Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /inferpsign.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
13.1 kB
(* ====================================================================== *)
(* INFERPSIGN *)
(* ====================================================================== *)
(* ------------------------------------------------------------------------- *)
(* Infer sign of p(x) at points from corresponding qi(x) with pi(x) = 0 *)
(* ------------------------------------------------------------------------- *)
(* ---------------------------------------------------------------------- *)
(* INFERPSIGN *)
(* ---------------------------------------------------------------------- *)
let isign_eq_zero thm =
let __,_,sign = dest_interpsign thm in
sign = szero_tm;;
let isign_lt_zero thm =
let __,_,sign = dest_interpsign thm in
sign = sneg_tm;;
let isign_gt_zero thm =
let __,_,sign = dest_interpsign thm in
sign = spos_tm;;
(*
let p_thm,q_thm = ith 1 split_thms
*)
let inferpsign_row vars sgns p_thm q_thm div_thms =
let pthms = map (BETA_RULE o (PURE_REWRITE_RULE[interpsigns])) (interpsigns_thms2 p_thm) in
let qthms = map (BETA_RULE o (PURE_REWRITE_RULE[interpsigns])) (interpsigns_thms2 q_thm) in
let _,set,_ = dest_interpsigns p_thm in
if can (get_index isign_eq_zero) pthms then (* there's a zero *)
let ind = get_index isign_eq_zero pthms in
let pthm = ith ind pthms in
let qthm = ith ind qthms in
let div_thm = ith ind div_thms in
let div_thm' = GEN (hd vars) div_thm in
let aks,pqr = dest_eq (concl div_thm) in
let ak,s = dest_mult aks in
let a,k = dest_pow ak in
let pq,r = dest_plus pqr in
let p,q = dest_mult pq in
let parity_thm = PARITY_CONV k in
let evenp = fst(dest_comb (concl parity_thm)) = even_tm in
let sign_thm = FINDSIGN vars sgns a in
let op,_,_ = get_binop (concl sign_thm) in
if evenp then
let nz_thm =
if op = rlt then MATCH_MP ips_lt_nz_thm sign_thm
else if op = rgt then MATCH_MP ips_gt_nz_thm sign_thm
else if op = rneq then sign_thm
else failwith "inferpsign: 0" in
let imp_thms =
CONJUNCTS(ISPEC set (MATCH_MPL[EVEN_DIV_LEM;div_thm';nz_thm;parity_thm])) in
let _,_,qsign = dest_interpsign qthm in
let mp_thm =
if qsign = sneg_tm then ith 0 imp_thms
else if qsign = spos_tm then ith 1 imp_thms
else if qsign = szero_tm then ith 2 imp_thms
else failwith "inferpsign: 1" in
let final_thm = MATCH_MPL[mp_thm;pthm;qthm] in
mk_interpsigns (final_thm::pthms)
else (* k is odd *)
if op = rgt then (* a > &0 *)
let imp_thms =
CONJUNCTS(ISPEC set (MATCH_MPL[GT_DIV_LEM;div_thm';sign_thm])) in
let _,_,qsign = dest_interpsign qthm in
let mp_thm =
if qsign = sneg_tm then ith 0 imp_thms
else if qsign = spos_tm then ith 1 imp_thms
else if qsign = szero_tm then ith 2 imp_thms
else failwith "inferpsign: 1" in
let final_thm = MATCH_MPL[mp_thm;pthm;qthm] in
mk_interpsigns (final_thm::pthms)
else
failwith "inferpsign: shouldn`t reach this point with an odd power and negative sign! See PDIVIDES and return the correct div_thm"
