Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /inferisign_thms.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
27.7 kB
let inferisign_lem00 = prove_by_refinement(
`x1 < x3 ==> x3 < x2 ==> (!x. x1 < x /\ x < x2 ==> P x) ==>
(!x. x1 < x /\ x < x3 ==> P x) /\
(!x. (x = x3) ==> P x) /\
(!x. x3 < x /\ x < x2 ==> P x)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x3`;
ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x3`;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
let neg_neg_neq_thm = prove_by_refinement(
`!x y p. x < y /\ poly p x < &0 /\ poly p y < &0 /\
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z < &0)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `&0 < poly p z - poly p x`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-8" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < (z - x) * poly (poly_diff p) x'`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p y - poly p z < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-13" MP_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(y - z) * poly (poly_diff p) x'' < &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
REPEAT_N 3 (POP_ASSUM MP_TAC);
REAL_ARITH_TAC;
CLAIM `x' < x''`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG));
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `x < x''' /\ x''' < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x'`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x''`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
]);;
(* }}} *)
let neg_neg_neq_thm2 = prove_by_refinement(
`!x y p. x < y ==> poly p x < &0 ==> poly p y < &0 ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z < &0)`,
(* {{{ Proof *)
[
REPEAT_N 7 STRIP_TAC;
MATCH_MP_TAC neg_neg_neq_thm;
ASM_MESON_TAC[];
]);;
(* }}} *)
let pos_pos_neq_thm = prove_by_refinement(
`!x y p. x < y /\ &0 < poly p x /\ &0 < poly p y /\
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> &0 < poly p z)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p z - poly p x < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-8" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) x' < &0`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `&0 < poly p y - poly p z`;
LABEL_ALL_TAC;
USE_THEN "Z-13" MP_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < (y - z) * poly (poly_diff p) x''`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
REPEAT_N 3 (POP_ASSUM MP_TAC);
REAL_ARITH_TAC;
CLAIM `x' < x''`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_POS));
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `x < x''' /\ x''' < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x'`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x''`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
]);;
(* }}} *)
let pos_pos_neq_thm2 = prove_by_refinement(
`!x y p. x < y ==> poly p x > &0 ==> poly p y > &0 ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z > &0)`,
(* {{{ Proof *)
[
REWRITE_TAC[real_gt];
REPEAT_N 7 STRIP_TAC;
MATCH_MP_TAC pos_pos_neq_thm;
ASM_MESON_TAC[];
]);;
(* }}} *)
let pos_neg_neq_thm = prove_by_refinement(
`!x y p. x < y /\ &0 < poly p x /\ poly p y < &0 /\
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
?X. x < X /\ X < y /\ (poly p X = &0) /\
(!z. x < z /\ z < X ==> &0 < poly p z) /\
(!z. X < z /\ z < y ==> poly p z < &0)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`y:real`] POLY_IVT_NEG);
REWRITE_TAC[real_gt];
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `X:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
STRIP_TAC;
REPEAT STRIP_TAC;
(* save *)
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `N:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
CLAIM `poly p z - poly p x < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-11" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) N < &0`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT);
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
CLAIM `&0 < &0 - poly p z`;
LABEL_ALL_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < X - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < (X - z) * poly (poly_diff p) M`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
CLAIM `N < M`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_POS));
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `K:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
(* save *)
CLAIM `x < K /\ K < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `N`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `M`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
POP_ASSUM (ASSUME_TAC o GSYM);
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT);
ASM_REWRITE_TAC[];
REAL_SIMP_TAC;
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`];
