ⊆ u) (htu : t ⊆ u) : | |
span R s ≤ span R t ↔ s ⊆ t := | |
⟨le_of_span_le_span hl hsu htu, span_mono⟩ | |
end module | |
section nontrivial | |
variables [ring R] [nontrivial R] [add_comm_group M] [add_comm_group M'] | |
variables [module R M] [no_zero_smul_divisors R M] [module R M'] | |
variables {v : ι → M} {s t : set M} {x y z : M} | |
lemma linear_independent_unique_iff | |
(v : ι → M) [unique ι] : | |
linear_independent R v ↔ v default ≠ 0 := | |
begin | |
simp only [linear_independent_iff, finsupp.total_unique, smul_eq_zero], | |
refine ⟨λ h hv, _, λ hv l hl, finsupp.unique_ext $ hl.resolve_right hv⟩, | |
have := h (finsupp.single default 1) (or.inr hv), | |
exact one_ne_zero (finsupp.single_eq_zero.1 this) | |
end | |
alias linear_independent_unique_iff ↔ _ linear_independent_unique | |
lemma linear_independent_singleton {x : M} (hx : x ≠ 0) : | |
linear_independent R (λ x, x : ({x} : set M) → M) := | |
linear_independent_unique coe hx | |
end nontrivial | |
/-! | |
### Properties which require `division_ring K` | |
These can be considered generalizations of properties of linear independence in vector spaces. | |
-/ | |
section module | |
variables [division_ring K] [add_comm_group V] [add_comm_group V'] | |
variables [module K V] [module K V'] | |
variables {v : ι → V} {s t : set V} {x y z : V} | |
open submodule | |
/- TODO: some of the following proofs can generalized with a zero_ne_one predicate type class | |
(instead of a data containing type class) -/ | |
lemma mem_span_insert_exchange : x ∈ span K (insert y s) → x ∉ span K s → y ∈ span K (insert x s) := | |
begin | |
simp [mem_span_insert], | |
rintro a z hz rfl h, | |
refine ⟨a⁻¹, -a⁻¹ • z, smul_mem _ _ hz, _⟩, | |
have a0 : a ≠ 0, {rintro rfl, simp * at *}, | |
simp [a0, smul_add, smul_smul] | |
end | |
lemma linear_independent_iff_not_mem_span : | |
linear_independent K v ↔ (∀i, v i ∉ span K (v '' (univ \ {i}))) := | |
begin | |
apply linear_independent_iff_not_smul_mem_span.trans, | |
split, | |
{ intros h i h_in_span, | |
apply one_ne_zero (h i 1 (by simp [h_in_span])) }, | |
{ intros h i a ha, | |
by_contradiction ha', | |
exact false.elim (h _ ((smul_mem_iff _ ha').1 ha)) } | |
end | |
lemma linear_independent.insert (hs : linear_independent K (λ b, b : s → V)) (hx : x ∉ span K s) : | |
linear_independent K (λ b, b : insert x s → V) := | |
begin | |
rw ← union_singleton, | |
have x0 : x ≠ 0 := mt (by rintro rfl; apply zero_mem (span K s)) hx, | |
apply hs.union (linear_independent_singleton x0), | |
rwa [disjoint_span_singleton' x0] | |
end | |
lemma linear_independent_option' : | |
linear_independent K (λ o, option.cases_on' o x v : option ι → V) ↔ | |
linear_independent K v ∧ (x ∉ submodule.span K (range v)) := | |
begin | |
rw [← linear_independent_equiv (equiv.option_equiv_sum_punit ι).symm, linear_independent_sum, | |
@range_unique _ punit, @linear_independent_unique_iff punit, disjoint_span_singleton], | |
dsimp [(∘)], | |
refine ⟨λ h, ⟨h.1, λ hx, h.2.1 $ h.2.2 hx⟩, λ h, ⟨h.1, _, λ hx, (h.2 hx).elim⟩⟩, | |
rintro rfl, | |
