Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
25.3 kB
/-
Copyright (c) 2020 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import algebra.group.defs
import logic.function.basic
import data.int.cast.defs
/-!
# Lifting algebraic data classes along injective/surjective maps
This file provides definitions that are meant to deal with
situations such as the following:
Suppose that `G` is a group, and `H` is a type endowed with
`has_one H`, `has_mul H`, and `has_inv H`.
Suppose furthermore, that `f : G → H` is a surjective map
that respects the multiplication, and the unit elements.
Then `H` satisfies the group axioms.
The relevant definition in this case is `function.surjective.group`.
Dually, there is also `function.injective.group`.
And there are versions for (additive) (commutative) semigroups/monoids.
-/
namespace function
/-!
### Injective
-/
namespace injective
variables {M₁ : Type*} {M₂ : Type*} [has_mul M₁]
/-- A type endowed with `*` is a semigroup,
if it admits an injective map that preserves `*` to a semigroup.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `+` is an additive semigroup,
if it admits an injective map that preserves `+` to an additive semigroup."]
protected def semigroup [semigroup M₂] (f : M₁ → M₂) (hf : injective f)
(mul : ∀ x y, f (x * y) = f x * f y) :
semigroup M₁ :=
{ mul_assoc := λ x y z, hf $ by erw [mul, mul, mul, mul, mul_assoc],
..‹has_mul M₁› }
/-- A type endowed with `*` is a commutative semigroup,
if it admits an injective map that preserves `*` to a commutative semigroup.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `+` is an additive commutative semigroup,
if it admits an injective map that preserves `+` to an additive commutative semigroup."]
protected def comm_semigroup [comm_semigroup M₂] (f : M₁ → M₂) (hf : injective f)
(mul : ∀ x y, f (x * y) = f x * f y) :
comm_semigroup M₁ :=
{ mul_comm := λ x y, hf $ by erw [mul, mul, mul_comm],
.. hf.semigroup f mul }
/-- A type endowed with `*` is a left cancel semigroup,
if it admits an injective map that preserves `*` to a left cancel semigroup.
See note [reducible non-instances]. -/
@[reducible, to_additive add_left_cancel_semigroup
"A type endowed with `+` is an additive left cancel semigroup,
if it admits an injective map that preserves `+` to an additive left cancel semigroup."]
protected def left_cancel_semigroup [left_cancel_semigroup M₂] (f : M₁ → M₂) (hf : injective f)
(mul : ∀ x y, f (x * y) = f x * f y) :
left_cancel_semigroup M₁ :=
{ mul := (*),
mul_left_cancel := λ x y z H, hf $ (mul_right_inj (f x)).1 $ by erw [← mul, ← mul, H]; refl,
.. hf.semigroup f mul }
/-- A type endowed with `*` is a right cancel semigroup,
if it admits an injective map that preserves `*` to a right cancel semigroup.
See note [reducible non-instances]. -/
@[reducible, to_additive add_right_cancel_semigroup
"A type endowed with `+` is an additive right cancel semigroup,
if it admits an injective map that preserves `+` to an additive right cancel semigroup."]
protected def right_cancel_semigroup [right_cancel_semigroup M₂] (f : M₁ → M₂) (hf : injective f)
(mul : ∀ x y, f (x * y) = f x * f y) :
right_cancel_semigroup M₁ :=
{ mul := (*),
mul_right_cancel := λ x y z H, hf $ (mul_left_inj (f y)).1 $ by erw [← mul, ← mul, H]; refl,
.. hf.semigroup f mul }
variables [has_one M₁]
/-- A type endowed with `1` and `*` is a mul_one_class,
if it admits an injective map that preserves `1` and `*` to a mul_one_class.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an add_zero_class,
if it admits an injective map that preserves `0` and `+` to an add_zero_class."]
protected def mul_one_class [mul_one_class M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) :
mul_one_class M₁ :=
{ one_mul := λ x, hf $ by erw [mul, one, one_mul],
mul_one := λ x, hf $ by erw [mul, one, mul_one],
..‹has_one M₁›, ..‹has_mul M₁› }
variables [has_pow M₁ ℕ]
/-- A type endowed with `1` and `*` is a monoid,
if it admits an injective map that preserves `1` and `*` to a monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive monoid,
if it admits an injective map that preserves `0` and `+` to an additive monoid.
