Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.ring.ulift | |
import algebra.module.equiv | |
/-! | |
# `ulift` instances for module and multiplicative actions | |
This file defines instances for module, mul_action and related structures on `ulift` types. | |
(Recall `ulift α` is just a "copy" of a type `α` in a higher universe.) | |
We also provide `ulift.module_equiv : ulift M ≃ₗ[R] M`. | |
-/ | |
namespace ulift | |
universes u v w | |
variable {R : Type u} | |
variable {M : Type v} | |
variable {N : Type w} | |
@[to_additive] | |
instance has_smul_left [has_smul R M] : | |
has_smul (ulift R) M := | |
⟨λ s x, s.down • x⟩ | |
@[simp, to_additive] | |
lemma smul_def [has_smul R M] (s : ulift R) (x : M) : s • x = s.down • x := rfl | |
instance is_scalar_tower [has_smul R M] [has_smul M N] [has_smul R N] | |
[is_scalar_tower R M N] : is_scalar_tower (ulift R) M N := | |
⟨λ x y z, show (x.down • y) • z = x.down • y • z, from smul_assoc _ _ _⟩ | |
instance is_scalar_tower' [has_smul R M] [has_smul M N] [has_smul R N] | |
[is_scalar_tower R M N] : is_scalar_tower R (ulift M) N := | |
⟨λ x y z, show (x • y.down) • z = x • y.down • z, from smul_assoc _ _ _⟩ | |
instance is_scalar_tower'' [has_smul R M] [has_smul M N] [has_smul R N] | |
[is_scalar_tower R M N] : is_scalar_tower R M (ulift N) := | |
⟨λ x y z, show up ((x • y) • z.down) = ⟨x • y • z.down⟩, by rw smul_assoc⟩ | |
instance [has_smul R M] [has_smul Rᵐᵒᵖ M] [is_central_scalar R M] : | |
is_central_scalar R (ulift M) := | |
⟨λ r m, congr_arg up $ op_smul_eq_smul r m.down⟩ | |
@[to_additive] | |
instance mul_action [monoid R] [mul_action R M] : mul_action (ulift R) M := | |
{ smul := (•), | |
mul_smul := λ _ _, mul_smul _ _, | |
one_smul := one_smul _ } | |
@[to_additive] | |
instance mul_action' [monoid R] [mul_action R M] : | |
mul_action R (ulift M) := | |
{ smul := (•), | |
mul_smul := λ r s ⟨f⟩, ext _ _ $ mul_smul _ _ _, | |
one_smul := λ ⟨f⟩, ext _ _ $ one_smul _ _, | |
..ulift.has_smul_left } | |
instance distrib_mul_action [monoid R] [add_monoid M] [distrib_mul_action R M] : | |
distrib_mul_action (ulift R) M := | |
{ smul_zero := λ _, smul_zero _, | |
smul_add := λ _, smul_add _ } | |
instance distrib_mul_action' [monoid R] [add_monoid M] [distrib_mul_action R M] : | |
distrib_mul_action R (ulift M) := | |
{ smul_zero := λ c, by { ext, simp [smul_zero], }, | |
smul_add := λ c f g, by { ext, simp [smul_add], }, | |
..ulift.mul_action' } | |
instance mul_distrib_mul_action [monoid R] [monoid M] [mul_distrib_mul_action R M] : | |
mul_distrib_mul_action (ulift R) M := | |
{ smul_one := λ _, smul_one _, | |
smul_mul := λ _, smul_mul' _ } | |
instance mul_distrib_mul_action' [monoid R] [monoid M] [mul_distrib_mul_action R M] : | |
mul_distrib_mul_action R (ulift M) := | |
{ smul_one := λ _, by { ext, simp [smul_one], }, | |
smul_mul := λ c f g, by { ext, simp [smul_mul'], }, | |
..ulift.mul_action' } | |
instance smul_with_zero [has_zero R] [has_zero M] [smul_with_zero R M] : | |
smul_with_zero (ulift R) M := | |
{ smul_zero := λ _, smul_zero' _ _, | |
zero_smul := zero_smul _, | |
..ulift.has_smul_left } | |
instance smul_with_zero' [has_zero R] [has_zero M] [smul_with_zero R M] : | |
smul_with_zero R (ulift M) := | |
{ smul_zero := λ _, ulift.ext _ _ $ smul_zero' _ _, | |
zero_smul := λ _, ulift.ext _ _ $ zero_smul _ _ } | |
instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : | |
mul_action_with_zero (ulift R) M := | |
{ ..ulift.smul_with_zero } | |
instance mul_action_with_zero' [monoid_with_zero R] [has_zero M] [mul_action_with_zero R M] : | |
mul_action_with_zero R (ulift M) := | |
{ ..ulift.smul_with_zero' } | |
instance module [semiring R] [add_comm_monoid M] [module R M] : module (ulift R) M := | |
{ add_smul := λ _ _, add_smul _ _, | |
..ulift.smul_with_zero } | |
instance module' [semiring R] [add_comm_monoid M] [module R M] : module R (ulift M) := | |
{ add_smul := λ _ _ _, ulift.ext _ _ $ add_smul _ _ _, | |
..ulift.smul_with_zero' } | |
/-- | |
The `R`-linear equivalence between `ulift M` and `M`. | |
-/ | |
def module_equiv [semiring R] [add_comm_monoid M] [module R M] : ulift M ≃ₗ[R] M := | |
{ to_fun := ulift.down, | |
inv_fun := ulift.up, | |
map_smul' := λ r x, rfl, | |
map_add' := λ x y, rfl, | |
left_inv := by tidy, | |
right_inv := by tidy, } | |
end ulift | |