Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let string_INDUCT,string_RECURSION = define_type | |
"string = String num";; | |
parse_as_infix("&&",(16,"right"));; | |
parse_as_infix("||",(15,"right"));; | |
parse_as_infix("-->",(14,"right"));; | |
parse_as_infix("<->",(13,"right"));; | |
parse_as_prefix "Not";; | |
parse_as_prefix "Box";; | |
parse_as_prefix "Diamond";; | |
let form_INDUCT,form_RECURSION = define_type | |
"form = False | |
| True | |
| Atom string | |
| Not form | |
| && form form | |
| || form form | |
| --> form form | |
| <-> form form | |
| Box form | |
| Diamond form";; | |
let holds = define | |
`(holds (W,R) V False w <=> F) /\ | |
(holds (W,R) V True w <=> T) /\ | |
(holds (W,R) V (Atom a) w <=> V a w) /\ | |
(holds (W,R) V (Not p) w <=> ~(holds (W,R) V p w)) /\ | |
(holds (W,R) V (p && q) w <=> holds (W,R) V p w /\ holds (W,R) V q w) /\ | |
(holds (W,R) V (p || q) w <=> holds (W,R) V p w \/ holds (W,R) V q w) /\ | |
(holds (W,R) V (p --> q) w <=> holds (W,R) V p w ==> holds (W,R) V q w) /\ | |
(holds (W,R) V (p <-> q) w <=> holds (W,R) V p w <=> holds (W,R) V q w) /\ | |
(holds (W,R) V (Box p) w <=> | |
!w'. w' IN W /\ R w w' ==> holds (W,R) V p w') /\ | |
(holds (W,R) V (Diamond p) w <=> | |
?w'. w' IN W /\ R w w' /\ holds (W,R) V p w')`;; | |
let holds_in = new_definition | |
`holds_in (W,R) p = !V w. w IN W ==> holds (W,R) V p w`;; | |
parse_as_infix("|=",(11,"right"));; | |
let valid = new_definition | |
`L |= p <=> !f. L f ==> holds_in f p`;; | |
let S4 = new_definition | |
`S4(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\ | |
(!x. x IN W ==> R x x) /\ | |
(!x y z. R x y /\ R y z ==> R x z)`;; | |
let LTL = new_definition | |
`LTL(W,R) <=> (W = UNIV) /\ !x y:num. R x y <=> x <= y`;; | |
let GL = new_definition | |
`GL(W,R) <=> ~(W = {}) /\ (!x y. R x y ==> x IN W /\ y IN W) /\ | |
WF(\x y. R y x) /\ (!x y z:num. R x y /\ R y z ==> R x z)`;; | |
let MODAL_TAC = | |
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];; | |
let MODAL_RULE tm = prove(tm,MODAL_TAC);; | |
let TAUT_1 = MODAL_RULE `L |= Box True`;; | |
let TAUT_2 = MODAL_RULE `L |= Box(A --> B) --> Box A --> Box B`;; | |
let TAUT_3 = MODAL_RULE `L |= Diamond(A --> B) --> Box A --> Diamond B`;; | |
let TAUT_4 = MODAL_RULE `L |= Box(A --> B) --> Diamond A --> Diamond B`;; | |
let TAUT_5 = MODAL_RULE `L |= Box(A && B) --> Box A && Box B`;; | |
let TAUT_6 = MODAL_RULE `L |= Diamond(A || B) --> Diamond A || Diamond B`;; | |
let HOLDS_FORALL_LEMMA = prove | |
(`!W R P. (!A V. P(holds (W,R) V A)) <=> (!p:W->bool. P p)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL [DISCH_TAC THEN GEN_TAC; SIMP_TAC[]] THEN | |
POP_ASSUM(MP_TAC o SPECL [`Atom a`; `\a:string. (p:W->bool)`]) THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN | |
REWRITE_TAC[holds] THEN REWRITE_TAC[ETA_AX]);; | |
let MODAL_SCHEMA_TAC = | |
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> REWRITE_TAC[th]);; | |
let MODAL_REFL = prove | |
(`!W R. (!w:W. w IN W ==> R w w) <=> !A. holds_in (W,R) (Box A --> A)`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let MODAL_TRANS = prove | |
(`!W R. (!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\ | |
R w w' /\ R w' w'' ==> R w w'') <=> | |
(!A. holds_in (W,R) (Box A --> Box(Box A)))`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let MODAL_SERIAL = prove | |
(`!W R. (!w:W. w IN W ==> ?w'. w' IN W /\ R w w') <=> | |
(!A. holds_in (W,R) (Box A --> Diamond A))`, | |
MODAL_SCHEMA_TAC THEN MESON_TAC[]);; | |
let MODAL_SYM = prove | |
(`!W R. (!w w':W. w IN W /\ w' IN W /\ R w w' ==> R w' w) <=> | |
(!A. holds_in (W,R) (A --> Box(Diamond A)))`, | |
MODAL_SCHEMA_TAC THEN EQ_TAC THENL [MESON_TAC[]; REPEAT STRIP_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o SPECL [`\v:W. v = w`; `w:W`]) THEN ASM_MESON_TAC[]);; | |
let MODAL_WFTRANS = prove | |
(`!W R. (!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\ | |
WF(\x y. x IN W /\ y IN W /\ R y x) <=> | |
(!A. holds_in (W,R) (Box(Box A --> A) --> Box A))`, | |
MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN EQ_TAC THEN | |
STRIP_TAC THEN REPEAT CONJ_TAC THENL | |
[REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC; | |
X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL | |
[`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`; `w:W`]); | |
X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN | |
MATCH_MP_TAC MONO_FORALL] THEN | |
ASM_MESON_TAC[]);; | |