This version takes a custom `nsmul` as a `[has_smul ℕ M₁]` argument."]
protected def monoid [monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
monoid M₁ :=
{ npow := λ n x, x ^ n,
npow_zero' := λ x, hf $ by erw [npow, one, pow_zero],
npow_succ' := λ n x, hf $ by erw [npow, pow_succ, mul, npow],
.. hf.semigroup f mul, .. hf.mul_one_class f one mul }
/-- A type endowed with `0`, `1` and `+` is an additive monoid with one,
if it admits an injective map that preserves `0`, `1` and `+` to an additive monoid with one.
See note [reducible non-instances]. -/
@[reducible]
protected def add_monoid_with_one {M₁}
[has_zero M₁] [has_one M₁] [has_add M₁] [has_smul ℕ M₁] [has_nat_cast M₁]
[add_monoid_with_one M₂] (f : M₁ → M₂) (hf : injective f)
(zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x)
(nat_cast : ∀ n : ℕ, f n = n) :
add_monoid_with_one M₁ :=
{ nat_cast := coe,
nat_cast_zero := hf (by erw [nat_cast, nat.cast_zero, zero]),
nat_cast_succ := λ n, hf (by erw [nat_cast, nat.cast_succ, add, one, nat_cast]),
one := 1, .. hf.add_monoid f zero add nsmul }
/-- A type endowed with `1` and `*` is a left cancel monoid,
if it admits an injective map that preserves `1` and `*` to a left cancel monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive add_left_cancel_monoid
"A type endowed with `0` and `+` is an additive left cancel monoid,
if it admits an injective map that preserves `0` and `+` to an additive left cancel monoid."]
protected def left_cancel_monoid [left_cancel_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
left_cancel_monoid M₁ :=
{ .. hf.left_cancel_semigroup f mul, .. hf.monoid f one mul npow }
/-- A type endowed with `1` and `*` is a right cancel monoid,
if it admits an injective map that preserves `1` and `*` to a right cancel monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive add_right_cancel_monoid
"A type endowed with `0` and `+` is an additive left cancel monoid,
if it admits an injective map that preserves `0` and `+` to an additive left cancel monoid."]
protected def right_cancel_monoid [right_cancel_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
right_cancel_monoid M₁ :=
{ .. hf.right_cancel_semigroup f mul, .. hf.monoid f one mul npow }
/-- A type endowed with `1` and `*` is a cancel monoid,
if it admits an injective map that preserves `1` and `*` to a cancel monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive add_cancel_monoid
"A type endowed with `0` and `+` is an additive left cancel monoid,
if it admits an injective map that preserves `0` and `+` to an additive left cancel monoid."]
protected def cancel_monoid [cancel_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
cancel_monoid M₁ :=
{ .. hf.left_cancel_monoid f one mul npow, .. hf.right_cancel_monoid f one mul npow }
/-- A type endowed with `1` and `*` is a commutative monoid,
if it admits an injective map that preserves `1` and `*` to a commutative monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive commutative monoid,
if it admits an injective map that preserves `0` and `+` to an additive commutative monoid."]
protected def comm_monoid [comm_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
comm_monoid M₁ :=
{ .. hf.comm_semigroup f mul, .. hf.monoid f one mul npow }
/-- A type endowed with `1` and `*` is a cancel commutative monoid,
if it admits an injective map that preserves `1` and `*` to a cancel commutative monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive add_cancel_comm_monoid
"A type endowed with `0` and `+` is an additive cancel commutative monoid,
if it admits an injective map that preserves `0` and `+` to an additive cancel commutative monoid."]
