Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ---------------------------------------------------------------------- *) | |
(* Util *) | |
(* ---------------------------------------------------------------------- *) | |
(* ---------------------------------------------------------------------- *) | |
(* Real Ordered Lists *) | |
(* ---------------------------------------------------------------------- *) | |
let real_ordered_list = new_recursive_definition list_RECURSION | |
`(real_ordered_list [] <=> T) /\ | |
(real_ordered_list (CONS h t) <=> | |
real_ordered_list t /\ | |
((t = []) \/ (h < HD t)))`;; | |
let ROL_EMPTY = EQT_ELIM (CONJUNCT1 real_ordered_list);; | |
let ROL_SING = prove_by_refinement( | |
`!x. real_ordered_list [x]`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_ordered_list]; | |
]);; | |
(* }}} *) | |
let ROL_TAIL = prove( | |
`!l. ~(l = []) /\ real_ordered_list l ==> real_ordered_list (TL l)`, | |
(* {{{ Proof *) | |
LIST_INDUCT_TAC THEN | |
MESON_TAC[real_ordered_list;TL]; | |
);; | |
(* }}} *) | |
let EL_CONS = prove_by_refinement( | |
`!l h n. EL n t = EL (SUC n) (CONS h t)`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[TL;EL]; | |
]);; | |
(* }}} *) | |
let NOT_ROL = prove_by_refinement( | |
`!l. ~(real_ordered_list l) ==> ?n. EL n l >= EL (SUC n) l`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[real_ordered_list]; | |
REWRITE_TAC[real_ordered_list;DE_MORGAN_THM]; | |
STRIP_TAC; | |
POP_ASSUM (fun x -> POP_ASSUM (fun y -> MP_TAC (MATCH_MP y x))); | |
STRIP_TAC; | |
EXISTS_TAC `SUC n`; | |
ASM_MESON_TAC[EL_CONS]; | |
EXISTS_TAC `0`; | |
REWRITE_TAC[EL;HD;TL;real_ge]; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let ROL_CONS = prove_by_refinement( | |
`!h t. real_ordered_list (CONS h t) ==> real_ordered_list t`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_ordered_list]; | |
REPEAT STRIP_TAC; | |
]);; | |
(* }}} *) | |
let ROL_CONS_CONS = prove_by_refinement( | |
`!h t. real_ordered_list (CONS h1 (CONS h2 t)) <=> | |
real_ordered_list (CONS h2 t) /\ h1 < h2`, | |
(* {{{ Proof *) | |
[ | |
REPEAT GEN_TAC; | |
EQ_TAC; | |
REWRITE_TAC[real_ordered_list]; | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL;HD]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
ASM_MESON_TAC[HD]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
ASM_MESON_TAC[HD]; | |
REWRITE_TAC[real_ordered_list]; | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL;HD]; | |
]);; | |
(* }}} *) | |
let ROL_APPEND = prove_by_refinement( | |
`!l1 l2. real_ordered_list (APPEND l1 l2) ==> | |
real_ordered_list l1 /\ real_ordered_list l2`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
MESON_TAC[APPEND;real_ordered_list]; | |
GEN_TAC; | |
REWRITE_TAC[APPEND]; | |
STRIP_TAC; | |
CLAIM `real_ordered_list (APPEND t l2)`; | |
ASM_MESON_TAC[ROL_CONS]; | |
STRIP_TAC; | |
CLAIM `real_ordered_list t /\ real_ordered_list l2`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