else (* no zero *)
let p = snd(dest_mult (lhs(concl (hd div_thms)))) in
let p1 = mk_abs(hd vars,p) in
let pthm = ISPECL [set;p1] unknown_thm in
mk_interpsigns (pthm::pthms);;
(* {{{ Doc *)
(*
split_interpsigns
|- interpsigns
[p0; p1; p2; q0; q1; q2]
(\x. x < x1)
[Pos; Pos; Pos; Neg; Neg; Neg]
-->
(
|- interpsigns
[p0; p1; p2]
(\x. x < x1)
[Pos; Pos; Pos]
,
|- interpsigns
[q0; q1; q2]
(\x. x < x1)
[ Neg; Neg; Neg]
)
*)
(* }}} *)
let split_interpsigns thm =
let thms = interpsigns_thms2 thm in
let n = length thms / 2 in
let l,r = chop_list n thms in
(mk_interpsigns l,mk_interpsigns r);;
let INFERPSIGN vars sgns mat_thm div_thms =
let pts,pols,signs = dest_interpmat (concl mat_thm) in
let n = length (dest_list pols) / 2 in
let rol_thm,sgn_thm = interpmat_thms mat_thm in
let part_thm = PARTITION_LINE_CONV (snd (dest_comb (concl rol_thm))) in
let conj_thms = CONJUNCTS(REWRITE_RULE[ALL2;part_thm] sgn_thm) in
let split_thms = map split_interpsigns conj_thms in
let conj_thms' = map (fun (x,y) -> inferpsign_row vars sgns x y div_thms) split_thms in
let all_thm = mk_all2_interpsigns part_thm conj_thms' in
let mat_thm' = mk_interpmat_thm rol_thm all_thm in
mat_thm';;
(* ---------------------------------------------------------------------- *)
(* Opt *)
(* ---------------------------------------------------------------------- *)
let MK_REP =
let rep_tm = `REPLICATE:num -> sign -> sign list` in
let len_tm = `LENGTH:real list -> num` in
let one = `1` in
let two = `2` in
let unknown = `Unknown` in
fun pts ->
let num = mk_binop np (mk_binop nm two (mk_comb(len_tm,pts))) one in
let len = length (dest_list pts) in
let num2 = MK_SUC (2 * len + 1) in
let lthm = ARITH_SIMP_CONV[LENGTH] num in
let lthm2 = TRANS lthm num2 in
let lthm3 = AP_THM (AP_TERM rep_tm lthm2) unknown in
REWRITE_RULE[REPLICATE] lthm3;;
let INSERT_UNKNOWN_COL =
fun mat_thm p ->
let pts,_,_ = dest_interpmat (concl mat_thm) in
let rep_thm = MK_REP pts in
let mat_thm' = MATCH_MP INFERPSIGN_MATINSERT_THM mat_thm in
let mat_thm'' = PURE_REWRITE_RULE[MAP2;rep_thm] mat_thm' in
ISPEC p mat_thm'';;
let REMOVE_QS =
fun mat_thm ->
let _,pols,_ = dest_interpmat (concl mat_thm) in
let len = length (dest_list pols) in
if not (len mod 2 = 1) then failwith "odd pols?" else
let mat_thm' = funpow (len / 2) (MATCH_MP REMOVE_LAST) mat_thm in
REWRITE_RULE[MAP;BUTLAST;NOT_CONS_NIL;TL;HD;] mat_thm';;
let SPLIT_LIST n l ty =
let l' = dest_list l in
let l1',l2' = chop_list n l' in
let l1,l2 = (mk_list(l1',ty),mk_list(l2',ty)) in
let app_tm = mk_const("APPEND",[ty,aty]) in
let l3 = mk_comb(mk_comb(app_tm,l1),l2) in
SYM(REWRITE_CONV[APPEND] l3);;
(*
let thm = asign
*)
let prove_nonzero thm =
let op,_,_ = get_binop (concl thm) in
if op = rgt then MATCH_MP ips_gt_nz_thm thm
else if op = rlt then MATCH_MP ips_lt_nz_thm thm
else if op = rneq then thm
else failwith "prove_nonzero: bad op";;
(*
let mat_thm = mat_thm'
let ind = 7
*)
let INFERPT =
let unknown = `Unknown` in
let zero = `Zero` in