protected def cancel_comm_monoid [cancel_comm_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
cancel_comm_monoid M₁ :=
{ .. hf.left_cancel_semigroup f mul, .. hf.comm_monoid f one mul npow }
/-- A type has an involutive inversion if it admits a surjective map that preserves `⁻¹` to a type
which has an involutive inversion. -/
@[reducible, to_additive "A type has an involutive negation if it admits a surjective map that
preserves `⁻¹` to a type which has an involutive inversion."] --See note [reducible non-instances]
protected def has_involutive_inv {M₁ : Type*} [has_inv M₁][has_involutive_inv M₂]
(f : M₁ → M₂) (hf : injective f) (inv : ∀ x, f x⁻¹ = (f x)⁻¹) :
has_involutive_inv M₁ :=
{ inv := has_inv.inv,
inv_inv := λ x, hf $ by rw [inv, inv, inv_inv] }
variables [has_inv M₁] [has_div M₁] [has_pow M₁ ℤ]
/-- A type endowed with `1`, `*`, `⁻¹`, and `/` is a `div_inv_monoid`
if it admits an injective map that preserves `1`, `*`, `⁻¹`, and `/` to a `div_inv_monoid`.
See note [reducible non-instances]. -/
@[reducible, to_additive sub_neg_monoid
"A type endowed with `0`, `+`, unary `-`, and binary `-` is a `sub_neg_monoid`
if it admits an injective map that preserves `0`, `+`, unary `-`, and binary `-` to
a `sub_neg_monoid`.
This version takes custom `nsmul` and `zsmul` as `[has_smul ℕ M₁]` and
`[has_smul ℤ M₁]` arguments."]
protected def div_inv_monoid [div_inv_monoid M₂]
(f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
div_inv_monoid M₁ :=
{ zpow := λ n x, x ^ n,
zpow_zero' := λ x, hf $ by erw [zpow, zpow_zero, one],
zpow_succ' := λ n x, hf $ by erw [zpow, mul, zpow_of_nat, pow_succ, zpow, zpow_of_nat],
zpow_neg' := λ n x, hf $ by erw [zpow, zpow_neg_succ_of_nat, inv, zpow, zpow_coe_nat],
div_eq_mul_inv := λ x y, hf $ by erw [div, mul, inv, div_eq_mul_inv],
.. hf.monoid f one mul npow, .. ‹has_inv M₁›, .. ‹has_div M₁› }
/-- A type endowed with `1`, `*`, `⁻¹`, and `/` is a `division_monoid`
if it admits an injective map that preserves `1`, `*`, `⁻¹`, and `/` to a `division_monoid`. -/
@[reducible, to_additive subtraction_monoid
"A type endowed with `0`, `+`, unary `-`, and binary `-` is a `subtraction_monoid`
if it admits an injective map that preserves `0`, `+`, unary `-`, and binary `-` to
a `subtraction_monoid`.
This version takes custom `nsmul` and `zsmul` as `[has_smul ℕ M₁]` and
`[has_smul ℤ M₁]` arguments."] -- See note [reducible non-instances]
protected def division_monoid [division_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
division_monoid M₁ :=
{ mul_inv_rev := λ x y, hf $ by erw [inv, mul, mul_inv_rev, mul, inv, inv],
inv_eq_of_mul := λ x y h, hf $ by erw [inv, inv_eq_of_mul_eq_one_right (by erw [←mul, h, one])],
..hf.div_inv_monoid f one mul inv div npow zpow, ..hf.has_involutive_inv f inv }
/-- A type endowed with `1`, `*`, `⁻¹`, and `/` is a `division_comm_monoid`
if it admits an injective map that preserves `1`, `*`, `⁻¹`, and `/` to a `division_comm_monoid`.
See note [reducible non-instances]. -/
@[reducible, to_additive subtraction_comm_monoid
"A type endowed with `0`, `+`, unary `-`, and binary `-` is a `subtraction_comm_monoid`
if it admits an injective map that preserves `0`, `+`, unary `-`, and binary `-` to
a `subtraction_comm_monoid`.
