Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
1.77 kB
/-
Copyright (c) 2018 Simon Hudon. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Eric Wieser
-/
import algebra.module.basic
import group_theory.group_action.prod
/-!
# Prod instances for module and multiplicative actions
This file defines instances for binary product of modules
-/
variables {R : Type*} {S : Type*} {M : Type*} {N : Type*}
namespace prod
instance smul_with_zero [has_zero R] [has_zero M] [has_zero N]
[smul_with_zero R M] [smul_with_zero R N] : smul_with_zero R (M × N) :=
{ smul_zero := λ r, prod.ext (smul_zero' _ _) (smul_zero' _ _),
zero_smul := λ ⟨m, n⟩, prod.ext (zero_smul _ _) (zero_smul _ _),
..prod.has_smul }
instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [has_zero N]
[mul_action_with_zero R M] [mul_action_with_zero R N] : mul_action_with_zero R (M × N) :=
{ smul_zero := λ r, prod.ext (smul_zero' _ _) (smul_zero' _ _),
zero_smul := λ ⟨m, n⟩, prod.ext (zero_smul _ _) (zero_smul _ _),
..prod.mul_action }
instance {r : semiring R} [add_comm_monoid M] [add_comm_monoid N]
[module R M] [module R N] : module R (M × N) :=
{ add_smul := λ a p₁ p₂, mk.inj_iff.mpr ⟨add_smul _ _ _, add_smul _ _ _⟩,
zero_smul := λ ⟨b, c⟩, mk.inj_iff.mpr ⟨zero_smul _ _, zero_smul _ _⟩,
.. prod.distrib_mul_action }
instance {r : semiring R} [add_comm_monoid M] [add_comm_monoid N]
[module R M] [module R N]
[no_zero_smul_divisors R M] [no_zero_smul_divisors R N] :
no_zero_smul_divisors R (M × N) :=
⟨λ c ⟨x, y⟩ h, or_iff_not_imp_left.mpr (λ hc, mk.inj_iff.mpr
⟨(smul_eq_zero.mp (congr_arg fst h)).resolve_left hc,
(smul_eq_zero.mp (congr_arg snd h)).resolve_left hc⟩)⟩
end prod