CASES_ON `t = []`; | |
ASM_MESON_TAC[real_ordered_list]; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[NOT_NIL]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[ROL_CONS_CONS]; | |
CONJ_TAC; | |
ASM_MESON_TAC[]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-4" MP_TAC; | |
POP_ASSUM SUBST1_TAC; | |
REWRITE_TAC[APPEND]; | |
ASM_MESON_TAC[ROL_CONS_CONS]; | |
]);; | |
(* }}} *) | |
let ROL_CONS_CONS_LT = prove_by_refinement( | |
`!h1 h2 t. real_ordered_list (CONS h1 (CONS h2 t)) ==> h1 < h2`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_ordered_list]; | |
REPEAT STRIP_TAC THEN | |
ASM_MESON_TAC[NOT_CONS_NIL;HD]; | |
]);; | |
(* }}} *) | |
let ROL_INSERT_THM = prove_by_refinement( | |
`!x l1 l2. | |
real_ordered_list l1 /\ real_ordered_list l2 /\ | |
~(l1 = []) /\ ~(l2 = []) /\ LAST l1 < x /\ x < HD l2 ==> | |
real_ordered_list (APPEND l1 (CONS x l2))`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[APPEND]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[APPEND;LAST_SING;NOT_CONS_NIL]; | |
REPEAT STRIP_TAC; | |
ASM_REWRITE_TAC[ROL_CONS_CONS;real_ordered_list]; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[NOT_NIL]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
CLAIM `real_ordered_list (APPEND t (CONS x l2))`; | |
REWRITE_ASSUMS[TAUT `(p ==> q ==> r) <=> (p /\ q ==> r)`]; | |
FIRST_ASSUM MATCH_MP_TAC; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[ROL_CONS]; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
ASM_MESON_TAC[LAST_CONS;NOT_CONS_NIL]; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
ASM_REWRITE_TAC[]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" (SUBST1_TAC o GSYM); | |
REWRITE_TAC[APPEND]; | |
STRIP_TAC; | |
REWRITE_TAC[ROL_CONS_CONS]; | |
STRIP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
ASM_MESON_TAC[ROL_CONS_CONS]; | |
]);; | |
(* }}} *) | |
let ROL_INSERT_FRONT_THM = prove_by_refinement( | |
`!x l. real_ordered_list l /\ ~(l = []) /\ x < HD l ==> | |
real_ordered_list (CONS x l)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[NOT_NIL;AND_IMP_THM]; | |
REPEAT STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[ROL_CONS_CONS;HD]; | |
]);; | |
(* }}} *) | |
let ROL_CONS_CONS_DELETE = prove_by_refinement( | |
`!h1 h2 t. real_ordered_list (CONS h1 (CONS h2 t)) ==> | |
real_ordered_list (CONS h1 t)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_ordered_list]; | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
REWRITE_ASSUMS[HD]; | |
ASM_MESON_TAC[REAL_LT_TRANS]; | |
]);; | |
(* }}} *) | |
let LAST_CONS_LT = prove_by_refinement( | |
`!x t h. real_ordered_list (CONS h t) /\ LAST (CONS h t) < x ==> h < x`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[LAST]; | |
REPEAT STRIP_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
CONJ_TAC; | |
ASM_MESON_TAC[ROL_CONS_CONS_DELETE]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[LAST]; | |
