Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let inferisign_lem00 = prove_by_refinement( | |
`x1 < x3 ==> x3 < x2 ==> (!x. x1 < x /\ x < x2 ==> P x) ==> | |
(!x. x1 < x /\ x < x3 ==> P x) /\ | |
(!x. (x = x3) ==> P x) /\ | |
(!x. x3 < x /\ x < x2 ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x3`; | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x3`; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let neg_neg_neq_thm = prove_by_refinement( | |
`!x y p. x < y /\ poly p x < &0 /\ poly p y < &0 /\ | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `&0 < poly p z - poly p x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-8" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (z - x) * poly (poly_diff p) x'`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p y - poly p z < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-13" MP_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(y - z) * poly (poly_diff p) x'' < &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
REPEAT_N 3 (POP_ASSUM MP_TAC); | |
REAL_ARITH_TAC; | |
CLAIM `x' < x''`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG)); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `x < x''' /\ x''' < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x'`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x''`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let neg_neg_neq_thm2 = prove_by_refinement( | |
`!x y p. x < y ==> poly p x < &0 ==> poly p y < &0 ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT_N 7 STRIP_TAC; | |
MATCH_MP_TAC neg_neg_neq_thm; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let pos_pos_neq_thm = prove_by_refinement( | |
`!x y p. x < y /\ &0 < poly p x /\ &0 < poly p y /\ | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> &0 < poly p z)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p z - poly p x < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-8" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) x' < &0`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `&0 < poly p y - poly p z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-13" MP_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (y - z) * poly (poly_diff p) x''`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
REPEAT_N 3 (POP_ASSUM MP_TAC); | |
REAL_ARITH_TAC; | |
CLAIM `x' < x''`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_POS)); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `x < x''' /\ x''' < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x'`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x''`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let pos_pos_neq_thm2 = prove_by_refinement( | |
`!x y p. x < y ==> poly p x > &0 ==> poly p y > &0 ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z > &0)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt]; | |
REPEAT_N 7 STRIP_TAC; | |
MATCH_MP_TAC pos_pos_neq_thm; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let pos_neg_neq_thm = prove_by_refinement( | |
`!x y p. x < y /\ &0 < poly p x /\ poly p y < &0 /\ | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
?X. x < X /\ X < y /\ (poly p X = &0) /\ | |
(!z. x < z /\ z < X ==> &0 < poly p z) /\ | |
(!z. X < z /\ z < y ==> poly p z < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`y:real`] POLY_IVT_NEG); | |
REWRITE_TAC[real_gt]; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `X:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
REPEAT STRIP_TAC; | |
(* save *) | |
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `N:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `poly p z - poly p x < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-11" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) N < &0`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `&0 < &0 - poly p z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < X - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (X - z) * poly (poly_diff p) M`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
CLAIM `N < M`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_POS)); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `K:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
(* save *) | |
CLAIM `x < K /\ K < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `N`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `M`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
POP_ASSUM (ASSUME_TAC o GSYM); | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`]; | |
ASM_REWRITE_TAC[REAL_ENTIRE]; | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
LABEL_ALL_TAC; | |
POP_ASSUM MP_TAC; | |
USE_THEN "Z-4" MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `x < M /\ M < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `N:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_SIMP_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (z - X) * poly (poly_diff p) N`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - X`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-7" MP_TAC THEN REAL_ARITH_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
LABEL_ALL_TAC; | |
USE_THEN "Z-6" (REWRITE_TAC o list); | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `poly p y - poly p z < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-12" MP_TAC; | |
USE_THEN "Z-5" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(y - z) * poly (poly_diff p) M < &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
CLAIM `N < M`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG)); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `K:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
(* save *) | |
CLAIM `x < K /\ K < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `N`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `M`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`]; | |
ASM_REWRITE_TAC[REAL_ENTIRE]; | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
LABEL_ALL_TAC; | |
POP_ASSUM MP_TAC; | |
USE_THEN "Z-5" MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `x < M /\ M < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let pos_neg_neq_thm2 = prove_by_refinement( | |
`!x y p. x < y ==> poly p x > &0 ==> poly p y < &0 ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
?X. x < X /\ X < y /\ | |
(!z. (z = X) ==> (poly p z = &0)) /\ | |
(!z. x < z /\ z < X ==> poly p z > &0) /\ | |