let pos = `Pos` in
let neg = `Neg` in
let pow = `(pow)` in
let even_tm = `(EVEN)` in
let odd_tm = `(ODD)` in
let rr_ty = `:real -> real` in
let sl_ty = `:sign list` in
let s_ty = `:sign` in
let imat = `interpmat` in
let rr_length = mk_const("LENGTH",[rr_ty,aty]) in
let s_length = mk_const("LENGTH",[s_ty,aty]) in
let sl_length = mk_const("LENGTH",[sl_ty,aty]) in
let imat = `interpmat` in
fun vars sgns mat_thm div_thms ind ->
let pts,pols,signs = dest_interpmat (concl mat_thm) in
let pols' = dest_list pols in
let signsl = dest_list signs in
let signs' = map dest_list signsl in
let pols_len = length (hd signs') in
let pols_len2 = pols_len / 2 in
let pt_sgnl = ith ind signsl in
let pt_sgns = ith ind signs' in
let zind = index zero pt_sgns in
if zind > pols_len2 then mat_thm else (* return if not a zero of a p, only a q *)
let psgn = ith (pols_len2 + zind) pt_sgns in
let div_thm = ith (zind - 1) div_thms in
let a,n = dest_binop pow (fst (dest_binop rm (lhs (concl div_thm)))) in
let asign = FINDSIGN vars sgns a in
let op,_,_ = get_binop (concl asign) in
let par_thm = PARITY_CONV n in
let par = fst(dest_comb(concl par_thm)) in
let mp_thm =
(* note: by def of PDIVIDES, we can`t have
negative sign and odd power at this point *)
(* n is even *)
if par = even_tm then
if psgn = pos then INFERPSIGN_POS_EVEN
else if psgn = neg then INFERPSIGN_NEG_EVEN
else if psgn = zero then INFERPSIGN_ZERO_EVEN
else failwith "INFERPT: bad sign"
else (* n is odd *)
if psgn = pos then INFERPSIGN_POS_ODD_POS
else if psgn = neg then INFERPSIGN_NEG_ODD_POS
else if psgn = zero then INFERPSIGN_ZERO_ODD_POS
else failwith "INFERPT: bad sign" in
(* pols *)
let split_pols1 = SPLIT_LIST zind pols rr_ty in
let _,l2 = chop_list zind pols' in
let split_pols2 = SPLIT_LIST pols_len2 (mk_list(l2,rr_ty)) rr_ty in
let s1,t1 = dest_comb (rhs (concl split_pols1)) in
let split_pols_thm = TRANS split_pols1 (AP_TERM s1 split_pols2) in
(* pt_sgns *)
let split_sgns1 = SPLIT_LIST zind pt_sgnl s_ty in
let _,l3 = chop_list zind pt_sgns in
let split_sgns2 = SPLIT_LIST pols_len2 (mk_list(l3,s_ty)) s_ty in
let s2,t2 = dest_comb (rhs (concl split_sgns1)) in
let split_pt_sgns_thm = TRANS split_sgns1 (AP_TERM s2 split_sgns2) in
(* sgns *)
let split_signs = SPLIT_LIST ind signs sl_ty in
let r1,r3 = dest_comb(rhs (concl split_signs)) in
let tl_thm = HD_CONV (ONCE_REWRITE_CONV[split_pt_sgns_thm]) r3 in
let r4,_ = dest_comb (rhs (concl split_signs)) in
let split_sgns_thm = TRANS split_signs (AP_TERM r4 tl_thm) in
(* imat *)
let mat1 = mk_comb(imat,pts) in
let mat_thm1 = AP_TERM mat1 split_pols_thm in
let mat_thm2 = MK_COMB(mat_thm1,split_sgns_thm) in
let mat_thm3 = EQ_MP mat_thm2 mat_thm in
(* length thms *)
(* LENGTH ps = LENGTH s1 *)
let ps = mk_list(tl(dest_list(snd(dest_comb s1))),rr_ty) in
let ps_len = REWRITE_CONV[LENGTH] (mk_comb(rr_length,ps)) in
let ss = mk_list(tl(dest_list(snd(dest_comb s2))),s_ty) in
let ss_len = REWRITE_CONV[LENGTH] (mk_comb(s_length,ss)) in
