Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon, Patrick Massot, Eric Wieser | |
-/ | |
import algebra.module.basic | |
import group_theory.group_action.prod | |
/-! | |
# Prod instances for module and multiplicative actions | |
This file defines instances for binary product of modules | |
-/ | |
variables {R : Type*} {S : Type*} {M : Type*} {N : Type*} | |
namespace prod | |
instance smul_with_zero [has_zero R] [has_zero M] [has_zero N] | |
[smul_with_zero R M] [smul_with_zero R N] : smul_with_zero R (M × N) := | |
{ smul_zero := λ r, prod.ext (smul_zero' _ _) (smul_zero' _ _), | |
zero_smul := λ ⟨m, n⟩, prod.ext (zero_smul _ _) (zero_smul _ _), | |
..prod.has_smul } | |
instance mul_action_with_zero [monoid_with_zero R] [has_zero M] [has_zero N] | |
[mul_action_with_zero R M] [mul_action_with_zero R N] : mul_action_with_zero R (M × N) := | |
{ smul_zero := λ r, prod.ext (smul_zero' _ _) (smul_zero' _ _), | |
zero_smul := λ ⟨m, n⟩, prod.ext (zero_smul _ _) (zero_smul _ _), | |
..prod.mul_action } | |
instance {r : semiring R} [add_comm_monoid M] [add_comm_monoid N] | |
[module R M] [module R N] : module R (M × N) := | |
{ add_smul := λ a p₁ p₂, mk.inj_iff.mpr ⟨add_smul _ _ _, add_smul _ _ _⟩, | |
zero_smul := λ ⟨b, c⟩, mk.inj_iff.mpr ⟨zero_smul _ _, zero_smul _ _⟩, | |
.. prod.distrib_mul_action } | |
instance {r : semiring R} [add_comm_monoid M] [add_comm_monoid N] | |
[module R M] [module R N] | |
[no_zero_smul_divisors R M] [no_zero_smul_divisors R N] : | |
no_zero_smul_divisors R (M × N) := | |
⟨λ c ⟨x, y⟩ h, or_iff_not_imp_left.mpr (λ hc, mk.inj_iff.mpr | |
⟨(smul_eq_zero.mp (congr_arg fst h)).resolve_left hc, | |
(smul_eq_zero.mp (congr_arg snd h)).resolve_left hc⟩)⟩ | |
end prod | |