ASM_MESON_TAC[LAST;ROL_CONS_CONS;REAL_LT_TRANS]; | |
ASM_MESON_TAC[LAST_CONS;ROL_CONS_CONS_DELETE;LAST_CONS_CONS]; | |
]);; | |
(* }}} *) | |
let ROL_INSERT_BACK_THM = prove_by_refinement( | |
`!x l. real_ordered_list l /\ ~(l = []) /\ LAST l < x ==> | |
real_ordered_list (APPEND l [x])`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[APPEND;ROL_SING]; | |
LABEL_ALL_TAC; | |
STRIP_TAC; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[APPEND;ROL_CONS_CONS;ROL_SING]; | |
ASM_MESON_TAC[LAST;COND_CLAUSES]; | |
PROVE_ASSUM_ANTECEDENT_TAC 0; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[ROL_CONS]; | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC[LAST_CONS]; | |
REWRITE_TAC[APPEND]; | |
REWRITE_TAC[real_ordered_list]; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
DISJ2_TAC; | |
REWRITE_ASSUMS[NOT_NIL]; | |
LABEL_ALL_TAC; | |
USE_IASSUM 2 MP_TAC; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[HD_APPEND]; | |
ASM_MESON_TAC[ROL_CONS_CONS]; | |
]);; | |
(* }}} *) | |
(* | |
CHOP_REAL_LIST 1 `[&1; &2; &3]` --> |- [&1; &2; &3] = APPEND [&1; &2] [&3] | |
let n,l = 1,`[&1; &2; &3]` | |
*) | |
let CHOP_REAL_LIST n l = | |
let l' = dest_list l in | |
let l1',l2' = chop_list n l' in | |
let l1,l2 = mk_list (l1',real_ty),mk_list (l2',real_ty) in | |
let tm = mk_binop rappend l1 l2 in | |
GSYM (REWRITE_CONV [APPEND] tm);; | |
(* | |
ROL_CHOP_LT 2 | |
let n = 1 | |
*) | |
let ROL_CHOP_LT n thm = | |
let thm' = funpow (n - 1) (MATCH_MP ROL_CONS) thm in | |
CONJUNCT2 (PURE_REWRITE_RULE[ROL_CONS_CONS] thm');; | |
let t1 = prove_by_refinement( | |
`real_ordered_list [&1; &2; &3; &4]`, | |
[ | |
REWRITE_TAC[HD;real_ordered_list]; | |
REAL_ARITH_TAC; | |
]);; | |
(* | |
ROL_CHOP_LIST 2 |- real_ordered_list [&1; &2; &3; &4] --> | |
|- real_ordered_list [&1; &2; &3], | |
|- real_ordered_list [&4], | |
|- &3 < &4 | |
let thm = ASSUME `real_ordered_list [&1; &2; &3; &4]` | |
let n = 2 | |
ROL_CHOP_LIST 2 thm | |
*) | |
let ROL_CHOP_LIST n thm = | |
let _,l = dest_comb (concl thm) in | |
let lthm = CHOP_REAL_LIST n l in | |
let thm' = REWRITE_RULE[lthm] thm in | |
let thm'' = MATCH_MP ROL_APPEND thm' in | |
let [lthm;rthm] = CONJUNCTS thm'' in | |
let lt_thm = ROL_CHOP_LT n thm in | |
lthm,rthm,lt_thm;; | |
(* | |
rol_insert (|- x1 < x4 /\ x4 < x2) | |
(|- real_ordered_list [x1; x2; x3]) --> | |
(|- real_ordered_list [x1; x4; x2; x3]); | |
rol_insert (|- &2 < &5 /\ &5 < &6) (|- real_ordered_list [&1; &2; &6]) --> | |
(|- real_ordered_list [&1; &2; &5; &6]); | |
rol_insert (|- x4 < x1) | |
(|- real_ordered_list [x1; x2; x3]) --> | |
(|- real_ordered_list [x4; x1; x2; x3]); | |
rol_insert (|- x1 < x4) | |
(|- real_ordered_list [x1; x2; x3]) --> | |
(|- real_ordered_list [x1; x2; x3; x4]); | |
*) | |
let lem1 = prove( | |
`!e x l. e < x /\ (LAST l = e) ==> LAST l < x`, | |
MESON_TAC[]);; | |
let ROL_INSERT_MIDDLE place_thm rol_thm = | |
let [pl1;pl2] = CONJUNCTS place_thm in | |
let list = snd(dest_comb(concl rol_thm)) in | |
let new_x,slot = | |
let ltl,ltr = dest_conj (concl place_thm) in | |
let x1,x4 = dest_binop rlt ltl in | |
let _,x2 = dest_binop rlt ltr in | |
let n = (index x1 (dest_list list)) + 1 in | |
x4,n in | |
let lthm,rthm,lt_thm = ROL_CHOP_LIST slot rol_thm in | |
let llist = snd(dest_comb(concl lthm)) in | |
let hllist = hd (dest_list llist) in | |
let tllist = mk_rlist (tl (dest_list llist)) in | |
let rlist = snd(dest_comb(concl rthm)) in | |
let hrlist = hd (dest_list rlist) in | |
let trlist = mk_rlist (tl (dest_list rlist)) in | |
let gthm = REWRITE_RULE[AND_IMP_THM] ROL_INSERT_THM in | |
let a1 = lthm in | |
let a2 = rthm in | |
let a3 = ISPECL [hllist;tllist] NOT_CONS_NIL in | |
let a4 = ISPECL [hrlist;trlist] NOT_CONS_NIL in | |
let l,r = dest_binop rlt (concl pl1) in | |
let a5_aux = prove(mk_eq (mk_comb(rlast,llist),l),REWRITE_TAC[LAST;COND_CLAUSES;NOT_CONS_NIL]) in | |
let a5 = MATCH_MPL [ISPECL [l;r;llist] (REWRITE_RULE[AND_IMP_THM] lem1);pl1;a5_aux] in | |
let a6_aux = ISPECL [trlist;hrlist] (GEN_ALL HD) in | |
let a6 = CONV_RULE (RAND_CONV (ONCE_REWRITE_CONV[GSYM a6_aux])) pl2 in | |
let thm = MATCH_MPL [gthm;a1;a2;a3;a4;a5;a6] in | |
REWRITE_RULE[APPEND] thm;; | |
(* | |
ROL_INSERT_MIDDLE (ASSUME `x1 < x4 /\ x4 < x2`) | |
(ASSUME `real_ordered_list [x1; x2; x3]`);; | |
ROL_INSERT_MIDDLE (ASSUME `x1 < x6 /\ x6 < x2`) | |
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);; | |
ROL_INSERT_MIDDLE (ASSUME `x2 < x6 /\ x6 < x3`) | |
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);; | |
ROL_INSERT_MIDDLE (ASSUME `x4 < x6 /\ x6 < x5`) | |
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);; | |
ROL_INSERT_MIDDLE (ASSUME `x2 < x4 /\ x4 < x3`) | |
(ASSUME `real_ordered_list [x1; x2; x3]`);; | |
*) | |
let ROL_INSERT_FRONT place_thm rol_thm = | |
let _,rlist = dest_comb (concl rol_thm) in | |
let h,t = hd (dest_list rlist),mk_rlist (tl (dest_list rlist)) in | |
let imp_thm = ISPECL [h;t] (GSYM ROL_CONS_CONS) in | |
let imp_thm' = REWRITE_RULE[AND_IMP_THM] (fst (EQ_IMP_RULE imp_thm)) in | |
MATCH_MPL[imp_thm';rol_thm;place_thm];; | |
(* | |
ROL_INSERT_FRONT (ASSUME `x4 < x1`) | |
(ASSUME `real_ordered_list [x1; x2; x3]`);; | |
ROL_INSERT_FRONT (ASSUME `x4 < x1`) | |
(ASSUME `real_ordered_list [x1]`);; | |
*) | |
let ROL_INSERT_BACK place_thm rol_thm = | |
let _,rlist = dest_comb (concl rol_thm) in | |
let rlist' = dest_list rlist in | |
let h,t = hd rlist',mk_rlist (tl rlist') in | |
let lst = last rlist' in | |
let b,x = dest_binop rlt (concl place_thm) in | |
let imp_thm = REWRITE_RULE[AND_IMP_THM] | |
(ISPECL [x;rlist] ROL_INSERT_BACK_THM) in | |
let a1 = rol_thm in | |
let a2 = ISPECL [h;t] NOT_CONS_NIL in | |
let a3_aux = prove(mk_eq (mk_comb(rlast,rlist),lst), | |
REWRITE_TAC[LAST;COND_CLAUSES;NOT_CONS_NIL]) in | |
let a3 = MATCH_MPL [ISPECL [lst;x;rlist] | |
(REWRITE_RULE[AND_IMP_THM] lem1);place_thm;a3_aux] in | |
REWRITE_RULE[APPEND] (MATCH_MPL[imp_thm;a1;a2;a3]);; | |
(* | |
ROL_INSERT_BACK (ASSUME `x3 < x4`) | |
(ASSUME `real_ordered_list [x1; x2; x3]`);; | |
*) | |
let ROL_INSERT place_thm rol_thm = | |
let place_thm' = REWRITE_RULE[real_gt] place_thm in | |
if is_conj (concl place_thm') then ROL_INSERT_MIDDLE place_thm' rol_thm | |
else | |
let _,rlist = dest_comb (concl rol_thm) in | |
let rlist' = dest_list rlist in | |
let h = hd rlist' in | |
let l,r = dest_binop rlt (concl place_thm') in | |
if r = h then ROL_INSERT_FRONT place_thm' rol_thm | |
else ROL_INSERT_BACK place_thm' rol_thm;; | |
(* | |
let k00 = ROL_INSERT (ASSUME `x1 < x4 /\ x4 < x2`) | |
(ASSUME `real_ordered_list [x1; x2; x3]`);; | |
rol_thms k00 | |
PARTITION_LINE_CONV `[x1; x4; x2; x3:real]` | |
ROL_INSERT (ASSUME `x4 < x1`) | |
(ASSUME `real_ordered_list [x1]`);; | |
ROL_INSERT (ASSUME `x3 < x4`) | |
(ASSUME `real_ordered_list [x1; x2; x3]`);; | |
*) | |
(* | |
rol_thms |- real_ordered_list [x;y;z] | |
---> | |
|- x < y; |- y < z | |
*) | |
let rol_thms rol_thm = | |
let thm = REWRITE_RULE[real_ordered_list;NOT_CONS_NIL;HD] rol_thm in | |
rev(CONJUNCTS thm);; | |
(* | |
let rol_thm = ASSUME `real_ordered_list [x;y;z]` | |
rol_thms rol_thm | |
*) | |
let lem = prove(`!x. ?y. y = x`,MESON_TAC[]);; | |
let rec interleave l1 l2 = | |
match l1 with | |
[] -> l2 | |
| h::t -> | |
match l2 with | |
[] -> l1 | |
| h1::t1 -> h::h1::(interleave t t1);; | |
let lem0 = prove(`?x:real. T`,MESON_TAC[]);; | |
let lem1 = prove_by_refinement( | |
`!x. (?y. y < x) /\ (?y. y = x) /\ (?y. x < y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `x - &1`; | |
REAL_ARITH_TAC; | |
MESON_TAC[]; | |
EXISTS_TAC `x + &1`; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let rol_nonempty_thms rol_thm = | |
let pts = dest_list (snd(dest_comb(concl rol_thm))) in | |
if length pts = 0 then [lem0] else | |
if length pts = 1 then CONJUNCTS (ISPEC (hd pts) lem1) else | |
let rthms = rol_thms rol_thm in | |
let pt_thms = map (C ISPEC lem) pts in | |
let left_thm = ISPEC (hd pts) REAL_GT_EXISTS in | |
let right_thm = ISPEC (last pts) REAL_LT_EXISTS in | |
let int_thms = map (MATCH_MP REAL_DENSE) rthms in | |
let thms = interleave pt_thms int_thms in | |
left_thm::thms @ [right_thm];; | |
(* | |
rol_nonempty_thms (ASSUME `real_ordered_list [y]`) | |
*) | |
let lem0 = prove_by_refinement( | |
`real_ordered_list []`, | |
(* {{{ Proof *) | |
[REWRITE_TAC[real_ordered_list]]);; | |
(* }}} *) | |
let lem1 = prove_by_refinement( | |
`!x y. x < y ==> real_ordered_list [x; y]`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_ordered_list;NOT_CONS_NIL;HD]; | |
]);; | |
(* }}} *) | |
let lem2 = prove_by_refinement( | |
`!x y. x < y ==> real_ordered_list (CONS y t) ==> | |
real_ordered_list (CONS x (CONS y t))`, | |
(* {{{ Proof *) | |
[ | |
ASM_MESON_TAC[real_ordered_list;NOT_CONS_NIL;HD;TL]; | |
]);; | |
(* }}} *) | |
let mk_rol ord_thms = | |