(!z. X < z /\ z < y ==> poly p z < &0)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt]; | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL[`x:real`;`y:real`;`p:real list`] pos_neg_neq_thm); | |
ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `X`; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let neg_pos_neq_thm = prove_by_refinement( | |
`!x y p. x < y /\ poly p x < &0 /\ &0 < poly p y /\ | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
?X. x < X /\ X < y /\ (poly p X = &0) /\ | |
(!z. x < z /\ z < X ==> poly p z < &0) /\ | |
(!z. X < z /\ z < y ==> &0 < poly p z)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`y:real`] POLY_IVT_POS); | |
REWRITE_TAC[real_gt]; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `X:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
REPEAT STRIP_TAC; | |
(* save *) | |
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `N:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `&0 < poly p z - poly p x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-11" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (z - x) * poly (poly_diff p) N`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `&0 - poly p z < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < X - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(X - z) * poly (poly_diff p) M < &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
CLAIM `N < M`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG)); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `K:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
(* save *) | |
CLAIM `x < K /\ K < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `N`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `M`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`X:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`]; | |
ASM_REWRITE_TAC[REAL_ENTIRE]; | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
LABEL_ALL_TAC; | |
POP_ASSUM MP_TAC; | |
USE_THEN "Z-4" MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `x < M /\ M < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `N:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_SIMP_TAC; | |
STRIP_TAC; | |
CLAIM `(z - X) * poly (poly_diff p) N < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - X`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-7" MP_TAC THEN REAL_ARITH_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
LABEL_ALL_TAC; | |
USE_THEN "Z-6" (REWRITE_TAC o list); | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `&0 < poly p y - poly p z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-12" MP_TAC; | |
USE_THEN "Z-5" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (y - z) * poly (poly_diff p) M`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
CLAIM `N < M`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`N:real`;`M:real`] (REWRITE_RULE[real_gt] POLY_IVT_POS)); | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (X_CHOOSE_TAC `K:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
(* save *) | |
CLAIM `x < K /\ K < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `N`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `M`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
POP_ASSUM (ASSUME_TAC o GSYM); | |
MP_TAC (ISPECL [`p:real list`;`X:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `(x:real = y) <=> (y = x)`]; | |
ASM_REWRITE_TAC[REAL_ENTIRE]; | |
DISCH_THEN (X_CHOOSE_TAC `M:real`); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
LABEL_ALL_TAC; | |
POP_ASSUM MP_TAC; | |
USE_THEN "Z-5" MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `x < M /\ M < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `X`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let neg_pos_neq_thm2 = prove_by_refinement( | |
`!x y p. x < y ==> poly p x < &0 ==> poly p y > &0 ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
?X. x < X /\ X < y /\ | |
(!z. (z = X) ==> (poly p z = &0)) /\ | |
(!z. x < z /\ z < X ==> poly p z < &0) /\ | |
(!z. X < z /\ z < y ==> poly p z > &0)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt]; | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL[`x:real`;`y:real`;`p:real list`] neg_pos_neq_thm); | |
ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `X`; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let lt_nz_thm = prove_by_refinement( | |
`(!x. x1 < x /\ x < x2 ==> poly p x < &0) ==> (!x. x1 < x /\ x < x2 ==> ~(poly p x = &0))`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[REAL_LT_NZ]; | |
]);; | |
(* }}} *) | |
let gt_nz_thm = prove_by_refinement( | |
`(!x. x1 < x /\ x < x2 ==> poly p x > &0) ==> (!x. x1 < x /\ x < x2 ==> ~(poly p x = &0))`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[REAL_LT_NZ;real_gt]; | |
]);; | |
(* }}} *) | |
let eq_eq_false_thm = prove_by_refinement( | |
`!x y p. x < y ==> (poly p x = &0) ==> (poly p y = &0) ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> F`, | |
(* {{{ Proof *) | |
[ | |
REPEAT_N 3 STRIP_TAC; | |
DISCH_THEN (fun x -> MP_TAC (MATCH_MP (ISPEC `p:real list` POLY_MVT) x) THEN ASSUME_TAC x); | |
REPEAT STRIP_TAC; | |
LABEL_ALL_TAC; | |
CLAIM `poly p y - poly p x = &0`; | |
REWRITE_TAC[real_sub]; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
CLAIM `&0 < y - x`; | |
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC; | |
POP_ASSUM (MP_TAC o ISPEC `x':real`); | |
RULE_ASSUM_TAC GSYM; | |
POP_ASSUM IGNORE THEN POP_ASSUM IGNORE; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_LT_IMP_NZ]; | |
]);; | |
(* }}} *) | |
let neg_zero_neg_thm = prove_by_refinement( | |
`!x y p. x < y ==> poly p x < &0 ==> (poly p y = &0) ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`]; | |
REWRITE_TAC[ARITH_RULE `x <= y <=> (x < y \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p z - poly p x > &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-8" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) x' > &0`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
REWRITE_TAC[real_gt]; | |
ASM_REWRITE_TAC[REAL_MUL_GT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) x' < &0`; | |
REWRITE_TAC[REAL_MUL_LT]; | |
DISJ2_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[REAL_LT_ANTISYM]; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `&0 - poly p z < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(y - z) * poly (poly_diff p) x'' < &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