ASM_REWRITE_TAC[REAL_ENTIRE];
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
LABEL_ALL_TAC;
POP_ASSUM MP_TAC;
USE_THEN "Z-4" MP_TAC THEN REAL_ARITH_TAC;
CLAIM `x < M /\ M < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
REPEAT STRIP_TAC;
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `N:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
POP_ASSUM MP_TAC;
REAL_SIMP_TAC;
STRIP_TAC;
CLAIM `&0 < (z - X) * poly (poly_diff p) N`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - X`;
LABEL_ALL_TAC;
USE_THEN "Z-7" MP_TAC THEN REAL_ARITH_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
LABEL_ALL_TAC;
USE_THEN "Z-6" (REWRITE_TAC o list);
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
CLAIM `poly p y - poly p z < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-12" MP_TAC;
USE_THEN "Z-5" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(y - z) * poly (poly_diff p) M < &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
CLAIM `N < M`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG));
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `K:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
(* save *)
CLAIM `x < K /\ K < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `N`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `M`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
REAL_SIMP_TAC;
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`];
ASM_REWRITE_TAC[REAL_ENTIRE];
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
LABEL_ALL_TAC;
POP_ASSUM MP_TAC;
USE_THEN "Z-5" MP_TAC THEN REAL_ARITH_TAC;
CLAIM `x < M /\ M < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
]);;
(* }}} *)
let pos_neg_neq_thm2 = prove_by_refinement(
`!x y p. x < y ==> poly p x > &0 ==> poly p y < &0 ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
?X. x < X /\ X < y /\
(!z. (z = X) ==> (poly p z = &0)) /\
(!z. x < z /\ z < X ==> poly p z > &0) /\
(!z. X < z /\ z < y ==> poly p z < &0)`,
(* {{{ Proof *)
[
REWRITE_TAC[real_gt];
REPEAT STRIP_TAC;
MP_TAC (ISPECL[`x:real`;`y:real`;`p:real list`] pos_neg_neq_thm);
ASM_REWRITE_TAC[];
REPEAT STRIP_TAC;
EXISTS_TAC `X`;
ASM_MESON_TAC[];
]);;
(* }}} *)
let neg_pos_neq_thm = prove_by_refinement(
`!x y p. x < y /\ poly p x < &0 /\ &0 < poly p y /\
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
?X. x < X /\ X < y /\ (poly p X = &0) /\
(!z. x < z /\ z < X ==> poly p z < &0) /\
(!z. X < z /\ z < y ==> &0 < poly p z)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`y:real`] POLY_IVT_POS);
REWRITE_TAC[real_gt];
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `X:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
STRIP_TAC;
REPEAT STRIP_TAC;
(* save *)
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `N:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
CLAIM `&0 < poly p z - poly p x`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-11" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < (z - x) * poly (poly_diff p) N`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT);
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
CLAIM `&0 - poly p z < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < X - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(X - z) * poly (poly_diff p) M < &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
CLAIM `N < M`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG));
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `K:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
(* save *)
CLAIM `x < K /\ K < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `N`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `M`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT);
ASM_REWRITE_TAC[];
REAL_SIMP_TAC;
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`];
ASM_REWRITE_TAC[REAL_ENTIRE];
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
LABEL_ALL_TAC;
POP_ASSUM MP_TAC;
USE_THEN "Z-4" MP_TAC THEN REAL_ARITH_TAC;
CLAIM `x < M /\ M < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
REPEAT STRIP_TAC;
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `N:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
POP_ASSUM MP_TAC;
REAL_SIMP_TAC;
STRIP_TAC;
CLAIM `(z - X) * poly (poly_diff p) N < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - X`;
LABEL_ALL_TAC;
USE_THEN "Z-7" MP_TAC THEN REAL_ARITH_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
LABEL_ALL_TAC;
USE_THEN "Z-6" (REWRITE_TAC o list);
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
CLAIM `&0 < poly p y - poly p z`;
LABEL_ALL_TAC;
USE_THEN "Z-12" MP_TAC;
USE_THEN "Z-5" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < (y - z) * poly (poly_diff p) M`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
