Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Simon Hudon. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Simon Hudon, Patrick Massot | |
-/ | |
import algebra.module.basic | |
import algebra.regular.smul | |
import algebra.ring.pi | |
import group_theory.group_action.pi | |
/-! | |
# Pi instances for modules | |
This file defines instances for module and related structures on Pi Types | |
-/ | |
universes u v w | |
variable {I : Type u} -- The indexing type | |
variable {f : I → Type v} -- The family of types already equipped with instances | |
variables (x y : Π i, f i) (i : I) | |
namespace pi | |
lemma _root_.is_smul_regular.pi {α : Type*} [Π i, has_smul α $ f i] {k : α} | |
(hk : Π i, is_smul_regular (f i) k) : is_smul_regular (Π i, f i) k := | |
λ _ _ h, funext $ λ i, hk i (congr_fun h i : _) | |
instance smul_with_zero (α) [has_zero α] | |
[Π i, has_zero (f i)] [Π i, smul_with_zero α (f i)] : | |
smul_with_zero α (Π i, f i) := | |
{ smul_zero := λ _, funext $ λ _, smul_zero' (f _) _, | |
zero_smul := λ _, funext $ λ _, zero_smul _ _, | |
..pi.has_smul } | |
instance smul_with_zero' {g : I → Type*} [Π i, has_zero (g i)] | |
[Π i, has_zero (f i)] [Π i, smul_with_zero (g i) (f i)] : | |
smul_with_zero (Π i, g i) (Π i, f i) := | |
{ smul_zero := λ _, funext $ λ _, smul_zero' (f _) _, | |
zero_smul := λ _, funext $ λ _, zero_smul _ _, | |
..pi.has_smul' } | |
instance mul_action_with_zero (α) [monoid_with_zero α] | |
[Π i, has_zero (f i)] [Π i, mul_action_with_zero α (f i)] : | |
mul_action_with_zero α (Π i, f i) := | |
{ ..pi.mul_action _, | |
..pi.smul_with_zero _ } | |
instance mul_action_with_zero' {g : I → Type*} [Π i, monoid_with_zero (g i)] | |
[Π i, has_zero (f i)] [Π i, mul_action_with_zero (g i) (f i)] : | |
mul_action_with_zero (Π i, g i) (Π i, f i) := | |
{ ..pi.mul_action', | |
..pi.smul_with_zero' } | |
variables (I f) | |
instance module (α) {r : semiring α} {m : ∀ i, add_comm_monoid $ f i} | |
[∀ i, module α $ f i] : | |
@module α (Π i : I, f i) r (@pi.add_comm_monoid I f m) := | |
{ add_smul := λ c f g, funext $ λ i, add_smul _ _ _, | |
zero_smul := λ f, funext $ λ i, zero_smul α _, | |
..pi.distrib_mul_action _ } | |
/- Extra instance to short-circuit type class resolution. | |
For unknown reasons, this is necessary for certain inference problems. E.g., for this to succeed: | |
```lean | |
example (β X : Type*) [normed_add_comm_group β] [normed_space ℝ β] : module ℝ (X → β) := | |
infer_instance | |
``` | |
See: https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/Typeclass.20resolution.20under.20binders/near/281296989 | |
-/ | |
/-- A special case of `pi.module` for non-dependent types. Lean struggles to elaborate | |
definitions elsewhere in the library without this. -/ | |
instance _root_.function.module (α β : Type*) [semiring α] [add_comm_monoid β] [module α β] : | |
module α (I → β) := | |
pi.module _ _ _ | |
variables {I f} | |
instance module' {g : I → Type*} {r : Π i, semiring (f i)} {m : Π i, add_comm_monoid (g i)} | |
[Π i, module (f i) (g i)] : | |
module (Π i, f i) (Π i, g i) := | |
{ add_smul := by { intros, ext1, apply add_smul }, | |
zero_smul := by { intros, ext1, apply zero_smul } } | |
instance (α) {r : semiring α} {m : Π i, add_comm_monoid $ f i} | |
[Π i, module α $ f i] [∀ i, no_zero_smul_divisors α $ f i] : | |
no_zero_smul_divisors α (Π i : I, f i) := | |
⟨λ c x h, or_iff_not_imp_left.mpr (λ hc, funext | |
(λ i, (smul_eq_zero.mp (congr_fun h i)).resolve_left hc))⟩ | |
end pi | |