Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /rqe_tactics_ext.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.43 kB
(* ---------------------------------------------------------------------- *)
(* Labels *)
(* ---------------------------------------------------------------------- *)
let labels_flag = ref false;;
let LABEL_ALL_TAC:tactic =
let mk_label avoid =
let rec mk_one_label i avoid =
let label = "Z-"^(string_of_int i) in
if not(mem label avoid) then label else mk_one_label (i+1) avoid in
mk_one_label 0 avoid in
let update_label i asl =
let rec f_at_i f j =
function [] -> []
| a::b -> if (j=0) then (f a)::b else a::(f_at_i f (j-1) b) in
let avoid = map fst asl in
let current = el i avoid in
let new_label = mk_label avoid in
if (String.length current > 0) then asl else
f_at_i (fun (_,y) -> (new_label,y) ) i asl in
fun (asl,w) ->
let aslp = ref asl in
(for i=0 to ((length asl)-1) do (aslp := update_label i !aslp) done;
(ALL_TAC (!aslp,w)));;
let e tac = refine(by(VALID
(if !labels_flag then (tac THEN LABEL_ALL_TAC) else tac)));;
(* ---------------------------------------------------------------------- *)
(* Refinement *)
(* ---------------------------------------------------------------------- *)
let prove_by_refinement(t,(tacl:tactic list)) =
let gstate = mk_goalstate ([],t) in
let _,sgs,just = rev_itlist
(fun tac gs -> by
(if !labels_flag then (tac THEN LABEL_ALL_TAC) else tac) gs)
tacl gstate in
let th = if sgs = [] then just null_inst []
else failwith "BY_REFINEMENT_PROOF: Unsolved goals" in
let t' = concl th in
if t' = t then th else
try EQ_MP (ALPHA t' t) th
with Failure _ -> failwith "prove_by_refinement: generated wrong theorem";;
(* ---------------------------------------------------------------------- *)
(* Term Type Inference Tactics *)
(* ---------------------------------------------------------------------- *)
let exclude_list = ref
["=";"FINITE";"COND";"@";"!";"?";"UNION";"DELETE";"CARD";"swap";"IN"];;
(* exclude is needed because polymorphic operators were causing problems *)
let get_var_list tm =
let rec get_var_list tm =
match tm with
Var(name,ty) -> [name,ty]
| Const(name,ty) -> [name,ty]
| Abs(bv,bod) -> union (get_var_list bv) (get_var_list bod)
| Comb(s,t) -> union (get_var_list s) (get_var_list t) in
filter (fun x -> not (mem (fst x) !exclude_list)) (get_var_list tm);;
let rec auto_theta new_type old_type =
let tyvar_prefix = "?" in
let is_generated ty_name =
let first_char = hd(explode ty_name) in
if first_char = tyvar_prefix then true else false in
match new_type with
Tyvar(ns) ->
(match old_type with
Tyvar(os) ->
if is_generated ns then [old_type,new_type] else []
| Tyapp (old_name,old_list) -> [old_type,new_type])
| Tyapp(new_ty_op,new_ty_list) ->
(match old_type with
Tyvar _ -> []
| Tyapp (old_ty_op,old_ty_list) ->
if new_ty_op = old_ty_op then
itlist2 (fun newt oldt b -> union (auto_theta newt oldt) b)
new_ty_list old_ty_list []
else []);;
let rec auto_theta_list newl oldl =
match newl with
[] -> []
| (h::t) ->
let head_list =
(try
let new_name,new_type = h in
let old_type = assoc new_name oldl in
(auto_theta new_type old_type)
with Failure _ -> []) in
union head_list (auto_theta_list t oldl);;
let auto_type new_tm old_tm =
let old_list = get_var_list old_tm in
let new_list = get_var_list new_tm in
let theta = auto_theta_list new_list old_list in
inst theta new_tm;;
let rec auto_type_list tm tml =
match tml with
[] -> tm
| (h::t) -> auto_type_list (auto_type tm h) t;;
let auto_type_goal tm (asl,w) =
let thm_list = snd(unzip asl) in
let term_list = map (fun x -> snd (dest_thm x)) thm_list in
auto_type_list tm ([w] @ term_list);;
let TYPE_TAC (f:term->tactic) tm =
function (asl,w) as g ->
let typed_term = auto_type_goal tm g in
f typed_term g;;
