Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
needs "Tutorial/Vectors.ml";; | |
let points = | |
[((0, -1), (0, -1), (2, 0)); ((0, -1), (0, 0), (2, 0)); | |
((0, -1), (0, 1), (2, 0)); ((0, -1), (2, 0), (0, -1)); | |
((0, -1), (2, 0), (0, 0)); ((0, -1), (2, 0), (0, 1)); | |
((0, 0), (0, -1), (2, 0)); ((0, 0), (0, 0), (2, 0)); | |
((0, 0), (0, 1), (2, 0)); ((0, 0), (2, 0), (-2, 0)); | |
((0, 0), (2, 0), (0, -1)); ((0, 0), (2, 0), (0, 0)); | |
((0, 0), (2, 0), (0, 1)); ((0, 0), (2, 0), (2, 0)); | |
((0, 1), (0, -1), (2, 0)); ((0, 1), (0, 0), (2, 0)); | |
((0, 1), (0, 1), (2, 0)); ((0, 1), (2, 0), (0, -1)); | |
((0, 1), (2, 0), (0, 0)); ((0, 1), (2, 0), (0, 1)); | |
((2, 0), (-2, 0), (0, 0)); ((2, 0), (0, -1), (0, -1)); | |
((2, 0), (0, -1), (0, 0)); ((2, 0), (0, -1), (0, 1)); | |
((2, 0), (0, 0), (-2, 0)); ((2, 0), (0, 0), (0, -1)); | |
((2, 0), (0, 0), (0, 0)); ((2, 0), (0, 0), (0, 1)); | |
((2, 0), (0, 0), (2, 0)); ((2, 0), (0, 1), (0, -1)); | |
((2, 0), (0, 1), (0, 0)); ((2, 0), (0, 1), (0, 1)); | |
((2, 0), (2, 0), (0, 0))];; | |
let ortho = | |
let mult (x1,y1) (x2,y2) = (x1 * x2 + 2 * y1 * y2,x1 * y2 + y1 * x2) | |
and add (x1,y1) (x2,y2) = (x1 + x2,y1 + y2) in | |
let dot (x1,y1,z1) (x2,y2,z2) = | |
end_itlist add [mult x1 x2; mult y1 y2; mult z1 z2] in | |
fun (v1,v2) -> dot v1 v2 = (0,0);; | |
let opairs = filter ortho (allpairs (fun a b -> a,b) points points);; | |
let otrips = filter (fun (a,b,c) -> ortho(a,b) && ortho(a,c)) | |
(allpairs (fun a (b,c) -> a,b,c) points opairs);; | |
let hol_of_value = | |
let tm0 = `&0` and tm1 = `&2` and tm2 = `-- &2` | |
and tm3 = `sqrt(&2)` and tm4 = `--sqrt(&2)` in | |
function 0,0 -> tm0 | 2,0 -> tm1 | -2,0 -> tm2 | 0,1 -> tm3 | 0,-1 -> tm4;; | |
let hol_of_point = | |
let ptm = `vector:(real)list->real^3` in | |
fun (x,y,z) -> mk_comb(ptm,mk_flist(map hol_of_value [x;y;z]));; | |
let SQRT_2_POW = prove | |
(`sqrt(&2) pow 2 = &2`, | |
SIMP_TAC[SQRT_POW_2; REAL_POS]);; | |
let PROVE_NONTRIVIAL = | |
let ptm = `~(x :real^3 = vec 0)` and xtm = `x:real^3` in | |
fun x -> prove(vsubst [hol_of_point x,xtm] ptm, | |
GEN_REWRITE_TAC RAND_CONV [VECTOR_ZERO] THEN | |
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);; | |
let PROVE_ORTHOGONAL = | |
let ptm = `orthogonal:real^3->real^3->bool` in | |
fun (x,y) -> | |
prove(list_mk_comb(ptm,[hol_of_point x;hol_of_point y]), | |
ONCE_REWRITE_TAC[ORTHOGONAL_VECTOR] THEN | |
MP_TAC SQRT_2_POW THEN CONV_TAC REAL_RING);; | |
let ppoint = let p = `P:real^3->bool` in fun v -> mk_comb(p,hol_of_point v);; | |
let DEDUCE_POINT_TAC pts = | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