CLAIM `N < M`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_POS));
ASM_REWRITE_TAC[];
DISCH_THEN (X_CHOOSE_TAC `K:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
(* save *)
CLAIM `x < K /\ K < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `N`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `M`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
POP_ASSUM (ASSUME_TAC o GSYM);
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
REAL_SIMP_TAC;
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`];
ASM_REWRITE_TAC[REAL_ENTIRE];
DISCH_THEN (X_CHOOSE_TAC `M:real`);
POP_ASSUM MP_TAC THEN STRIP_TAC;
LABEL_ALL_TAC;
POP_ASSUM MP_TAC;
USE_THEN "Z-5" MP_TAC THEN REAL_ARITH_TAC;
CLAIM `x < M /\ M < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `X`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
]);;
(* }}} *)
let neg_pos_neq_thm2 = prove_by_refinement(
`!x y p. x < y ==> poly p x < &0 ==> poly p y > &0 ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
?X. x < X /\ X < y /\
(!z. (z = X) ==> (poly p z = &0)) /\
(!z. x < z /\ z < X ==> poly p z < &0) /\
(!z. X < z /\ z < y ==> poly p z > &0)`,
(* {{{ Proof *)
[
REWRITE_TAC[real_gt];
REPEAT STRIP_TAC;
MP_TAC (ISPECL[`x:real`;`y:real`;`p:real list`] neg_pos_neq_thm);
ASM_REWRITE_TAC[];
REPEAT STRIP_TAC;
EXISTS_TAC `X`;
ASM_MESON_TAC[];
]);;
(* }}} *)
let lt_nz_thm = prove_by_refinement(
`(!x. x1 < x /\ x < x2 ==> poly p x < &0) ==> (!x. x1 < x /\ x < x2 ==> ~(poly p x = &0))`,
(* {{{ Proof *)
[
MESON_TAC[REAL_LT_NZ];
]);;
(* }}} *)
let gt_nz_thm = prove_by_refinement(
`(!x. x1 < x /\ x < x2 ==> poly p x > &0) ==> (!x. x1 < x /\ x < x2 ==> ~(poly p x = &0))`,
(* {{{ Proof *)
[
MESON_TAC[REAL_LT_NZ;real_gt];
]);;
(* }}} *)
let eq_eq_false_thm = prove_by_refinement(
`!x y p. x < y ==> (poly p x = &0) ==> (poly p y = &0) ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> F`,
(* {{{ Proof *)
[
REPEAT_N 3 STRIP_TAC;
DISCH_THEN (fun x -> MP_TAC (MATCH_MP (ISPEC `p:real list` POLY_MVT) x) THEN ASSUME_TAC x);
REPEAT STRIP_TAC;
LABEL_ALL_TAC;
CLAIM `poly p y - poly p x = &0`;
REWRITE_TAC[real_sub];
ASM_REWRITE_TAC[];
REAL_ARITH_TAC;
DISCH_THEN (REWRITE_ASSUMS o list);
CLAIM `&0 < y - x`;
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC;
POP_ASSUM (MP_TAC o ISPEC `x':real`);
RULE_ASSUM_TAC GSYM;
POP_ASSUM IGNORE THEN POP_ASSUM IGNORE;
ASM_REWRITE_TAC[];
STRIP_TAC;
STRIP_TAC;
ASM_MESON_TAC[REAL_ENTIRE;REAL_LT_IMP_NZ];
]);;
(* }}} *)
let neg_zero_neg_thm = prove_by_refinement(
`!x y p. x < y ==> poly p x < &0 ==> (poly p y = &0) ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z < &0)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`];
REWRITE_TAC[ARITH_RULE `x <= y <=> (x < y \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p z - poly p x > &0`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-8" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) x' > &0`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
REWRITE_TAC[real_gt];
ASM_REWRITE_TAC[REAL_MUL_GT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) x' < &0`;
REWRITE_TAC[REAL_MUL_LT];
DISJ2_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[REAL_LT_ANTISYM];
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `&0 - poly p z < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(y - z) * poly (poly_diff p) x'' < &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
REPEAT_N 3 (POP_ASSUM MP_TAC);
REAL_ARITH_TAC;
(* save *)
CLAIM `x' < x''`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG));
REWRITE_ASSUMS[real_gt];
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `x < x''' /\ x''' < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x'`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x''`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
MP_TAC (ISPECL[`z:real`;`y:real`;`p:real list`] eq_eq_false_thm);
POP_ASSUM (ASSUME_TAC o GSYM);
ASM_REWRITE_TAC[];
REPEAT_N 2 STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
let pos_zero_pos_thm = prove_by_refinement(
`!x y p. x < y ==> poly p x > &0 ==> (poly p y = &0) ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z > &0)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
REWRITE_TAC[ARITH_RULE `x > y <=> ~(y >= x)`];
REWRITE_TAC[ARITH_RULE `x >= y <=> (x > y \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p z - poly p x < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-8" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) x' < &0`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
REWRITE_TAC[real_gt];
ASM_REWRITE_TAC[REAL_MUL_LT];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < (z - x) * poly (poly_diff p) x'`;
REWRITE_TAC[REAL_MUL_GT];
DISJ2_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[REAL_LT_ANTISYM];