exact h.2 (zero_mem _) | |
end | |
lemma linear_independent.option (hv : linear_independent K v) | |
(hx : x ∉ submodule.span K (range v)) : | |
linear_independent K (λ o, option.cases_on' o x v : option ι → V) := | |
linear_independent_option'.2 ⟨hv, hx⟩ | |
lemma linear_independent_option {v : option ι → V} : | |
linear_independent K v ↔ | |
linear_independent K (v ∘ coe : ι → V) ∧ v none ∉ submodule.span K (range (v ∘ coe : ι → V)) := | |
by simp only [← linear_independent_option', option.cases_on'_none_coe] | |
theorem linear_independent_insert' {ι} {s : set ι} {a : ι} {f : ι → V} (has : a ∉ s) : | |
linear_independent K (λ x : insert a s, f x) ↔ | |
linear_independent K (λ x : s, f x) ∧ f a ∉ submodule.span K (f '' s) := | |
by { rw [← linear_independent_equiv ((equiv.option_equiv_sum_punit _).trans | |
(equiv.set.insert has).symm), linear_independent_option], simp [(∘), range_comp f] } | |
theorem linear_independent_insert (hxs : x ∉ s) : | |
linear_independent K (λ b : insert x s, (b : V)) ↔ | |
linear_independent K (λ b : s, (b : V)) ∧ x ∉ submodule.span K s := | |
(@linear_independent_insert' _ _ _ _ _ _ _ _ id hxs).trans $ by simp | |
lemma linear_independent_pair {x y : V} (hx : x ≠ 0) (hy : ∀ a : K, a • x ≠ y) : | |
linear_independent K (coe : ({x, y} : set V) → V) := | |
pair_comm y x ▸ (linear_independent_singleton hx).insert $ mt mem_span_singleton.1 | |
(not_exists.2 hy) | |
lemma linear_independent_fin_cons {n} {v : fin n → V} : | |
linear_independent K (fin.cons x v : fin (n + 1) → V) ↔ | |
linear_independent K v ∧ x ∉ submodule.span K (range v) := | |
begin | |
rw [← linear_independent_equiv (fin_succ_equiv n).symm, linear_independent_option], | |
convert iff.rfl, | |
{ ext, | |
-- TODO: why doesn't simp use `fin_succ_equiv_symm_coe` here? | |
rw [comp_app, comp_app, fin_succ_equiv_symm_coe, fin.cons_succ] }, | |
{ ext, | |
rw [comp_app, comp_app, fin_succ_equiv_symm_coe, fin.cons_succ] } | |
end | |
lemma linear_independent_fin_snoc {n} {v : fin n → V} : | |
linear_independent K (fin.snoc v x : fin (n + 1) → V) ↔ | |
linear_independent K v ∧ x ∉ submodule.span K (range v) := | |
by rw [fin.snoc_eq_cons_rotate, linear_independent_equiv, linear_independent_fin_cons] | |
/-- See `linear_independent.fin_cons'` for an uglier version that works if you | |
only have a module over a semiring. -/ | |
lemma linear_independent.fin_cons {n} {v : fin n → V} (hv : linear_independent K v) | |
(hx : x ∉ submodule.span K (range v)) : | |
linear_independent K (fin.cons x v : fin (n + 1) → V) := | |
linear_independent_fin_cons.2 ⟨hv, hx⟩ | |
lemma linear_independent_fin_succ {n} {v : fin (n + 1) → V} : | |
linear_independent K v ↔ | |
linear_independent K (fin.tail v) ∧ v 0 ∉ submodule.span K (range $ fin.tail v) := | |
by rw [← linear_independent_fin_cons, fin.cons_self_tail] | |
lemma linear_independent_fin_succ' {n} {v : fin (n + 1) → V} : | |
linear_independent K v ↔ | |
linear_independent K (fin.init v) ∧ v (fin.last _) ∉ submodule.span K (range $ fin.init v) := | |