This version takes custom `nsmul` and `zsmul` as `[has_smul ℕ M₁]` and
`[has_smul ℤ M₁]` arguments."] -- See note [reducible non-instances]
protected def division_comm_monoid [division_comm_monoid M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
division_comm_monoid M₁ :=
{ ..hf.division_monoid f one mul inv div npow zpow, .. hf.comm_semigroup f mul }
/-- A type endowed with `1`, `*` and `⁻¹` is a group,
if it admits an injective map that preserves `1`, `*` and `⁻¹` to a group.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive group,
if it admits an injective map that preserves `0` and `+` to an additive group."]
protected def group [group M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f (x⁻¹) = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
group M₁ :=
{ mul_left_inv := λ x, hf $ by erw [mul, inv, mul_left_inv, one],
.. hf.div_inv_monoid f one mul inv div npow zpow }
/-- A type endowed with `0`, `1` and `+` is an additive group with one,
if it admits an injective map that preserves `0`, `1` and `+` to an additive group with one.
See note [reducible non-instances]. -/
@[reducible]
protected def add_group_with_one {M₁} [has_zero M₁] [has_one M₁] [has_add M₁] [has_smul ℕ M₁]
[has_neg M₁] [has_sub M₁] [has_smul ℤ M₁] [has_nat_cast M₁] [has_int_cast M₁]
[add_group_with_one M₂] (f : M₁ → M₂) (hf : injective f)
(zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y)
(neg : ∀ x, f (- x) = - f x) (sub : ∀ x y, f (x - y) = f x - f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (zsmul : ∀ x (n : ℤ), f (n • x) = n • f x)
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) :
add_group_with_one M₁ :=
{ int_cast := coe,
int_cast_of_nat := λ n, hf (by simp only [nat_cast, int_cast, int.cast_coe_nat]),
int_cast_neg_succ_of_nat :=
λ n, hf (by erw [int_cast, neg, nat_cast, int.cast_neg, int.cast_coe_nat]),
.. hf.add_group f zero add neg sub nsmul zsmul,
.. hf.add_monoid_with_one f zero one add nsmul nat_cast }
/-- A type endowed with `1`, `*` and `⁻¹` is a commutative group,
if it admits an injective map that preserves `1`, `*` and `⁻¹` to a commutative group.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive commutative group,
if it admits an injective map that preserves `0` and `+` to an additive commutative group."]
protected def comm_group [comm_group M₂] (f : M₁ → M₂) (hf : injective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f (x⁻¹) = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
comm_group M₁ :=
{ .. hf.comm_monoid f one mul npow, .. hf.group f one mul inv div npow zpow }
end injective
/-!
### Surjective
-/
namespace surjective
variables {M₁ : Type*} {M₂ : Type*} [has_mul M₂]
/-- A type endowed with `*` is a semigroup,
if it admits a surjective map that preserves `*` from a semigroup.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `+` is an additive semigroup,
if it admits a surjective map that preserves `+` from an additive semigroup."]
protected def semigroup [semigroup M₁] (f : M₁ → M₂) (hf : surjective f)
(mul : ∀ x y, f (x * y) = f x * f y) :
semigroup M₂ :=
{ mul_assoc := hf.forall₃.2 $ λ x y z, by simp only [← mul, mul_assoc],
..‹has_mul M₂› }
/-- A type endowed with `*` is a commutative semigroup,
if it admits a surjective map that preserves `*` from a commutative semigroup.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `+` is an additive commutative semigroup,
if it admits a surjective map that preserves `+` from an additive commutative semigroup."]
protected def comm_semigroup [comm_semigroup M₁] (f : M₁ → M₂) (hf : surjective f)
(mul : ∀ x y, f (x * y) = f x * f y) :
comm_semigroup M₂ :=
{ mul_comm := hf.forall₂.2 $ λ x y, by erw [← mul, ← mul, mul_comm],
.. hf.semigroup f mul }
variables [has_one M₂]
/-- A type endowed with `1` and `*` is a mul_one_class,
if it admits a surjective map that preserves `1` and `*` from a mul_one_class.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an add_zero_class,
if it admits a surjective map that preserves `0` and `+` to an add_zero_class."]
