Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ====================================================================== *) | |
(* INFERPSIGN *) | |
(* ====================================================================== *) | |
(* ------------------------------------------------------------------------- *) | |
(* Infer sign of p(x) at points from corresponding qi(x) with pi(x) = 0 *) | |
(* ------------------------------------------------------------------------- *) | |
(* ---------------------------------------------------------------------- *) | |
(* INFERPSIGN *) | |
(* ---------------------------------------------------------------------- *) | |
let isign_eq_zero thm = | |
let __,_,sign = dest_interpsign thm in | |
sign = szero_tm;; | |
let isign_lt_zero thm = | |
let __,_,sign = dest_interpsign thm in | |
sign = sneg_tm;; | |
let isign_gt_zero thm = | |
let __,_,sign = dest_interpsign thm in | |
sign = spos_tm;; | |
(* | |
let p_thm,q_thm = ith 1 split_thms | |
*) | |
let inferpsign_row vars sgns p_thm q_thm div_thms = | |
let pthms = map (BETA_RULE o (PURE_REWRITE_RULE[interpsigns])) (interpsigns_thms2 p_thm) in | |
let qthms = map (BETA_RULE o (PURE_REWRITE_RULE[interpsigns])) (interpsigns_thms2 q_thm) in | |
let _,set,_ = dest_interpsigns p_thm in | |
if can (get_index isign_eq_zero) pthms then (* there's a zero *) | |
let ind = get_index isign_eq_zero pthms in | |
let pthm = ith ind pthms in | |
let qthm = ith ind qthms in | |
let div_thm = ith ind div_thms in | |
let div_thm' = GEN (hd vars) div_thm in | |
let aks,pqr = dest_eq (concl div_thm) in | |
let ak,s = dest_mult aks in | |
let a,k = dest_pow ak in | |
let pq,r = dest_plus pqr in | |
let p,q = dest_mult pq in | |
let parity_thm = PARITY_CONV k in | |
let evenp = fst(dest_comb (concl parity_thm)) = even_tm in | |
let sign_thm = FINDSIGN vars sgns a in | |
let op,_,_ = get_binop (concl sign_thm) in | |
if evenp then | |
let nz_thm = | |
if op = rlt then MATCH_MP ips_lt_nz_thm sign_thm | |
else if op = rgt then MATCH_MP ips_gt_nz_thm sign_thm | |
else if op = rneq then sign_thm | |
else failwith "inferpsign: 0" in | |
let imp_thms = | |
CONJUNCTS(ISPEC set (MATCH_MPL[EVEN_DIV_LEM;div_thm';nz_thm;parity_thm])) in | |
let _,_,qsign = dest_interpsign qthm in | |
let mp_thm = | |
if qsign = sneg_tm then ith 0 imp_thms | |
else if qsign = spos_tm then ith 1 imp_thms | |
else if qsign = szero_tm then ith 2 imp_thms | |
else failwith "inferpsign: 1" in | |
let final_thm = MATCH_MPL[mp_thm;pthm;qthm] in | |
mk_interpsigns (final_thm::pthms) | |
else (* k is odd *) | |
if op = rgt then (* a > &0 *) | |
let imp_thms = | |
CONJUNCTS(ISPEC set (MATCH_MPL[GT_DIV_LEM;div_thm';sign_thm])) in | |
let _,_,qsign = dest_interpsign qthm in | |
let mp_thm = | |
if qsign = sneg_tm then ith 0 imp_thms | |
else if qsign = spos_tm then ith 1 imp_thms | |
else if qsign = szero_tm then ith 2 imp_thms | |
else failwith "inferpsign: 1" in | |
let final_thm = MATCH_MPL[mp_thm;pthm;qthm] in | |
mk_interpsigns (final_thm::pthms) | |
else | |
failwith "inferpsign: shouldn`t reach this point with an odd power and negative sign! See PDIVIDES and return the correct div_thm" | |
else (* no zero *) | |
let p = snd(dest_mult (lhs(concl (hd div_thms)))) in | |
let p1 = mk_abs(hd vars,p) in | |
let pthm = ISPECL [set;p1] unknown_thm in | |
mk_interpsigns (pthm::pthms);; | |
(* {{{ Doc *) | |
(* | |
split_interpsigns | |
|- interpsigns | |
[p0; p1; p2; q0; q1; q2] | |
(\x. x < x1) | |
[Pos; Pos; Pos; Neg; Neg; Neg] | |
--> | |
( | |
|- interpsigns | |
[p0; p1; p2] | |
(\x. x < x1) | |
[Pos; Pos; Pos] | |
, | |
|- interpsigns | |
[q0; q1; q2] | |
(\x. x < x1) | |
[ Neg; Neg; Neg] | |
) | |
*) | |
(* }}} *) | |
let split_interpsigns thm = | |
let thms = interpsigns_thms2 thm in | |
let n = length thms / 2 in | |
let l,r = chop_list n thms in | |
(mk_interpsigns l,mk_interpsigns r);; | |
let INFERPSIGN vars sgns mat_thm div_thms = | |
let pts,pols,signs = dest_interpmat (concl mat_thm) in | |
let n = length (dest_list pols) / 2 in | |
let rol_thm,sgn_thm = interpmat_thms mat_thm in | |
let part_thm = PARTITION_LINE_CONV (snd (dest_comb (concl rol_thm))) in | |
let conj_thms = CONJUNCTS(REWRITE_RULE[ALL2;part_thm] sgn_thm) in | |
let split_thms = map split_interpsigns conj_thms in | |
let conj_thms' = map (fun (x,y) -> inferpsign_row vars sgns x y div_thms) split_thms in | |
let all_thm = mk_all2_interpsigns part_thm conj_thms' in | |
let mat_thm' = mk_interpmat_thm rol_thm all_thm in | |
mat_thm';; | |
(* ---------------------------------------------------------------------- *) | |
(* Opt *) | |
(* ---------------------------------------------------------------------- *) | |
let MK_REP = | |
let rep_tm = `REPLICATE:num -> sign -> sign list` in | |
let len_tm = `LENGTH:real list -> num` in | |
let one = `1` in | |
let two = `2` in | |
let unknown = `Unknown` in | |
fun pts -> | |
let num = mk_binop np (mk_binop nm two (mk_comb(len_tm,pts))) one in | |
let len = length (dest_list pts) in | |
let num2 = MK_SUC (2 * len + 1) in | |
let lthm = ARITH_SIMP_CONV[LENGTH] num in | |
let lthm2 = TRANS lthm num2 in | |
let lthm3 = AP_THM (AP_TERM rep_tm lthm2) unknown in | |
REWRITE_RULE[REPLICATE] lthm3;; | |
let INSERT_UNKNOWN_COL = | |
fun mat_thm p -> | |
let pts,_,_ = dest_interpmat (concl mat_thm) in | |
let rep_thm = MK_REP pts in | |
let mat_thm' = MATCH_MP INFERPSIGN_MATINSERT_THM mat_thm in | |
let mat_thm'' = PURE_REWRITE_RULE[MAP2;rep_thm] mat_thm' in | |
ISPEC p mat_thm'';; | |
let REMOVE_QS = | |
fun mat_thm -> | |
let _,pols,_ = dest_interpmat (concl mat_thm) in | |
let len = length (dest_list pols) in | |
if not (len mod 2 = 1) then failwith "odd pols?" else | |
let mat_thm' = funpow (len / 2) (MATCH_MP REMOVE_LAST) mat_thm in | |
REWRITE_RULE[MAP;BUTLAST;NOT_CONS_NIL;TL;HD;] mat_thm';; | |
let SPLIT_LIST n l ty = | |
let l' = dest_list l in | |
let l1',l2' = chop_list n l' in | |
let l1,l2 = (mk_list(l1',ty),mk_list(l2',ty)) in | |
let app_tm = mk_const("APPEND",[ty,aty]) in | |
let l3 = mk_comb(mk_comb(app_tm,l1),l2) in | |
SYM(REWRITE_CONV[APPEND] l3);; | |
(* | |
let thm = asign | |
*) | |
let prove_nonzero thm = | |
let op,_,_ = get_binop (concl thm) in | |
if op = rgt then MATCH_MP ips_gt_nz_thm thm | |
else if op = rlt then MATCH_MP ips_lt_nz_thm thm | |
else if op = rneq then thm | |
else failwith "prove_nonzero: bad op";; | |
(* | |
let mat_thm = mat_thm' | |
let ind = 7 | |
*) | |
let INFERPT = | |
let unknown = `Unknown` in | |
let zero = `Zero` in | |
let pos = `Pos` in | |
let neg = `Neg` in | |
let pow = `(pow)` in | |
let even_tm = `(EVEN)` in | |
let odd_tm = `(ODD)` in | |
let rr_ty = `:real -> real` in | |
let sl_ty = `:sign list` in | |
let s_ty = `:sign` in | |
let imat = `interpmat` in | |
let rr_length = mk_const("LENGTH",[rr_ty,aty]) in | |
let s_length = mk_const("LENGTH",[s_ty,aty]) in | |
let sl_length = mk_const("LENGTH",[sl_ty,aty]) in | |
let imat = `interpmat` in | |
fun vars sgns mat_thm div_thms ind -> | |
let pts,pols,signs = dest_interpmat (concl mat_thm) in | |
let pols' = dest_list pols in | |
let signsl = dest_list signs in | |
let signs' = map dest_list signsl in | |
let pols_len = length (hd signs') in | |
let pols_len2 = pols_len / 2 in | |
let pt_sgnl = ith ind signsl in | |
let pt_sgns = ith ind signs' in | |
let zind = index zero pt_sgns in | |
if zind > pols_len2 then mat_thm else (* return if not a zero of a p, only a q *) | |
let psgn = ith (pols_len2 + zind) pt_sgns in | |
let div_thm = ith (zind - 1) div_thms in | |
let a,n = dest_binop pow (fst (dest_binop rm (lhs (concl div_thm)))) in | |
let asign = FINDSIGN vars sgns a in | |
let op,_,_ = get_binop (concl asign) in | |
let par_thm = PARITY_CONV n in | |
let par = fst(dest_comb(concl par_thm)) in | |
let mp_thm = | |
(* note: by def of PDIVIDES, we can`t have | |
negative sign and odd power at this point *) | |
(* n is even *) | |
if par = even_tm then | |
if psgn = pos then INFERPSIGN_POS_EVEN | |
else if psgn = neg then INFERPSIGN_NEG_EVEN | |
else if psgn = zero then INFERPSIGN_ZERO_EVEN | |
else failwith "INFERPT: bad sign" | |
else (* n is odd *) | |
if psgn = pos then INFERPSIGN_POS_ODD_POS | |
else if psgn = neg then INFERPSIGN_NEG_ODD_POS | |
else if psgn = zero then INFERPSIGN_ZERO_ODD_POS | |
else failwith "INFERPT: bad sign" in | |
(* pols *) | |
let split_pols1 = SPLIT_LIST zind pols rr_ty in | |
let _,l2 = chop_list zind pols' in | |
let split_pols2 = SPLIT_LIST pols_len2 (mk_list(l2,rr_ty)) rr_ty in | |
let s1,t1 = dest_comb (rhs (concl split_pols1)) in | |
let split_pols_thm = TRANS split_pols1 (AP_TERM s1 split_pols2) in | |
(* pt_sgns *) | |
let split_sgns1 = SPLIT_LIST zind pt_sgnl s_ty in | |
let _,l3 = chop_list zind pt_sgns in | |
let split_sgns2 = SPLIT_LIST pols_len2 (mk_list(l3,s_ty)) s_ty in | |
let s2,t2 = dest_comb (rhs (concl split_sgns1)) in | |
let split_pt_sgns_thm = TRANS split_sgns1 (AP_TERM s2 split_sgns2) in | |
(* sgns *) | |
let split_signs = SPLIT_LIST ind signs sl_ty in | |
let r1,r3 = dest_comb(rhs (concl split_signs)) in | |
let tl_thm = HD_CONV (ONCE_REWRITE_CONV[split_pt_sgns_thm]) r3 in | |
let r4,_ = dest_comb (rhs (concl split_signs)) in | |
let split_sgns_thm = TRANS split_signs (AP_TERM r4 tl_thm) in | |
(* imat *) | |
let mat1 = mk_comb(imat,pts) in | |
let mat_thm1 = AP_TERM mat1 split_pols_thm in | |
let mat_thm2 = MK_COMB(mat_thm1,split_sgns_thm) in | |
let mat_thm3 = EQ_MP mat_thm2 mat_thm in | |
(* length thms *) | |
(* LENGTH ps = LENGTH s1 *) | |
let ps = mk_list(tl(dest_list(snd(dest_comb s1))),rr_ty) in | |
let ps_len = REWRITE_CONV[LENGTH] (mk_comb(rr_length,ps)) in | |
let ss = mk_list(tl(dest_list(snd(dest_comb s2))),s_ty) in | |
let ss_len = REWRITE_CONV[LENGTH] (mk_comb(s_length,ss)) in | |
let ps_s1_thm = TRANS ps_len (SYM ss_len) in | |
(* LENGTH qs = LENGTH s2 *) | |
let k1 = tl (fst (chop_list pols_len2 (dest_list t1))) in | |
let qs = mk_list(k1,rr_ty) in | |
let qs_len = REWRITE_CONV[LENGTH] (mk_comb(rr_length,qs)) in | |
let k2 = tl (fst (chop_list pols_len2 (dest_list t2))) in | |
let s2s = mk_list(k2,s_ty) in | |
let s2s_len = REWRITE_CONV[LENGTH] (mk_comb(s_length,s2s)) in | |
let qs_s2_thm = TRANS qs_len (SYM s2s_len) in | |
(* ODD (LENGTH sgns) *) | |
let _,hdsgns = dest_comb r1 in | |
let odd_thm = EQT_ELIM(REWRITE_CONV[LENGTH;ODD;EVEN;NOT_ODD;NOT_EVEN] (mk_comb(odd_tm,mk_comb(sl_length,hdsgns)))) in | |
(* a <> 0 *) | |
let a_thm = | |
if par = even_tm then prove_nonzero asign | |
else asign in | |
let div_thm' = GEN (hd vars) div_thm in | |
(* main *) | |
let thm1 = BETA_RULE(MATCH_MPL[mp_thm;mat_thm3;ps_s1_thm;qs_s2_thm;odd_thm]) in | |
let thm2 = | |
if par = even_tm then MATCH_MPL[thm1;div_thm';a_thm;par_thm] | |
else MATCH_MPL[thm1;div_thm';a_thm] in | |
REWRITE_RULE[APPEND] thm2;; | |
(* | |
let mat_thm = mat_thm' | |
*) | |
let INFERPTS vars sgns mat_thm div_thms = | |
let pts,_,_ = dest_interpmat (concl mat_thm) in | |
let len = 2 * length (dest_list pts) in | |
let ods = filter odd (1--len) in | |
itlist (fun i matthm -> INFERPT vars sgns matthm div_thms i) ods mat_thm;; | |
let itvars,itsgns,itmat,itdivs = ref [],ref [],ref TRUTH,ref [];; | |
(* | |
let vars,sgns,mat_thm,div_thms = !itvars,!itsgns,!itmat,!itdivs | |
*) | |
let INFERPSIGN2 vars sgns mat_thm div_thms = | |
itvars := vars; | |
itsgns := sgns; | |
itmat := mat_thm; | |
itdivs := div_thms; | |
let _,bod = dest_binop rm (lhs (concl (hd div_thms))) in | |
let p = mk_abs(hd vars,bod) in | |
let mat_thm' = INSERT_UNKNOWN_COL mat_thm p in | |
let mat_thm'' = INFERPTS vars sgns mat_thm' div_thms in | |
REMOVE_QS mat_thm'';; | |
(* ---------------------------------------------------------------------- *) | |
(* Timing *) | |
(* ---------------------------------------------------------------------- *) | |
let INFERPSIGN vars sgns mat_thm div_thms = | |
let start_time = Sys.time() in | |
let res = INFERPSIGN vars sgns mat_thm div_thms in | |
inferpsign_timer +.= (Sys.time() -. start_time); | |
res;; | |
(* | |
let l1 = PDIVIDE [`x:real`] | |
`&1 + x * (&1 + x * (&1 + x * &1))` `&1 + x * (&2 + x * &3)`;; | |
let l2 = PDIVIDE [`x:real`] | |
`&1 + x * (&1 + x * (&1 + x * &1))` `&2 + x * (-- &3 + x * &1)`;; | |
let l3 = PDIVIDE [`x:real`] | |
`&1 + x * (&1 + x * (&1 + x * &1))` `-- &4 + x * (&0 + x * &1)`;; | |
let div_thms = [l1;l2;l3];; | |
let vars = [`x:real`];; | |
let sgns = [ARITH_RULE `&1 > &0`];; | |
let mat_thm = ASSUME | |
`interpmat [x1; x2; x3; x4; x5] | |
[\x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1); | |
\x. &8 + x * &4; \x. -- &7 + x * &11; \x. &5 + x * &5] | |
[[Pos; Pos; Pos; Neg; Neg; Neg]; | |
[Pos; Pos; Zero; Zero; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Neg]; | |
[Pos; Pos; Neg; Pos; Neg; Zero]; | |
[Pos; Pos; Neg; Pos; Neg; Pos]; | |
[Pos; Pos; Neg; Pos; Zero; Pos]; | |
[Pos; Pos; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Neg; Pos; Pos; Pos]; | |
[Pos; Neg; Neg; Pos; Pos; Pos]; | |
[Pos; Zero; Zero; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos; Pos; Pos]]` ;; | |
INFERPSIGN vars sgns mat_thm div_thms | |
*) | |