by rw [← linear_independent_fin_snoc, fin.snoc_init_self] | |
lemma linear_independent_fin2 {f : fin 2 → V} : | |
linear_independent K f ↔ f 1 ≠ 0 ∧ ∀ a : K, a • f 1 ≠ f 0 := | |
by rw [linear_independent_fin_succ, linear_independent_unique_iff, range_unique, | |
mem_span_singleton, not_exists, | |
show fin.tail f default = f 1, by rw ← fin.succ_zero_eq_one; refl] | |
lemma exists_linear_independent_extension (hs : linear_independent K (coe : s → V)) (hst : s ⊆ t) : | |
∃b⊆t, s ⊆ b ∧ t ⊆ span K b ∧ linear_independent K (coe : b → V) := | |
begin | |
rcases zorn_subset_nonempty {b | b ⊆ t ∧ linear_independent K (coe : b → V)} _ _ | |
⟨hst, hs⟩ with ⟨b, ⟨bt, bi⟩, sb, h⟩, | |
{ refine ⟨b, bt, sb, λ x xt, _, bi⟩, | |
by_contra hn, | |
apply hn, | |
rw ← h _ ⟨insert_subset.2 ⟨xt, bt⟩, bi.insert hn⟩ (subset_insert _ _), | |
exact subset_span (mem_insert _ _) }, | |
{ refine λ c hc cc c0, ⟨⋃₀ c, ⟨_, _⟩, λ x, _⟩, | |
{ exact sUnion_subset (λ x xc, (hc xc).1) }, | |
{ exact linear_independent_sUnion_of_directed cc.directed_on (λ x xc, (hc xc).2) }, | |
{ exact subset_sUnion_of_mem } } | |
end | |
variables (K t) | |
lemma exists_linear_independent : | |
∃ b ⊆ t, span K b = span K t ∧ linear_independent K (coe : b → V) := | |
begin | |
obtain ⟨b, hb₁, -, hb₂, hb₃⟩ := | |
exists_linear_independent_extension (linear_independent_empty K V) (set.empty_subset t), | |
exact ⟨b, hb₁, (span_eq_of_le _ hb₂ (submodule.span_mono hb₁)).symm, hb₃⟩, | |
end | |
variables {K t} | |
/-- `linear_independent.extend` adds vectors to a linear independent set `s ⊆ t` until it spans | |
all elements of `t`. -/ | |
noncomputable def linear_independent.extend (hs : linear_independent K (λ x, x : s → V)) | |
(hst : s ⊆ t) : set V := | |
classical.some (exists_linear_independent_extension hs hst) | |
lemma linear_independent.extend_subset (hs : linear_independent K (λ x, x : s → V)) | |
(hst : s ⊆ t) : hs.extend hst ⊆ t := | |
let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent_extension hs hst) in hbt | |
lemma linear_independent.subset_extend (hs : linear_independent K (λ x, x : s → V)) | |
(hst : s ⊆ t) : s ⊆ hs.extend hst := | |
let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent_extension hs hst) in hsb | |
lemma linear_independent.subset_span_extend (hs : linear_independent K (λ x, x : s → V)) | |
(hst : s ⊆ t) : t ⊆ span K (hs.extend hst) := | |
let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent_extension hs hst) in htb | |
lemma linear_independent.linear_independent_extend (hs : linear_independent K (λ x, x : s → V)) | |
(hst : s ⊆ t) : linear_independent K (coe : hs.extend hst → V) := | |
let ⟨hbt, hsb, htb, hli⟩ := classical.some_spec (exists_linear_independent_extension hs hst) in hli | |
variables {K V} | |
-- TODO(Mario): rewrite? | |
lemma exists_of_linear_independent_of_finite_span {t : finset V} | |
(hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ (span K ↑t : submodule K V)) : | |
∃t':finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = t.card := | |
