Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Jakob von Raumer. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Jakob von Raumer | |
-/ | |
import linear_algebra.contraction | |
import linear_algebra.finite_dimensional | |
import linear_algebra.dual | |
/-! | |
# The coevaluation map on finite dimensional vector spaces | |
Given a finite dimensional vector space `V` over a field `K` this describes the canonical linear map | |
from `K` to `V β dual K V` which corresponds to the identity function on `V`. | |
## Tags | |
coevaluation, dual module, tensor product | |
## Future work | |
* Prove that this is independent of the choice of basis on `V`. | |
-/ | |
noncomputable theory | |
section coevaluation | |
open tensor_product finite_dimensional | |
open_locale tensor_product big_operators | |
universes u v | |
variables (K : Type u) [field K] | |
variables (V : Type v) [add_comm_group V] [module K V] [finite_dimensional K V] | |
/-- The coevaluation map is a linear map from a field `K` to a finite dimensional | |
vector space `V`. -/ | |
def coevaluation : K ββ[K] V β[K] (module.dual K V) := | |
let bV := basis.of_vector_space K V in | |
(basis.singleton unit K).constr K $ | |
Ξ» _, β (i : basis.of_vector_space_index K V), bV i ββ[K] bV.coord i | |
lemma coevaluation_apply_one : | |
(coevaluation K V) (1 : K) = | |
let bV := basis.of_vector_space K V in | |
β (i : basis.of_vector_space_index K V), bV i ββ[K] bV.coord i := | |
begin | |
simp only [coevaluation, id], | |
rw [(basis.singleton unit K).constr_apply_fintype K], | |
simp only [fintype.univ_punit, finset.sum_const, one_smul, basis.singleton_repr, | |
basis.equiv_fun_apply,basis.coe_of_vector_space, one_nsmul, finset.card_singleton], | |
end | |
open tensor_product | |
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see | |
`category_theory.monoidal.rigid`. -/ | |
lemma contract_left_assoc_coevaluation : | |
((contract_left K V).rtensor _) | |
ββ (tensor_product.assoc K _ _ _).symm.to_linear_map | |
ββ ((coevaluation K V).ltensor (module.dual K V)) | |
= (tensor_product.lid K _).symm.to_linear_map ββ (tensor_product.rid K _).to_linear_map := | |
begin | |
letI := classical.dec_eq (basis.of_vector_space_index K V), | |
apply tensor_product.ext, | |
apply (basis.of_vector_space K V).dual_basis.ext, intro j, apply linear_map.ext_ring, | |
rw [linear_map.comprβ_apply, linear_map.comprβ_apply, tensor_product.mk_apply], | |
simp only [linear_map.coe_comp, function.comp_app, linear_equiv.coe_to_linear_map], | |
rw [rid_tmul, one_smul, lid_symm_apply], | |
simp only [linear_equiv.coe_to_linear_map, linear_map.ltensor_tmul, coevaluation_apply_one], | |
rw [tensor_product.tmul_sum, linear_equiv.map_sum], simp only [assoc_symm_tmul], | |
rw [linear_map.map_sum], simp only [linear_map.rtensor_tmul, contract_left_apply], | |
simp only [basis.coe_dual_basis, basis.coord_apply, basis.repr_self_apply, | |
tensor_product.ite_tmul], | |
rw [finset.sum_ite_eq'], simp only [finset.mem_univ, if_true] | |
end | |
/-- This lemma corresponds to one of the coherence laws for duals in rigid categories, see | |
`category_theory.monoidal.rigid`. -/ | |
lemma contract_left_assoc_coevaluation' : | |
((contract_left K V).ltensor _) | |
ββ (tensor_product.assoc K _ _ _).to_linear_map | |
ββ ((coevaluation K V).rtensor V) | |
= (tensor_product.rid K _).symm.to_linear_map ββ (tensor_product.lid K _).to_linear_map := | |
begin | |
letI := classical.dec_eq (basis.of_vector_space_index K V), | |
apply tensor_product.ext, | |
apply linear_map.ext_ring, apply (basis.of_vector_space K V).ext, intro j, | |
rw [linear_map.comprβ_apply, linear_map.comprβ_apply, tensor_product.mk_apply], | |
simp only [linear_map.coe_comp, function.comp_app, linear_equiv.coe_to_linear_map], | |
rw [lid_tmul, one_smul, rid_symm_apply], | |
simp only [linear_equiv.coe_to_linear_map, linear_map.rtensor_tmul, coevaluation_apply_one], | |
rw [tensor_product.sum_tmul, linear_equiv.map_sum], simp only [assoc_tmul], | |
rw [linear_map.map_sum], simp only [linear_map.ltensor_tmul, contract_left_apply], | |
simp only [basis.coord_apply, basis.repr_self_apply, tensor_product.tmul_ite], | |
rw [finset.sum_ite_eq], simp only [finset.mem_univ, if_true] | |
end | |
end coevaluation | |