let ps_s1_thm = TRANS ps_len (SYM ss_len) in
(* LENGTH qs = LENGTH s2 *)
let k1 = tl (fst (chop_list pols_len2 (dest_list t1))) in
let qs = mk_list(k1,rr_ty) in
let qs_len = REWRITE_CONV[LENGTH] (mk_comb(rr_length,qs)) in
let k2 = tl (fst (chop_list pols_len2 (dest_list t2))) in
let s2s = mk_list(k2,s_ty) in
let s2s_len = REWRITE_CONV[LENGTH] (mk_comb(s_length,s2s)) in
let qs_s2_thm = TRANS qs_len (SYM s2s_len) in
(* ODD (LENGTH sgns) *)
let _,hdsgns = dest_comb r1 in
let odd_thm = EQT_ELIM(REWRITE_CONV[LENGTH;ODD;EVEN;NOT_ODD;NOT_EVEN] (mk_comb(odd_tm,mk_comb(sl_length,hdsgns)))) in
(* a <> 0 *)
let a_thm =
if par = even_tm then prove_nonzero asign
else asign in
let div_thm' = GEN (hd vars) div_thm in
(* main *)
let thm1 = BETA_RULE(MATCH_MPL[mp_thm;mat_thm3;ps_s1_thm;qs_s2_thm;odd_thm]) in
let thm2 =
if par = even_tm then MATCH_MPL[thm1;div_thm';a_thm;par_thm]
else MATCH_MPL[thm1;div_thm';a_thm] in
REWRITE_RULE[APPEND] thm2;;
(*
let mat_thm = mat_thm'
*)
let INFERPTS vars sgns mat_thm div_thms =
let pts,_,_ = dest_interpmat (concl mat_thm) in
let len = 2 * length (dest_list pts) in
let ods = filter odd (1--len) in
itlist (fun i matthm -> INFERPT vars sgns matthm div_thms i) ods mat_thm;;
let itvars,itsgns,itmat,itdivs = ref [],ref [],ref TRUTH,ref [];;
(*
let vars,sgns,mat_thm,div_thms = !itvars,!itsgns,!itmat,!itdivs
*)
let INFERPSIGN2 vars sgns mat_thm div_thms =
itvars := vars;
itsgns := sgns;
itmat := mat_thm;
itdivs := div_thms;
let _,bod = dest_binop rm (lhs (concl (hd div_thms))) in
let p = mk_abs(hd vars,bod) in
let mat_thm' = INSERT_UNKNOWN_COL mat_thm p in
let mat_thm'' = INFERPTS vars sgns mat_thm' div_thms in
REMOVE_QS mat_thm'';;
(* ---------------------------------------------------------------------- *)
(* Timing *)
(* ---------------------------------------------------------------------- *)
let INFERPSIGN vars sgns mat_thm div_thms =
let start_time = Sys.time() in
let res = INFERPSIGN vars sgns mat_thm div_thms in
inferpsign_timer +.= (Sys.time() -. start_time);
res;;
(*
let l1 = PDIVIDE [`x:real`]
`&1 + x * (&1 + x * (&1 + x * &1))` `&1 + x * (&2 + x * &3)`;;
let l2 = PDIVIDE [`x:real`]
`&1 + x * (&1 + x * (&1 + x * &1))` `&2 + x * (-- &3 + x * &1)`;;
let l3 = PDIVIDE [`x:real`]
`&1 + x * (&1 + x * (&1 + x * &1))` `-- &4 + x * (&0 + x * &1)`;;
let div_thms = [l1;l2;l3];;
let vars = [`x:real`];;
let sgns = [ARITH_RULE `&1 > &0`];;
let mat_thm = ASSUME
`interpmat [x1; x2; x3; x4; x5]
[\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1);
\x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5]
[[Pos; Pos; Pos; Neg; Neg; Neg];
[Pos; Pos; Zero; Zero; Neg; Neg];
[Pos; Pos; Neg; Pos; Neg; Neg];
[Pos; Pos; Neg; Pos; Neg; Zero];
[Pos; Pos; Neg; Pos; Neg; Pos];
[Pos; Pos; Neg; Pos; Zero; Pos];
[Pos; Pos; Neg; Pos; Pos; Pos];
[Pos; Zero; Neg; Pos; Pos; Pos];
[Pos; Neg; Neg; Pos; Pos; Pos];
[Pos; Zero; Zero; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos; Pos; Pos]]` ;;
INFERPSIGN vars sgns mat_thm div_thms
*)