Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /matinsert.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
3.77 kB
let ROWINSERT =
let lxt = `\x:real. T` in
fun i const_thm interpsigns_thm ->
let isigns_thms = interpsigns_thms2 interpsigns_thm in
let isigns_thm = hd isigns_thms in
let set,_,_ =
if concl isigns_thm = t_tm then lxt,t_tm,t_tm else
dest_interpsign (hd isigns_thms) in
let const_thm' = MATCH_MP (ISPEC set matinsert_lem0) const_thm in
let const_thm'' = PURE_REWRITE_RULE[GSYM interpsign] const_thm' in
let isigns_thms' = insertat i const_thm'' isigns_thms in
let isigns_thms'' = if isigns_thm = TRUTH then butlast isigns_thms' else isigns_thms' in
mk_interpsigns isigns_thms'';;
let MATINSERT vars i const_thm cont mat_thm =
let const_thm' = GEN (hd vars) const_thm in
let rol_thm,all2_thm = interpmat_thms mat_thm in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb (concl rol_thm))) in
let isigns_thms = CONJUNCTS(REWRITE_RULE[ALL2;part_thm] all2_thm) in
let isigns_thms' = map (ROWINSERT i const_thm') isigns_thms in
let all2_thm' = mk_all2_interpsigns part_thm isigns_thms' in
let mat_thm' = mk_interpmat_thm rol_thm all2_thm' in
cont mat_thm';;
(* ---------------------------------------------------------------------- *)
(* Opt *)
(* ---------------------------------------------------------------------- *)
(* OPT FAILED... slightly slower, even with hashtables *)
let rec mk_suc =
let zero = `0` in
let suc = `SUC` in
fun n ->
match n with
0 -> zero
| n -> mk_comb(suc,mk_suc (n-1));;
let rec MK_SUC =
let f n = prove(mk_eq(mk_small_numeral n,mk_suc n),ARITH_TAC) in
let size = 100 in
let range = 0--size in
let suc_tbl = Hashtbl.create size in
map2 (Hashtbl.add suc_tbl) range (map f range);
fun n ->
try Hashtbl.find suc_tbl n with _ -> f n;;
let PL_LENGTH =
let pl_tm = `partition_line` in
let len_tm = `LENGTH:(real -> bool) list -> num` in
fun pts ->
let lpts = mk_comb(len_tm,mk_comb(pl_tm,pts)) in
let lthm = ARITH_SIMP_CONV[PARTITION_LINE_LENGTH;LENGTH] lpts in
let pts' = snd(dest_eq(concl lthm)) in
let n = dest_small_numeral pts' in
let suc_thm = MK_SUC n in
TRANS lthm suc_thm;;
let rec MK_LT =
let f(n1,n2) = prove(mk_binop nle (mk_suc n1) (mk_suc n2),ARITH_TAC) in
let size1 = 20 in
let size2 = 20 in
let range1 = 0--size1 in
let range2 = 0--size2 in
let range = filter (fun (x,y) -> x <= y) (allpairs (fun x y -> x,y) range1 range2) in
let suc_tbl = Hashtbl.create (size1 * size2) in
map2 (Hashtbl.add suc_tbl) range (map f range);
fun (n1,n2) ->
try Hashtbl.find suc_tbl (n1,n2) with _ -> f(n1,n2);;
(*
let vars,i,const_thm,mat_thm = !ti,!tconst,!tmat
#trace MATINSERT
*)
(* ---------------------------------------------------------------------- *)
(* Timing *)
(* ---------------------------------------------------------------------- *)
let MATINSERT vars i const_thm cont mat_thm =
let start_time = Sys.time() in
let res = MATINSERT vars i const_thm cont mat_thm in
matinsert_timer +.= (Sys.time() -. start_time);
res;;
(*
let vars,i,const_thm, cont,mat_thm =
[ry;rx],
0,
ASSUME `-- &1 < &0`,
I,
ASSUME `interpmat [x_24] [\x. &0 + x * &1] [[Neg]; [Zero]; [Pos]]`
MATINSERT vars i const_thm cont mat_thm
let vars,i,const_thm, cont,mat_thm =
[ry;rx],
0,
ASSUME `&0 + x * &1 < &0`,
I,
ASSUME `interpmat [] [\y. &1] [[Pos]]`
MATINSERT vars i const_thm cont mat_thm
let vars,i,const_thm, cont,mat_thm =
[`x:real`; `a:real`; `b:real`; `c:real`],
0,
ASSUME `&0 + a * &2 < &0`,
I,
ASSUME `interpmat [x_408] [\x. (&0 + b * &1) + x * (&0 + a * &2)] [[Pos]; [Zero]; [Neg]]`
MATINSERT vars i const_thm cont mat_thm
*)