have ∀t, ∀(s' : finset V), ↑s' ⊆ s → s ∩ ↑t = ∅ → s ⊆ (span K ↑(s' ∪ t) : submodule K V) → | |
∃t':finset V, ↑t' ⊆ s ∪ ↑t ∧ s ⊆ ↑t' ∧ t'.card = (s' ∪ t).card := | |
assume t, finset.induction_on t | |
(assume s' hs' _ hss', | |
have s = ↑s', | |
from eq_of_linear_independent_of_span_subtype hs hs' $ | |
by simpa using hss', | |
⟨s', by simp [this]⟩) | |
(assume b₁ t hb₁t ih s' hs' hst hss', | |
have hb₁s : b₁ ∉ s, | |
from assume h, | |
have b₁ ∈ s ∩ ↑(insert b₁ t), from ⟨h, finset.mem_insert_self _ _⟩, | |
by rwa [hst] at this, | |
have hb₁s' : b₁ ∉ s', from assume h, hb₁s $ hs' h, | |
have hst : s ∩ ↑t = ∅, | |
from eq_empty_of_subset_empty $ subset.trans | |
(by simp [inter_subset_inter, subset.refl]) (le_of_eq hst), | |
classical.by_cases | |
(assume : s ⊆ (span K ↑(s' ∪ t) : submodule K V), | |
let ⟨u, hust, hsu, eq⟩ := ih _ hs' hst this in | |
have hb₁u : b₁ ∉ u, from assume h, (hust h).elim hb₁s hb₁t, | |
⟨insert b₁ u, by simp [insert_subset_insert hust], | |
subset.trans hsu (by simp), by simp [eq, hb₁t, hb₁s', hb₁u]⟩) | |
(assume : ¬ s ⊆ (span K ↑(s' ∪ t) : submodule K V), | |
let ⟨b₂, hb₂s, hb₂t⟩ := not_subset.mp this in | |
have hb₂t' : b₂ ∉ s' ∪ t, from assume h, hb₂t $ subset_span h, | |
have s ⊆ (span K ↑(insert b₂ s' ∪ t) : submodule K V), from | |
assume b₃ hb₃, | |
have ↑(s' ∪ insert b₁ t) ⊆ insert b₁ (insert b₂ ↑(s' ∪ t) : set V), | |
by simp [insert_eq, -singleton_union, -union_singleton, union_subset_union, subset.refl, | |
subset_union_right], | |
have hb₃ : b₃ ∈ span K (insert b₁ (insert b₂ ↑(s' ∪ t) : set V)), | |
from span_mono this (hss' hb₃), | |
have s ⊆ (span K (insert b₁ ↑(s' ∪ t)) : submodule K V), | |
by simpa [insert_eq, -singleton_union, -union_singleton] using hss', | |
have hb₁ : b₁ ∈ span K (insert b₂ ↑(s' ∪ t)), | |
from mem_span_insert_exchange (this hb₂s) hb₂t, | |
by rw [span_insert_eq_span hb₁] at hb₃; simpa using hb₃, | |
let ⟨u, hust, hsu, eq⟩ := ih _ (by simp [insert_subset, hb₂s, hs']) hst this in | |
⟨u, subset.trans hust $ union_subset_union (subset.refl _) (by simp [subset_insert]), | |
hsu, by simp [eq, hb₂t', hb₁t, hb₁s']⟩)), | |
begin | |
have eq : t.filter (λx, x ∈ s) ∪ t.filter (λx, x ∉ s) = t, | |
{ ext1 x, | |
by_cases x ∈ s; simp * }, | |
apply exists.elim (this (t.filter (λx, x ∉ s)) (t.filter (λx, x ∈ s)) | |
(by simp [set.subset_def]) (by simp [set.ext_iff] {contextual := tt}) (by rwa [eq])), | |
intros u h, | |
exact ⟨u, subset.trans h.1 (by simp [subset_def, and_imp, or_imp_distrib] {contextual:=tt}), | |
h.2.1, by simp only [h.2.2, eq]⟩ | |
end | |
lemma exists_finite_card_le_of_finite_of_linear_independent_of_span | |
(ht : t.finite) (hs : linear_independent K (λ x, x : s → V)) (hst : s ⊆ span K t) : | |
∃h : s.finite, h.to_finset.card ≤ ht.to_finset.card := | |
have s ⊆ (span K ↑(ht.to_finset) : submodule K V), by simp; assumption, | |
let ⟨u, hust, hsu, eq⟩ := exists_of_linear_independent_of_finite_span hs this in | |
have s.finite, from u.finite_to_set.subset hsu, | |
⟨this, by rw [←eq]; exact (finset.card_le_of_subset $ finset.coe_subset.mp $ by simp [hsu])⟩ | |
end module | |