protected def mul_one_class [mul_one_class M₁] (f : M₁ → M₂) (hf : surjective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) :
mul_one_class M₂ :=
{ one_mul := hf.forall.2 $ λ x, by erw [← one, ← mul, one_mul],
mul_one := hf.forall.2 $ λ x, by erw [← one, ← mul, mul_one],
..‹has_one M₂›, ..‹has_mul M₂› }
variables [has_pow M₂ ℕ]
/-- A type endowed with `1` and `*` is a monoid,
if it admits a surjective map that preserves `1` and `*` to a monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive monoid,
if it admits a surjective map that preserves `0` and `+` to an additive monoid.
This version takes a custom `nsmul` as a `[has_smul ℕ M₂]` argument."]
protected def monoid [monoid M₁] (f : M₁ → M₂) (hf : surjective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
monoid M₂ :=
{ npow := λ n x, x ^ n,
npow_zero' := hf.forall.2 $ λ x, by erw [←npow, pow_zero, ←one],
npow_succ' := λ n, hf.forall.2 $ λ x, by erw [←npow, pow_succ, ←npow, ←mul],
.. hf.semigroup f mul, .. hf.mul_one_class f one mul }
/-- A type endowed with `0`, `1` and `+` is an additive monoid with one,
if it admits a surjective map that preserves `0`, `1` and `*` from an additive monoid with one.
See note [reducible non-instances]. -/
@[reducible]
protected def add_monoid_with_one
{M₂} [has_zero M₂] [has_one M₂] [has_add M₂] [has_smul ℕ M₂] [has_nat_cast M₂]
[add_monoid_with_one M₁] (f : M₁ → M₂) (hf : surjective f)
(zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x)
(nat_cast : ∀ n : ℕ, f n = n) :
add_monoid_with_one M₂ :=
{ nat_cast := coe,
nat_cast_zero := by { rw [← nat_cast, nat.cast_zero, zero], refl },
nat_cast_succ := λ n, by { rw [← nat_cast, nat.cast_succ, add, one, nat_cast], refl },
one := 1, .. hf.add_monoid f zero add nsmul }
/-- A type endowed with `1` and `*` is a commutative monoid,
if it admits a surjective map that preserves `1` and `*` from a commutative monoid.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive commutative monoid,
if it admits a surjective map that preserves `0` and `+` to an additive commutative monoid."]
protected def comm_monoid [comm_monoid M₁] (f : M₁ → M₂) (hf : surjective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) :
comm_monoid M₂ :=
{ .. hf.comm_semigroup f mul, .. hf.monoid f one mul npow }
/-- A type has an involutive inversion if it admits a surjective map that preserves `⁻¹` to a type
which has an involutive inversion. -/
@[reducible, to_additive "A type has an involutive negation if it admits a surjective map that
preserves `⁻¹` to a type which has an involutive inversion."] --See note [reducible non-instances]
protected def has_involutive_inv {M₂ : Type*} [has_inv M₂] [has_involutive_inv M₁]
(f : M₁ → M₂) (hf : surjective f) (inv : ∀ x, f x⁻¹ = (f x)⁻¹) :
has_involutive_inv M₂ :=
{ inv := has_inv.inv,
inv_inv := hf.forall.2 $ λ x, by erw [←inv, ←inv, inv_inv] }
variables [has_inv M₂] [has_div M₂] [has_pow M₂ ℤ]
/-- A type endowed with `1`, `*`, `⁻¹`, and `/` is a `div_inv_monoid`
if it admits a surjective map that preserves `1`, `*`, `⁻¹`, and `/` to a `div_inv_monoid`.