MAP_EVERY EXISTS_TAC (map hol_of_point pts) THEN | |
ASM_REWRITE_TAC[];; | |
let rec KOCHEN_SPECKER_TAC set_0 set_1 = | |
if intersect set_0 set_1 <> [] then | |
let p = ppoint(hd(intersect set_0 set_1)) in | |
let th1 = ASSUME(mk_neg p) and th2 = ASSUME p in | |
ACCEPT_TAC(EQ_MP (EQF_INTRO th1) th2) | |
else | |
let prf_1 = filter (fun (a,b) -> mem a set_0) opairs | |
and prf_0 = filter (fun (a,b,c) -> mem a set_1 && mem b set_1) otrips in | |
let new_1 = map snd prf_1 and new_0 = map (fun (a,b,c) -> c) prf_0 in | |
let set_0' = union new_0 set_0 and set_1' = union new_1 set_1 in | |
let del_0 = subtract set_0' set_0 and del_1 = subtract set_1' set_1 in | |
if del_0 <> [] || del_1 <> [] then | |
let prv_0 x = | |
let a,b,_ = find (fun (a,b,c) -> c = x) prf_0 in DEDUCE_POINT_TAC [a;b] | |
and prv_1 x = | |
let a,_ = find (fun (a,c) -> c = x) prf_1 in DEDUCE_POINT_TAC [a] in | |
let newuns = list_mk_conj | |
(map ppoint del_1 @ map (mk_neg o ppoint) del_0) | |
and tacs = map prv_1 del_1 @ map prv_0 del_0 in | |
SUBGOAL_THEN newuns STRIP_ASSUME_TAC THENL | |
[REPEAT CONJ_TAC THENL tacs; ALL_TAC] THEN | |
KOCHEN_SPECKER_TAC set_0' set_1' | |
else | |
let v = find (fun i -> not(mem i set_0) && not(mem i set_1)) points in | |
ASM_CASES_TAC (ppoint v) THENL | |
[KOCHEN_SPECKER_TAC set_0 (v::set_1); | |
KOCHEN_SPECKER_TAC (v::set_0) set_1];; | |
let KOCHEN_SPECKER_LEMMA = prove | |
(`!P. (!x y:real^3. ~(x = vec 0) /\ ~(y = vec 0) /\ orthogonal x y /\ | |
~(P x) ==> P y) /\ | |
(!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\ | |
orthogonal x y /\ orthogonal x z /\ orthogonal y z /\ | |
P x /\ P y ==> ~(P z)) | |
==> F`, | |
REPEAT STRIP_TAC THEN | |
MAP_EVERY (ASSUME_TAC o PROVE_NONTRIVIAL) points THEN | |
MAP_EVERY (ASSUME_TAC o PROVE_ORTHOGONAL) opairs THEN | |
KOCHEN_SPECKER_TAC [] []);; | |
let NONTRIVIAL_CROSS = prove | |
(`!x y. orthogonal x y /\ ~(x = vec 0) /\ ~(y = vec 0) | |
==> ~(x cross y = vec 0)`, | |
REWRITE_TAC[GSYM DOT_EQ_0] THEN VEC3_TAC);; | |
let KOCHEN_SPECKER_PARADOX = prove | |
(`~(?spin:real^3->num. | |
!x y z. ~(x = vec 0) /\ ~(y = vec 0) /\ ~(z = vec 0) /\ | |
orthogonal x y /\ orthogonal x z /\ orthogonal y z | |
==> (spin x = 0) /\ (spin y = 1) /\ (spin z = 1) \/ | |
(spin x = 1) /\ (spin y = 0) /\ (spin z = 1) \/ | |
(spin x = 1) /\ (spin y = 1) /\ (spin z = 0))`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `\x:real^3. spin(x) = 1` KOCHEN_SPECKER_LEMMA) THEN | |
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN | |
POP_ASSUM MP_TAC THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN | |
ASM_MESON_TAC[ARITH_RULE `~(1 = 0)`; NONTRIVIAL_CROSS; ORTHOGONAL_CROSS]);; | |