Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Bryan Gin-ge Chen. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Bryan Gin-ge Chen, Yury Kudryashov | |
-/ | |
import algebra.hom.group | |
/-! | |
# Extensionality lemmas for monoid and group structures | |
In this file we prove extensionality lemmas for `monoid` and higher algebraic structures with one | |
binary operation. Extensionality lemmas for structures that are lower in the hierarchy can be found | |
in `algebra.group.defs`. | |
## Implementation details | |
To get equality of `npow` etc, we define a monoid homomorphism between two monoid structures on the | |
same type, then apply lemmas like `monoid_hom.map_div`, `monoid_hom.map_pow` etc. | |
## Tags | |
monoid, group, extensionality | |
-/ | |
universe u | |
@[ext, to_additive] | |
lemma monoid.ext {M : Type u} ⦃m₁ m₂ : monoid M⦄ (h_mul : m₁.mul = m₂.mul) : m₁ = m₂ := | |
begin | |
have h₁ : (@monoid.to_mul_one_class _ m₁).one = (@monoid.to_mul_one_class _ m₂).one, | |
from congr_arg (@mul_one_class.one M) (mul_one_class.ext h_mul), | |
set f : @monoid_hom M M (@monoid.to_mul_one_class _ m₁) (@monoid.to_mul_one_class _ m₂) := | |
{ to_fun := id, map_one' := h₁, map_mul' := λ x y, congr_fun (congr_fun h_mul x) y }, | |
have hpow : m₁.npow = m₂.npow, by { ext n x, exact @monoid_hom.map_pow M M m₁ m₂ f x n }, | |
unfreezingI { cases m₁, cases m₂ }, | |
congr; assumption | |
end | |
@[to_additive] | |
lemma comm_monoid.to_monoid_injective {M : Type u} : | |
function.injective (@comm_monoid.to_monoid M) := | |
begin | |
rintros ⟨⟩ ⟨⟩ h, | |
congr'; injection h, | |
end | |
@[ext, to_additive] | |
lemma comm_monoid.ext {M : Type*} ⦃m₁ m₂ : comm_monoid M⦄ (h_mul : m₁.mul = m₂.mul) : m₁ = m₂ := | |
comm_monoid.to_monoid_injective $ monoid.ext h_mul | |
@[to_additive] | |
lemma left_cancel_monoid.to_monoid_injective {M : Type u} : | |
function.injective (@left_cancel_monoid.to_monoid M) := | |
begin | |
rintros ⟨⟩ ⟨⟩ h, | |
congr'; injection h, | |
end | |
@[ext, to_additive] | |
lemma left_cancel_monoid.ext {M : Type u} ⦃m₁ m₂ : left_cancel_monoid M⦄ | |
(h_mul : m₁.mul = m₂.mul) : m₁ = m₂ := | |
left_cancel_monoid.to_monoid_injective $ monoid.ext h_mul | |
@[to_additive] | |
lemma right_cancel_monoid.to_monoid_injective {M : Type u} : | |
function.injective (@right_cancel_monoid.to_monoid M) := | |
begin | |
rintros ⟨⟩ ⟨⟩ h, | |
congr'; injection h, | |
end | |
@[ext, to_additive] | |
lemma right_cancel_monoid.ext {M : Type u} ⦃m₁ m₂ : right_cancel_monoid M⦄ | |
(h_mul : m₁.mul = m₂.mul) : m₁ = m₂ := | |
right_cancel_monoid.to_monoid_injective $ monoid.ext h_mul | |
@[to_additive] | |
lemma cancel_monoid.to_left_cancel_monoid_injective {M : Type u} : | |
function.injective (@cancel_monoid.to_left_cancel_monoid M) := | |
begin | |
rintros ⟨⟩ ⟨⟩ h, | |
congr'; injection h, | |
end | |
@[ext, to_additive] | |
lemma cancel_monoid.ext {M : Type*} ⦃m₁ m₂ : cancel_monoid M⦄ | |
(h_mul : m₁.mul = m₂.mul) : m₁ = m₂ := | |
cancel_monoid.to_left_cancel_monoid_injective $ left_cancel_monoid.ext h_mul | |
@[to_additive] | |
lemma cancel_comm_monoid.to_comm_monoid_injective {M : Type u} : | |
function.injective (@cancel_comm_monoid.to_comm_monoid M) := | |
begin | |
rintros ⟨⟩ ⟨⟩ h, | |
congr'; injection h, | |
end | |
@[ext, to_additive] | |
lemma cancel_comm_monoid.ext {M : Type*} ⦃m₁ m₂ : cancel_comm_monoid M⦄ | |
(h_mul : m₁.mul = m₂.mul) : m₁ = m₂ := | |
cancel_comm_monoid.to_comm_monoid_injective $ comm_monoid.ext h_mul | |
@[ext, to_additive] | |
lemma div_inv_monoid.ext {M : Type*} ⦃m₁ m₂ : div_inv_monoid M⦄ (h_mul : m₁.mul = m₂.mul) | |
(h_inv : m₁.inv = m₂.inv) : m₁ = m₂ := | |
begin | |
have h₁ : (@div_inv_monoid.to_monoid _ m₁).one = (@div_inv_monoid.to_monoid _ m₂).one, | |
from congr_arg (@monoid.one M) (monoid.ext h_mul), | |
set f : @monoid_hom M M (by letI := m₁; apply_instance) (by letI := m₂; apply_instance) := | |
{ to_fun := id, map_one' := h₁, map_mul' := λ x y, congr_fun (congr_fun h_mul x) y }, | |
have hpow : (@div_inv_monoid.to_monoid _ m₁).npow = (@div_inv_monoid.to_monoid _ m₂).npow := | |
congr_arg (@monoid.npow M) (monoid.ext h_mul), | |
have hzpow : m₁.zpow = m₂.zpow, | |
{ ext m x, | |
exact @monoid_hom.map_zpow' M M m₁ m₂ f (congr_fun h_inv) x m }, | |
have hdiv : m₁.div = m₂.div, | |
{ ext a b, | |
exact @map_div' M M _ m₁ m₂ _ f (congr_fun h_inv) a b }, | |
unfreezingI { cases m₁, cases m₂ }, | |
congr, exacts [h_mul, h₁, hpow, h_inv, hdiv, hzpow] | |
end | |
@[ext, to_additive] | |
lemma group.ext {G : Type*} ⦃g₁ g₂ : group G⦄ (h_mul : g₁.mul = g₂.mul) : g₁ = g₂ := | |
begin | |
set f := @monoid_hom.mk' G G (by letI := g₁; apply_instance) g₂ id | |
(λ a b, congr_fun (congr_fun h_mul a) b), | |
exact group.to_div_inv_monoid_injective (div_inv_monoid.ext h_mul | |
(funext $ @monoid_hom.map_inv G G g₁ (@group.to_division_monoid _ g₂) f)) | |
end | |
@[ext, to_additive] | |
lemma comm_group.ext {G : Type*} ⦃g₁ g₂ : comm_group G⦄ | |
(h_mul : g₁.mul = g₂.mul) : g₁ = g₂ := | |
comm_group.to_group_injective $ group.ext h_mul | |