REPEAT_N 3 (POP_ASSUM MP_TAC); | |
REAL_ARITH_TAC; | |
(* save *) | |
CLAIM `x' < x''`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG)); | |
REWRITE_ASSUMS[real_gt]; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `x < x''' /\ x''' < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x'`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x''`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
MP_TAC (ISPECL[`z:real`;`y:real`;`p:real list`] eq_eq_false_thm); | |
POP_ASSUM (ASSUME_TAC o GSYM); | |
ASM_REWRITE_TAC[]; | |
REPEAT_N 2 STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let pos_zero_pos_thm = prove_by_refinement( | |
`!x y p. x < y ==> poly p x > &0 ==> (poly p y = &0) ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z > &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[ARITH_RULE `x > y <=> ~(y >= x)`]; | |
REWRITE_TAC[ARITH_RULE `x >= y <=> (x > y \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p z - poly p x < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-8" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) x' < &0`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
REWRITE_TAC[real_gt]; | |
ASM_REWRITE_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (z - x) * poly (poly_diff p) x'`; | |
REWRITE_TAC[REAL_MUL_GT]; | |
DISJ2_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[REAL_LT_ANTISYM]; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `&0 - poly p z > &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(y - z) * poly (poly_diff p) x'' > &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;]; | |
REPEAT STRIP_TAC; | |
REPEAT_N 3 (POP_ASSUM MP_TAC); | |
REAL_ARITH_TAC; | |
(* save *) | |
CLAIM `x' < x''`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_POS)); | |
REWRITE_ASSUMS[real_gt]; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `x < x''' /\ x''' < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x'`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x''`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
MP_TAC (ISPECL[`z:real`;`y:real`;`p:real list`] eq_eq_false_thm); | |
POP_ASSUM (ASSUME_TAC o GSYM); | |
ASM_REWRITE_TAC[]; | |
REPEAT_N 2 STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let zero_neg_neg_thm = prove_by_refinement( | |
`!x y p. x < y ==> (poly p x = &0) ==> (poly p y < &0) ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[ARITH_RULE `x < y <=> ~(y <= x)`]; | |
REWRITE_TAC[ARITH_RULE `x <= y <=> (x < y \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p z - &0 > &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
USE_THEN "Z-8" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) x' > &0`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
REWRITE_TAC[real_gt]; | |
ASM_REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-8" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 > (z - x) * poly (poly_diff p) x'`; | |
REWRITE_TAC[REAL_MUL_GT;real_gt;REAL_MUL_LT;]; | |
DISJ2_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[REAL_LT_ANTISYM]; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p y - poly p z < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-13" MP_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - z`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-11" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(y - z) * poly (poly_diff p) x'' < &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;]; | |
REPEAT STRIP_TAC; | |
REPEAT_N 3 (POP_ASSUM MP_TAC); | |
REAL_ARITH_TAC; | |
(* save *) | |
CLAIM `x' < x''`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`x':real`;`x'':real`] (REWRITE_RULE[real_gt] POLY_IVT_NEG)); | |
REWRITE_ASSUMS[real_gt]; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `x < x''' /\ x''' < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x'`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x''`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
MP_TAC (ISPECL[`x:real`;`z:real`;`p:real list`] eq_eq_false_thm); | |
POP_ASSUM (ASSUME_TAC o GSYM); | |
ASM_REWRITE_TAC[]; | |
REPEAT_N 2 STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let zero_pos_pos_thm = prove_by_refinement( | |
`!x y p. x < y ==> (poly p x = &0) ==> (poly p y > &0) ==> | |
(!z. x < z /\ z < y ==> ~(poly (poly_diff p) z = &0)) ==> | |
(!z. x < z /\ z < y ==> poly p z > &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[ARITH_RULE `x > y <=> ~(y >= x)`]; | |
REWRITE_TAC[ARITH_RULE `x >= y <=> (x > y \/ (x = y))`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`z:real`;`y:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p y - poly p z > &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-7" MP_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(y - z) * poly (poly_diff p) x' > &0`; | |
REPEAT_N 2 (POP_ASSUM MP_TAC) THEN REAL_ARITH_TAC; | |
REWRITE_TAC[real_gt]; | |
ASM_REWRITE_TAC[REAL_MUL_LT;REAL_MUL_GT;]; | |
REPEAT STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC; | |
USE_THEN "Z-7" MP_TAC; | |
REAL_ARITH_TAC; | |
(* save *) | |
MP_TAC (ISPECL [`p:real list`;`x:real`;`z:real`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p z - &0 < &0`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-9" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < z - x`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-12" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(z - x) * poly (poly_diff p) x'' < &0`; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_GT;REAL_MUL_LT;real_gt;]; | |
REPEAT STRIP_TAC; | |
REPEAT_N 3 (POP_ASSUM MP_TAC); | |
REAL_ARITH_TAC; | |
(* save *) | |
CLAIM `x'' < x'`; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`poly_diff p`;`x'':real`;`x':real`] (REWRITE_RULE[real_gt] POLY_IVT_POS)); | |
REWRITE_ASSUMS[real_gt]; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `x < x''' /\ x''' < y`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x''`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `x'`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]; | |
(* save *) | |
MP_TAC (ISPECL[`x:real`;`z:real`;`p:real list`] eq_eq_false_thm); | |
POP_ASSUM (ASSUME_TAC o GSYM); | |
ASM_REWRITE_TAC[]; | |
REPEAT_N 2 STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LT_TRANS; | |
EXISTS_TAC `z`; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |