Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.7 kB
(* ---------------------------------------------------------------------- *)
(* Util *)
(* ---------------------------------------------------------------------- *)
(* ---------------------------------------------------------------------- *)
(* Real Ordered Lists *)
(* ---------------------------------------------------------------------- *)
let real_ordered_list = new_recursive_definition list_RECURSION
`(real_ordered_list [] <=> T) /\
(real_ordered_list (CONS h t) <=>
real_ordered_list t /\
((t = []) \/ (h < HD t)))`;;
let ROL_EMPTY = EQT_ELIM (CONJUNCT1 real_ordered_list);;
let ROL_SING = prove_by_refinement(
`!x. real_ordered_list [x]`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
]);;
(* }}} *)
let ROL_TAIL = prove(
`!l. ~(l = []) /\ real_ordered_list l ==> real_ordered_list (TL l)`,
(* {{{ Proof *)
LIST_INDUCT_TAC THEN
MESON_TAC[real_ordered_list;TL];
);;
(* }}} *)
let EL_CONS = prove_by_refinement(
`!l h n. EL n t = EL (SUC n) (CONS h t)`,
(* {{{ Proof *)
[
MESON_TAC[TL;EL];
]);;
(* }}} *)
let NOT_ROL = prove_by_refinement(
`!l. ~(real_ordered_list l) ==> ?n. EL n l >= EL (SUC n) l`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
REWRITE_TAC[real_ordered_list];
REWRITE_TAC[real_ordered_list;DE_MORGAN_THM];
STRIP_TAC;
POP_ASSUM (fun x -> POP_ASSUM (fun y -> MP_TAC (MATCH_MP y x)));
STRIP_TAC;
EXISTS_TAC `SUC n`;
ASM_MESON_TAC[EL_CONS];
EXISTS_TAC `0`;
REWRITE_TAC[EL;HD;TL;real_ge];
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC;
]);;
(* }}} *)
let ROL_CONS = prove_by_refinement(
`!h t. real_ordered_list (CONS h t) ==> real_ordered_list t`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC;
]);;
(* }}} *)
let ROL_CONS_CONS = prove_by_refinement(
`!h t. real_ordered_list (CONS h1 (CONS h2 t)) <=>
real_ordered_list (CONS h2 t) /\ h1 < h2`,
(* {{{ Proof *)
[
REPEAT GEN_TAC;
EQ_TAC;
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL;HD];
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[HD];
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[HD];
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_CONS_NIL;HD];
]);;
(* }}} *)
let ROL_APPEND = prove_by_refinement(
`!l1 l2. real_ordered_list (APPEND l1 l2) ==>
real_ordered_list l1 /\ real_ordered_list l2`,
(* {{{ Proof *)
[
LIST_INDUCT_TAC;
MESON_TAC[APPEND;real_ordered_list];
GEN_TAC;
REWRITE_TAC[APPEND];
STRIP_TAC;
CLAIM `real_ordered_list (APPEND t l2)`;
ASM_MESON_TAC[ROL_CONS];
STRIP_TAC;
CLAIM `real_ordered_list t /\ real_ordered_list l2`;
ASM_MESON_TAC[];
STRIP_TAC;
ASM_REWRITE_TAC[];
CASES_ON `t = []`;
ASM_MESON_TAC[real_ordered_list];
POP_ASSUM MP_TAC;
REWRITE_TAC[NOT_NIL];
STRIP_TAC;
ASM_REWRITE_TAC[ROL_CONS_CONS];
CONJ_TAC;
ASM_MESON_TAC[];
LABEL_ALL_TAC;
USE_THEN "Z-4" MP_TAC;
POP_ASSUM SUBST1_TAC;
REWRITE_TAC[APPEND];
ASM_MESON_TAC[ROL_CONS_CONS];
]);;
(* }}} *)
let ROL_CONS_CONS_LT = prove_by_refinement(
`!h1 h2 t. real_ordered_list (CONS h1 (CONS h2 t)) ==> h1 < h2`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN
ASM_MESON_TAC[NOT_CONS_NIL;HD];
]);;
(* }}} *)
let ROL_INSERT_THM = prove_by_refinement(
`!x l1 l2.