See note [reducible non-instances]. -/
@[reducible, to_additive sub_neg_monoid
"A type endowed with `0`, `+`, unary `-`, and binary `-` is a `sub_neg_monoid`
if it admits a surjective map that preserves `0`, `+`, unary `-`, and binary `-` to
a `sub_neg_monoid`."]
protected def div_inv_monoid [div_inv_monoid M₁]
(f : M₁ → M₂) (hf : surjective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f x⁻¹ = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
div_inv_monoid M₂ :=
{ zpow := λ n x, x ^ n,
zpow_zero' := hf.forall.2 $ λ x, by erw [←zpow, zpow_zero, ←one],
zpow_succ' := λ n, hf.forall.2 $ λ x, by
erw [←zpow, ←zpow, zpow_of_nat, zpow_of_nat, pow_succ, ←mul],
zpow_neg' := λ n, hf.forall.2 $ λ x, by
erw [←zpow, ←zpow, zpow_neg_succ_of_nat, zpow_coe_nat, inv],
div_eq_mul_inv := hf.forall₂.2 $ λ x y, by erw [← inv, ← mul, ← div, div_eq_mul_inv],
.. hf.monoid f one mul npow, .. ‹has_div M₂›, .. ‹has_inv M₂› }
/-- A type endowed with `1`, `*` and `⁻¹` is a group,
if it admits a surjective map that preserves `1`, `*` and `⁻¹` to a group.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive group,
if it admits a surjective map that preserves `0` and `+` to an additive group."]
protected def group [group M₁] (f : M₁ → M₂) (hf : surjective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f (x⁻¹) = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
group M₂ :=
{ mul_left_inv := hf.forall.2 $ λ x, by erw [← inv, ← mul, mul_left_inv, one]; refl,
.. hf.div_inv_monoid f one mul inv div npow zpow }
/-- A type endowed with `0`, `1`, `+` is an additive group with one,
if it admits a surjective map that preserves `0`, `1`, and `+` to an additive group with one.
See note [reducible non-instances]. -/
protected def add_group_with_one
{M₂} [has_zero M₂] [has_one M₂] [has_add M₂] [has_neg M₂] [has_sub M₂]
[has_smul ℕ M₂] [has_smul ℤ M₂] [has_nat_cast M₂] [has_int_cast M₂]
[add_group_with_one M₁] (f : M₁ → M₂) (hf : surjective f)
(zero : f 0 = 0) (one : f 1 = 1) (add : ∀ x y, f (x + y) = f x + f y)
(neg : ∀ x, f (- x) = - f x) (sub : ∀ x y, f (x - y) = f x - f y)
(nsmul : ∀ x (n : ℕ), f (n • x) = n • f x) (zsmul : ∀ x (n : ℤ), f (n • x) = n • f x)
(nat_cast : ∀ n : ℕ, f n = n) (int_cast : ∀ n : ℤ, f n = n) :
add_group_with_one M₂ :=
{ int_cast := coe,
int_cast_of_nat := λ n, by rw [← int_cast, int.cast_coe_nat, nat_cast],
int_cast_neg_succ_of_nat := λ n,
by { rw [← int_cast, int.cast_neg, int.cast_coe_nat, neg, nat_cast], refl },
.. hf.add_monoid_with_one f zero one add nsmul nat_cast,
.. hf.add_group f zero add neg sub nsmul zsmul }
/-- A type endowed with `1`, `*`, `⁻¹`, and `/` is a commutative group,
if it admits a surjective map that preserves `1`, `*`, `⁻¹`, and `/` from a commutative group.
See note [reducible non-instances]. -/
@[reducible, to_additive
"A type endowed with `0` and `+` is an additive commutative group,
if it admits a surjective map that preserves `0` and `+` to an additive commutative group."]
protected def comm_group [comm_group M₁] (f : M₁ → M₂) (hf : surjective f)
(one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f (x⁻¹) = (f x)⁻¹)
(div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n)
(zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) :
comm_group M₂ :=
{ .. hf.comm_monoid f one mul npow, .. hf.group f one mul inv div npow zpow }
end surjective
end function