let TYPE_TACL (f:term list -> tactic) tml =
function (asl,w) as g ->
let typed_terms = map (C auto_type_goal g) tml in
f typed_terms g;;
(* ---------------------------------------------------------------------- *)
(* Unfiled *)
(* ---------------------------------------------------------------------- *)
let CLAIM t =
TYPE_TAC (C SUBGOAL_THEN MP_TAC) t;;
let lem = TAUT `(a = b) <=> (a ==> b) /\ (b ==> a)`;;
let MATCH_EQ_MP t1 t2 =
try EQ_MP t1 t2 with Failure _ ->
let k1 = (SPEC_ALL (PURE_REWRITE_RULE[lem] t1)) in
let left,right = CONJUNCT1 k1,CONJUNCT2 k1 in
try MATCH_MP left t2 with Failure _ ->
try MATCH_MP right t2 with Failure _ ->
failwith "MATCH_EQ_MP";;
let MATCH_EQ_MP_TAC thm =
let t1,t2 = EQ_IMP_RULE (SPEC_ALL thm) in
MATCH_MP_TAC t1 ORELSE MATCH_MP_TAC t2;;
let rec REPEAT_N_CONV n conv =
if n = 0 then ALL_CONV else conv THENC (REPEAT_N_CONV (n-1) conv);;
let rec REPEAT_N n tac =
if n = 0 then ALL_TAC else tac THEN REPEAT_N (n-1) tac;;
let dest_goal g =
let (asms,conc) = g in (asms:(string * thm) list),(conc:term);;
let DISJ_LCASE g =
let _,c = dest_goal g in
let l,r = dest_disj c in
let thm = ISPEC l EXCLUDED_MIDDLE in
(DISJ_CASES_TAC thm THENL [
DISJ1_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
DISJ2_TAC
]) g;;
let DISJ_RCASE g =
let _,c = dest_goal g in
let l,r = dest_disj c in
let thm = ISPEC r EXCLUDED_MIDDLE in
(DISJ_CASES_TAC thm THENL [
DISJ2_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC;
DISJ1_TAC
]) g;;
let CASES_ON tm =
let ty,_ = dest_type (type_of tm) in
match ty with
"num" ->
DISJ_CASES_TAC (SPEC tm num_CASES) THENL
[
POP_ASSUM SUBST1_TAC;
POP_ASSUM STRIP_ASSUME_TAC THEN POP_ASSUM SUBST1_TAC
]
| "bool" ->
DISJ_CASES_TAC (SPEC tm EXCLUDED_MIDDLE)
| _ -> failwith "not a case type";;
let CASES_ON t = TYPE_TAC CASES_ON t;;
let EXISTS_TAC t = TYPE_TAC EXISTS_TAC t;;
let REWRITE_ASSUMS thl = RULE_ASSUM_TAC (REWRITE_RULE thl);;
let ONCE_REWRITE_ASSUMS thl = RULE_ASSUM_TAC (ONCE_REWRITE_RULE thl);;
let REWRITE_ALL thl = REWRITE_ASSUMS thl THEN REWRITE_TAC thl;;
let USE_IASSUM n =
USE_THEN ("Z-" ^ string_of_int n);;
let PROVE_ASSUM_ANTECEDENT_TAC n =
fun ((asl,w) as g) ->
let assum = assoc ("Z-" ^ string_of_int n) asl in
let ant,_ = dest_imp (concl assum) in
SUBGOAL_THEN ant (fun x -> (USE_IASSUM n (fun y-> ASSUME_TAC (MATCH_MP y x)))) g;;
let FALSE_ANTECEDENT_TAC =
fun ((asl,w) as g) ->
let l,r = dest_imp w in
(SUBGOAL_THEN (mk_neg l) (fun x -> REWRITE_TAC[x])) g;;
let REWRITE_ASSUMS thl = RULE_ASSUM_TAC (REWRITE_RULE thl);;
let ONCE_REWRITE_ASSUMS thl = RULE_ASSUM_TAC (ONCE_REWRITE_RULE thl);;
let REWRITE_ALL_TAC l = REWRITE_ASSUMS l THEN REWRITE_TAC l;;
let rec MATCH_MPL thms =
match thms with
[thm] -> thm
| impl::ant::rest ->
MATCH_MPL ((MATCH_MP impl ant)::rest);;
let rec MATCH_EQ_MPL thms =
match thms with
[thm] -> thm
| impl::ant::rest ->
MATCH_EQ_MPL ((MATCH_EQ_MP impl ant)::rest);;
(*
MATCH_MPL [ASSUME `a ==> b ==> c ==> d`;ASSUME `a:bool`;ASSUME `b:bool`;ASSUME `c:bool`] ;;
*)
let (USE_ASSUM_LIST: string list -> thm_tactic -> tactic) =
fun l ttac ((asl,w) as g) ->
try
let l' = assoc_list l asl in
let l'' = map ttac l' in
(EVERY l'') g
with Failure _ -> failwith "USE_ASSUM_LIST";;
let (KEEP: string list -> tactic) =
fun l (asl,w) ->
try
let asl' = filter (fun x -> mem (fst x) l) asl in
ALL_TAC (asl',w)
with Failure _ -> failwith "USE_ASSUM_LIST";;
let PROVE_THM_ANTECEDENT_TAC thm =
let ant,cons = dest_imp (concl thm) in
SUBGOAL_THEN ant (fun x -> MP_TAC (MATCH_MP thm x));;
let MOVE_TO_FRONT s =
fun (asl,w) ->
let k,asl' = remove (fun x -> fst x = s) asl in
ALL_TAC (k::asl',w);;
let IGNORE x = ALL_TAC;;
let CCONTR_TAC =
MATCH_MP_TAC (TAUT `(~x ==> F) ==> x`) THEN STRIP_TAC;;
let DISCH_ASS = DISCH_THEN (fun x -> ASSUME_TAC x THEN MP_TAC x);;
let pgoal() =
!current_goalstack;;