real_ordered_list l1 /\ real_ordered_list l2 /\
~(l1 = []) /\ ~(l2 = []) /\ LAST l1 < x /\ x < HD l2 ==>
real_ordered_list (APPEND l1 (CONS x l2))`,
(* {{{ Proof *)
[
GEN_TAC;
LIST_INDUCT_TAC;
REWRITE_TAC[APPEND];
CASES_ON `t = []`;
ASM_REWRITE_TAC[APPEND;LAST_SING;NOT_CONS_NIL];
REPEAT STRIP_TAC;
ASM_REWRITE_TAC[ROL_CONS_CONS;real_ordered_list];
POP_ASSUM MP_TAC;
REWRITE_TAC[NOT_NIL];
STRIP_TAC;
ASM_REWRITE_TAC[];
REPEAT STRIP_TAC;
CLAIM `real_ordered_list (APPEND t (CONS x l2))`;
REWRITE_ASSUMS[TAUT `(p ==> q ==> r) <=> (p /\ q ==> r)`];
FIRST_ASSUM MATCH_MP_TAC;
REPEAT STRIP_TAC;
ASM_MESON_TAC[ROL_CONS];
FIRST_ASSUM MATCH_ACCEPT_TAC;
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[NOT_CONS_NIL];
ASM_MESON_TAC[LAST_CONS;NOT_CONS_NIL];
FIRST_ASSUM MATCH_ACCEPT_TAC;
ASM_REWRITE_TAC[];
LABEL_ALL_TAC;
USE_THEN "Z-3" (SUBST1_TAC o GSYM);
REWRITE_TAC[APPEND];
STRIP_TAC;
REWRITE_TAC[ROL_CONS_CONS];
STRIP_TAC;
FIRST_ASSUM MATCH_ACCEPT_TAC;
ASM_MESON_TAC[ROL_CONS_CONS];
]);;
(* }}} *)
let ROL_INSERT_FRONT_THM = prove_by_refinement(
`!x l. real_ordered_list l /\ ~(l = []) /\ x < HD l ==>
real_ordered_list (CONS x l)`,
(* {{{ Proof *)
[
REWRITE_TAC[NOT_NIL;AND_IMP_THM];
REPEAT STRIP_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[ROL_CONS_CONS;HD];
]);;
(* }}} *)
let ROL_CONS_CONS_DELETE = prove_by_refinement(
`!h1 h2 t. real_ordered_list (CONS h1 (CONS h2 t)) ==>
real_ordered_list (CONS h1 t)`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[];
ASM_MESON_TAC[NOT_CONS_NIL];
REWRITE_ASSUMS[HD];
ASM_MESON_TAC[REAL_LT_TRANS];
]);;
(* }}} *)
let LAST_CONS_LT = prove_by_refinement(
`!x t h. real_ordered_list (CONS h t) /\ LAST (CONS h t) < x ==> h < x`,
(* {{{ Proof *)
[
GEN_TAC;
LIST_INDUCT_TAC;
REWRITE_TAC[LAST];
REPEAT STRIP_TAC;
REPEAT STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
CONJ_TAC;
ASM_MESON_TAC[ROL_CONS_CONS_DELETE];
CASES_ON `t = []`;
ASM_REWRITE_TAC[LAST];
ASM_MESON_TAC[LAST;ROL_CONS_CONS;REAL_LT_TRANS];
ASM_MESON_TAC[LAST_CONS;ROL_CONS_CONS_DELETE;LAST_CONS_CONS];
]);;
(* }}} *)
let ROL_INSERT_BACK_THM = prove_by_refinement(
`!x l. real_ordered_list l /\ ~(l = []) /\ LAST l < x ==>
real_ordered_list (APPEND l [x])`,
(* {{{ Proof *)
[
STRIP_TAC;
LIST_INDUCT_TAC;
REWRITE_TAC[APPEND;ROL_SING];
LABEL_ALL_TAC;
STRIP_TAC;
CASES_ON `t = []`;
ASM_REWRITE_TAC[APPEND;ROL_CONS_CONS;ROL_SING];
ASM_MESON_TAC[LAST;COND_CLAUSES];
PROVE_ASSUM_ANTECEDENT_TAC 0;
REPEAT STRIP_TAC;
ASM_MESON_TAC[ROL_CONS];
ASM_MESON_TAC[];
ASM_MESON_TAC[LAST_CONS];
REWRITE_TAC[APPEND];
REWRITE_TAC[real_ordered_list];
REPEAT STRIP_TAC;
FIRST_ASSUM MATCH_ACCEPT_TAC;
DISJ2_TAC;
REWRITE_ASSUMS[NOT_NIL];
LABEL_ALL_TAC;
USE_IASSUM 2 MP_TAC;
STRIP_TAC;
ASM_REWRITE_TAC[HD_APPEND];
ASM_MESON_TAC[ROL_CONS_CONS];
]);;
(* }}} *)
(*
CHOP_REAL_LIST 1 `[&1; &2; &3]` --> |- [&1; &2; &3] = APPEND [&1; &2] [&3]
let n,l = 1,`[&1; &2; &3]`
*)
let CHOP_REAL_LIST n l =
let l' = dest_list l in
let l1',l2' = chop_list n l' in
let l1,l2 = mk_list (l1',real_ty),mk_list (l2',real_ty) in
let tm = mk_binop rappend l1 l2 in
GSYM (REWRITE_CONV [APPEND] tm);;
(*
ROL_CHOP_LT 2
let n = 1
*)
let ROL_CHOP_LT n thm =
let thm' = funpow (n - 1) (MATCH_MP ROL_CONS) thm in
CONJUNCT2 (PURE_REWRITE_RULE[ROL_CONS_CONS] thm');;
let t1 = prove_by_refinement(
`real_ordered_list [&1; &2; &3; &4]`,
[
REWRITE_TAC[HD;real_ordered_list];
REAL_ARITH_TAC;
]);;
(*
ROL_CHOP_LIST 2 |- real_ordered_list [&1; &2; &3; &4] -->
|- real_ordered_list [&1; &2; &3],
|- real_ordered_list [&4],
|- &3 < &4
let thm = ASSUME `real_ordered_list [&1; &2; &3; &4]`
let n = 2
ROL_CHOP_LIST 2 thm
*)
let ROL_CHOP_LIST n thm =
let _,l = dest_comb (concl thm) in
let lthm = CHOP_REAL_LIST n l in
let thm' = REWRITE_RULE[lthm] thm in
let thm'' = MATCH_MP ROL_APPEND thm' in
let [lthm;rthm] = CONJUNCTS thm'' in
let lt_thm = ROL_CHOP_LT n thm in
lthm,rthm,lt_thm;;
(*
rol_insert (|- x1 < x4 /\ x4 < x2)
(|- real_ordered_list [x1; x2; x3]) -->
(|- real_ordered_list [x1; x4; x2; x3]);
rol_insert (|- &2 < &5 /\ &5 < &6) (|- real_ordered_list [&1; &2; &6]) -->
(|- real_ordered_list [&1; &2; &5; &6]);
rol_insert (|- x4 < x1)
(|- real_ordered_list [x1; x2; x3]) -->
(|- real_ordered_list [x4; x1; x2; x3]);
rol_insert (|- x1 < x4)
(|- real_ordered_list [x1; x2; x3]) -->
(|- real_ordered_list [x1; x2; x3; x4]);
*)
let lem1 = prove(
`!e x l. e < x /\ (LAST l = e) ==> LAST l < x`,
MESON_TAC[]);;
let ROL_INSERT_MIDDLE place_thm rol_thm =
let [pl1;pl2] = CONJUNCTS place_thm in
let list = snd(dest_comb(concl rol_thm)) in
let new_x,slot =
let ltl,ltr = dest_conj (concl place_thm) in
let x1,x4 = dest_binop rlt ltl in
let _,x2 = dest_binop rlt ltr in
let n = (index x1 (dest_list list)) + 1 in
x4,n in
let lthm,rthm,lt_thm = ROL_CHOP_LIST slot rol_thm in
let llist = snd(dest_comb(concl lthm)) in
let hllist = hd (dest_list llist) in
let tllist = mk_rlist (tl (dest_list llist)) in
let rlist = snd(dest_comb(concl rthm)) in
let hrlist = hd (dest_list rlist) in
let trlist = mk_rlist (tl (dest_list rlist)) in
let gthm = REWRITE_RULE[AND_IMP_THM] ROL_INSERT_THM in
let a1 = lthm in
let a2 = rthm in
let a3 = ISPECL [hllist;tllist] NOT_CONS_NIL in
let a4 = ISPECL [hrlist;trlist] NOT_CONS_NIL in
let l,r = dest_binop rlt (concl pl1) in
let a5_aux = prove(mk_eq (mk_comb(rlast,llist),l),REWRITE_TAC[LAST;COND_CLAUSES;NOT_CONS_NIL]) in
let a5 = MATCH_MPL [ISPECL [l;r;llist] (REWRITE_RULE[AND_IMP_THM] lem1);pl1;a5_aux] in
let a6_aux = ISPECL [trlist;hrlist] (GEN_ALL HD) in
let a6 = CONV_RULE (RAND_CONV (ONCE_REWRITE_CONV[GSYM a6_aux])) pl2 in
let thm = MATCH_MPL [gthm;a1;a2;a3;a4;a5;a6] in
REWRITE_RULE[APPEND] thm;;
(*
ROL_INSERT_MIDDLE (ASSUME `x1 < x4 /\ x4 < x2`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
ROL_INSERT_MIDDLE (ASSUME `x1 < x6 /\ x6 < x2`)
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);;
ROL_INSERT_MIDDLE (ASSUME `x2 < x6 /\ x6 < x3`)
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);;
ROL_INSERT_MIDDLE (ASSUME `x4 < x6 /\ x6 < x5`)
(ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`);;
ROL_INSERT_MIDDLE (ASSUME `x2 < x4 /\ x4 < x3`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
*)
let ROL_INSERT_FRONT place_thm rol_thm =
let _,rlist = dest_comb (concl rol_thm) in
let h,t = hd (dest_list rlist),mk_rlist (tl (dest_list rlist)) in
let imp_thm = ISPECL [h;t] (GSYM ROL_CONS_CONS) in
let imp_thm' = REWRITE_RULE[AND_IMP_THM] (fst (EQ_IMP_RULE imp_thm)) in
MATCH_MPL[imp_thm';rol_thm;place_thm];;
(*
ROL_INSERT_FRONT (ASSUME `x4 < x1`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
ROL_INSERT_FRONT (ASSUME `x4 < x1`)
(ASSUME `real_ordered_list [x1]`);;
*)
let ROL_INSERT_BACK place_thm rol_thm =
let _,rlist = dest_comb (concl rol_thm) in
let rlist' = dest_list rlist in
let h,t = hd rlist',mk_rlist (tl rlist') in
let lst = last rlist' in
let b,x = dest_binop rlt (concl place_thm) in
let imp_thm = REWRITE_RULE[AND_IMP_THM]
(ISPECL [x;rlist] ROL_INSERT_BACK_THM) in
let a1 = rol_thm in
let a2 = ISPECL [h;t] NOT_CONS_NIL in
let a3_aux = prove(mk_eq (mk_comb(rlast,rlist),lst),
REWRITE_TAC[LAST;COND_CLAUSES;NOT_CONS_NIL]) in
let a3 = MATCH_MPL [ISPECL [lst;x;rlist]
(REWRITE_RULE[AND_IMP_THM] lem1);place_thm;a3_aux] in
REWRITE_RULE[APPEND] (MATCH_MPL[imp_thm;a1;a2;a3]);;
(*
ROL_INSERT_BACK (ASSUME `x3 < x4`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
*)
let ROL_INSERT place_thm rol_thm =
let place_thm' = REWRITE_RULE[real_gt] place_thm in
if is_conj (concl place_thm') then ROL_INSERT_MIDDLE place_thm' rol_thm
else
let _,rlist = dest_comb (concl rol_thm) in
let rlist' = dest_list rlist in
let h = hd rlist' in
let l,r = dest_binop rlt (concl place_thm') in
if r = h then ROL_INSERT_FRONT place_thm' rol_thm
else ROL_INSERT_BACK place_thm' rol_thm;;
(*
let k00 = ROL_INSERT (ASSUME `x1 < x4 /\ x4 < x2`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
rol_thms k00
PARTITION_LINE_CONV `[x1; x4; x2; x3:real]`
ROL_INSERT (ASSUME `x4 < x1`)
(ASSUME `real_ordered_list [x1]`);;
ROL_INSERT (ASSUME `x3 < x4`)
(ASSUME `real_ordered_list [x1; x2; x3]`);;
*)
(*
rol_thms |- real_ordered_list [x;y;z]
--->
|- x < y; |- y < z
*)
let rol_thms rol_thm =
let thm = REWRITE_RULE[real_ordered_list;NOT_CONS_NIL;HD] rol_thm in
rev(CONJUNCTS thm);;
(*
let rol_thm = ASSUME `real_ordered_list [x;y;z]`
rol_thms rol_thm
*)
let lem = prove(`!x. ?y. y = x`,MESON_TAC[]);;
let rec interleave l1 l2 =
match l1 with
[] -> l2
| h::t ->
match l2 with
[] -> l1
| h1::t1 -> h::h1::(interleave t t1);;
let lem0 = prove(`?x:real. T`,MESON_TAC[]);;
let lem1 = prove_by_refinement(
`!x. (?y. y < x) /\ (?y. y = x) /\ (?y. x < y)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
EXISTS_TAC `x - &1`;
REAL_ARITH_TAC;
MESON_TAC[];
EXISTS_TAC `x + &1`;
REAL_ARITH_TAC;
]);;
(* }}} *)
let rol_nonempty_thms rol_thm =
let pts = dest_list (snd(dest_comb(concl rol_thm))) in
if length pts = 0 then [lem0] else
if length pts = 1 then CONJUNCTS (ISPEC (hd pts) lem1) else
let rthms = rol_thms rol_thm in
let pt_thms = map (C ISPEC lem) pts in
let left_thm = ISPEC (hd pts) REAL_GT_EXISTS in
let right_thm = ISPEC (last pts) REAL_LT_EXISTS in
let int_thms = map (MATCH_MP REAL_DENSE) rthms in
let thms = interleave pt_thms int_thms in
left_thm::thms @ [right_thm];;
(*
rol_nonempty_thms (ASSUME `real_ordered_list [y]`)
*)
let lem0 = prove_by_refinement(
`real_ordered_list []`,
(* {{{ Proof *)
[REWRITE_TAC[real_ordered_list]]);;
(* }}} *)
let lem1 = prove_by_refinement(
`!x y. x < y ==> real_ordered_list [x; y]`,
(* {{{ Proof *)
[
REWRITE_TAC[real_ordered_list;NOT_CONS_NIL;HD];
]);;
(* }}} *)
let lem2 = prove_by_refinement(
`!x y. x < y ==> real_ordered_list (CONS y t) ==>
real_ordered_list (CONS x (CONS y t))`,
(* {{{ Proof *)
[
ASM_MESON_TAC[real_ordered_list;NOT_CONS_NIL;HD;TL];
]);;
(* }}} *)
let mk_rol ord_thms =
match ord_thms with
[] -> lem0
| [x] -> MATCH_MP lem1 x
| h1::h2::rest ->
itlist (fun x y -> MATCH_MPL[lem2;x;y]) (butlast ord_thms) (MATCH_MP lem1 (last ord_thms));;
(*
let k0 = rol_thms (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
mk_rol k0
*)
let real_nil = `[]:real list`;;
let ROL_NIL = prove
(`real_ordered_list ([]:real list)`,
REWRITE_TAC[real_ordered_list]);;
let ROL_REMOVE x rol_thm =
let list = dest_list (snd (dest_comb (concl rol_thm))) in
if length list = 0 then failwith "ROL_REMOVE: 0"
else if length list = 1 then
if x = hd list then ROL_NIL
else failwith "ROL_REMOVE: Not an elem"
else if length list = 2 then
let l::r::[] = list in
if l = x then ISPEC r ROL_SING
else if r = x then ISPEC l ROL_SING
else failwith "ROL_REMOVE: Not an elem"
else
let ord_thms = rol_thms rol_thm in
let partition_fun thm =
let l,r = dest_binop rlt (concl thm) in
not (x = l) && not (x = r) in
let ord_thms',elim_thms = partition partition_fun ord_thms in
if length elim_thms = 1 then mk_rol ord_thms' else
let [xy_thm; yz_thm] = elim_thms in
let connect_thm = MATCH_MP REAL_LT_TRANS (CONJ xy_thm yz_thm) in
let rec insert xz_thm thms =
match thms with
[] -> [connect_thm]
| h::t ->
let l,r = dest_binop rlt (concl h) in
let l1,r1 = dest_binop rlt (concl xz_thm) in
if (r1 = l) then xz_thm::h::t else h::insert xz_thm t in
let ord_thms'' = insert connect_thm ord_thms' in
mk_rol ord_thms'';;
(*
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1]`)
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1; x3]`)
ROL_REMOVE `x3:real` (ASSUME `real_ordered_list [x1; x3]`)
ROL_REMOVE `x3:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
ROL_REMOVE `x1:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
ROL_REMOVE `x5:real` (ASSUME `real_ordered_list [x1; x2; x3; x4; x5]`)
ROL_REMOVE `-- &1` (ASSUME `real_ordered_list [-- &1; &0; &1]`)
let rol_thm = (ASSUME `real_ordered_list [-- &1; &0; &1]`)
let x = `&0`
*)
let lem = prove(
`!y x. x < y \/ (x = y) \/ y < x`,
(* {{{ Proof *)
REAL_ARITH_TAC);;
(* }}} *)
let lem2 = prove(
`!x y z. y < z ==> (y < x <=> (y < x /\ x < z) \/ (x = z) \/ z < x)`,
(* {{{ Proof *)
REAL_ARITH_TAC);;
(* }}} *)
let ROL_COVERS rol_thm =
let pts = dest_list (snd(dest_comb(concl rol_thm))) in
if length pts = 1 then ISPEC (hd pts) lem else
let thms = rol_thms rol_thm in
let thms' = map (MATCH_MP lem2) thms in
let base = ISPEC (hd pts) lem in
itlist (fun x y -> ONCE_REWRITE_RULE[MATCH_MP lem2 x] y) (rev thms) base;;
(*
ROL_COVERS (ASSUME `real_ordered_list [x; y; z]`)
ROL_COVERS (ASSUME `real_ordered_list [x; y]`)
ROL_COVERS (ASSUME `real_ordered_list [x]`)
*)