match ord_thms with | |
[] -> lem0 | |
| [x] -> MATCH_MP lem1 x | |
| h1::h2::rest -> | |
itlist (fun x y -> MATCH_MPL[lem2;x;y]) (butlast ord_thms) (MATCH_MP lem1 (last ord_thms));; | |
(* | |
let k0 = rol_thms (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`) | |
mk_rol k0 | |
*) | |
let real_nil = `[]:real list`;; | |
let ROL_NIL = prove | |
(`real_ordered_list ([]:real list)`, | |
REWRITE_TAC[real_ordered_list]);; | |
let ROL_REMOVE x rol_thm = | |
let list = dest_list (snd (dest_comb (concl rol_thm))) in | |
if length list = 0 then failwith "ROL_REMOVE: 0" | |
else if length list = 1 then | |
if x = hd list then ROL_NIL | |
else failwith "ROL_REMOVE: Not an elem" | |
else if length list = 2 then | |
let l::r::[] = list in | |
if l = x then ISPEC r ROL_SING | |
else if r = x then ISPEC l ROL_SING | |
else failwith "ROL_REMOVE: Not an elem" | |
else | |
let ord_thms = rol_thms rol_thm in | |
let partition_fun thm = | |
let l,r = dest_binop rlt (concl thm) in | |
not (x = l) && not (x = r) in | |
let ord_thms',elim_thms = partition partition_fun ord_thms in | |
if length elim_thms = 1 then mk_rol ord_thms' else | |
let [xy_thm; yz_thm] = elim_thms in | |
let connect_thm = MATCH_MP REAL_LT_TRANS (CONJ xy_thm yz_thm) in | |
let rec insert xz_thm thms = | |
match thms with | |
[] -> [connect_thm] | |
| h::t -> | |
let l,r = dest_binop rlt (concl h) in | |
let l1,r1 = dest_binop rlt (concl xz_thm) in | |
if (r1 = l) then xz_thm::h::t else h::insert xz_thm t in | |
let ord_thms'' = insert connect_thm ord_thms' in | |
mk_rol ord_thms'';; | |
(* | |
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1]`) | |
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1; x3]`) | |
ROL_REMOVE `x3:real` (ASSUME `real_ordered_list [x1; x3]`) | |
ROL_REMOVE `x3:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`) | |
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`) | |
ROL_REMOVE `x5:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`) | |
ROL_REMOVE `-- &1` (ASSUME `real_ordered_list [-- &1; &0; &1]`) | |
let rol_thm = (ASSUME `real_ordered_list [-- &1; &0; &1]`) | |
let x = `&0` | |
*) | |
let lem = prove( | |
`!y x. x < y \/ (x = y) \/ y < x`, | |
(* {{{ Proof *) | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let lem2 = prove( | |
`!x y z. y < z ==> (y < x <=> (y < x /\ x < z) \/ (x = z) \/ z < x)`, | |
(* {{{ Proof *) | |
REAL_ARITH_TAC);; | |
(* }}} *) | |
let ROL_COVERS rol_thm = | |
let pts = dest_list (snd(dest_comb(concl rol_thm))) in | |
if length pts = 1 then ISPEC (hd pts) lem else | |
let thms = rol_thms rol_thm in | |
let thms' = map (MATCH_MP lem2) thms in | |
let base = ISPEC (hd pts) lem in | |
itlist (fun x y -> ONCE_REWRITE_RULE[MATCH_MP lem2 x] y) (rev thms) base;; | |
(* | |
ROL_COVERS (ASSUME `real_ordered_list [x; y; z]`) | |
ROL_COVERS (ASSUME `real_ordered_list [x; y]`) | |
ROL_COVERS (ASSUME `real_ordered_list [x]`) | |
*) | |