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `&0 - poly p z > &0`;
LABEL_ALL_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(y - z) * poly (poly_diff p) x'' > &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;];
REPEAT STRIP_TAC;
REPEAT_N 3 (POP_ASSUM MP_TAC);
REAL_ARITH_TAC;
(* save *)
CLAIM `x' < x''`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_POS));
REWRITE_ASSUMS[real_gt];
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `x < x''' /\ x''' < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x'`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x''`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
MP_TAC (ISPECL[`z:real`;`y:real`;`p:real list`] eq_eq_false_thm);
POP_ASSUM (ASSUME_TAC o GSYM);
ASM_REWRITE_TAC[];
REPEAT_N 2 STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
let zero_neg_neg_thm = prove_by_refinement(
`!x y p. x < y ==> (poly p x = &0) ==> (poly p y < &0) ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z < &0)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`];
REWRITE_TAC[ARITH_RULE `x <= y <=> (x < y \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p z - &0 > &0`;
LABEL_ALL_TAC;
USE_THEN "Z-3" MP_TAC;
USE_THEN "Z-8" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) x' > &0`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
REWRITE_TAC[real_gt];
ASM_REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;];
REPEAT STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 > (z - x) * poly (poly_diff p) x'`;
REWRITE_TAC[REAL_MUL_GT;real_gt;REAL_MUL_LT;];
DISJ2_TAC;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[REAL_LT_ANTISYM];
(* save *)
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p y - poly p z < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-13" MP_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < y - z`;
LABEL_ALL_TAC;
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(y - z) * poly (poly_diff p) x'' < &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;];
REPEAT STRIP_TAC;
REPEAT_N 3 (POP_ASSUM MP_TAC);
REAL_ARITH_TAC;
(* save *)
CLAIM `x' < x''`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG));
REWRITE_ASSUMS[real_gt];
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `x < x''' /\ x''' < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x'`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x''`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
MP_TAC (ISPECL[`x:real`;`z:real`;`p:real list`] eq_eq_false_thm);
POP_ASSUM (ASSUME_TAC o GSYM);
ASM_REWRITE_TAC[];
REPEAT_N 2 STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
]);;
(* }}} *)
let zero_pos_pos_thm = prove_by_refinement(
`!x y p. x < y ==> (poly p x = &0) ==> (poly p y > &0) ==>
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==>
(!z. x < z /\ z < y ==> poly p z > &0)`,
(* {{{ Proof *)
[
REPEAT STRIP_TAC;
REWRITE_TAC[ARITH_RULE `x > y <=> ~(y >= x)`];
REWRITE_TAC[ARITH_RULE `x >= y <=> (x > y \/ (x = y))`];
STRIP_TAC;
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p y - poly p z > &0`;
LABEL_ALL_TAC;
USE_THEN "Z-7" MP_TAC;
USE_THEN "Z-3" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(y - z) * poly (poly_diff p) x' > &0`;
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC;
REWRITE_TAC[real_gt];
ASM_REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;];
REPEAT STRIP_TAC;
LABEL_ALL_TAC;
USE_THEN "Z-1" MP_TAC;
USE_THEN "Z-7" MP_TAC;
REAL_ARITH_TAC;
(* save *)
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT);
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `poly p z - &0 < &0`;
LABEL_ALL_TAC;
USE_THEN "Z-9" MP_TAC;
REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `&0 < z - x`;
LABEL_ALL_TAC;
USE_THEN "Z-12" MP_TAC THEN REAL_ARITH_TAC;
STRIP_TAC;
CLAIM `(z - x) * poly (poly_diff p) x'' < &0`;
POP_ASSUM IGNORE;
POP_ASSUM MP_TAC;
POP_ASSUM MP_TAC;
REAL_ARITH_TAC;
ASM_REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;];
REPEAT STRIP_TAC;
REPEAT_N 3 (POP_ASSUM MP_TAC);
REAL_ARITH_TAC;
(* save *)
CLAIM `x'' < x'`;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
STRIP_TAC;
MP_TAC (ISPECL [`poly_diff p`;`x'':real`;`x':real`] (REWRITE_RULE[real_gt] POLY_IVT_POS));
REWRITE_ASSUMS[real_gt];
ASM_REWRITE_TAC[];
STRIP_TAC;
CLAIM `x < x''' /\ x''' < y`;
STRIP_TAC;
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x''`;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `x'`;
ASM_REWRITE_TAC[];
ASM_MESON_TAC[];
(* save *)
MP_TAC (ISPECL[`x:real`;`z:real`;`p:real list`] eq_eq_false_thm);
POP_ASSUM (ASSUME_TAC o GSYM);
ASM_REWRITE_TAC[];
REPEAT_N 2 STRIP_TAC;
FIRST_ASSUM MATCH_MP_TAC;
ASM_REWRITE_TAC[];
MATCH_MP_TAC REAL_LT_TRANS;
EXISTS_TAC `z`;
ASM_REWRITE_TAC[];
]);;
(* }}} *)