Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
exception Isign of (thm * ((term * thm) list));; | |
(* ---------------------------------------------------------------------- *) | |
(* Opt *) | |
(* ---------------------------------------------------------------------- *) | |
let get_mp = | |
let unknown = `Unknown` in | |
let pos = `Pos` in | |
let zero = `Zero` in | |
let neg = `Neg` in | |
fun upper_sign lower_sign deriv_sign -> | |
(* Pos Pos *) | |
if upper_sign = pos && | |
lower_sign = pos && | |
deriv_sign = pos then INFERISIGN_POS_POS_POS | |
else if upper_sign = pos && | |
lower_sign = pos && | |
deriv_sign = neg then INFERISIGN_POS_POS_NEG | |
(* Pos Neg *) | |
else if upper_sign = pos && | |
lower_sign = neg && | |
deriv_sign = pos then INFERISIGN_POS_NEG_POS | |
else if upper_sign = pos && | |
lower_sign = neg && | |
deriv_sign = neg then INFERISIGN_POS_NEG_NEG | |
(* Pos Zero *) | |
else if upper_sign = pos && | |
lower_sign = zero && | |
deriv_sign = pos then INFERISIGN_POS_ZERO_POS | |
else if upper_sign = pos && | |
lower_sign = zero && | |
deriv_sign = neg then INFERISIGN_POS_ZERO_NEG | |
(* Neg Pos *) | |
else if upper_sign = neg && | |
lower_sign = pos && | |
deriv_sign = pos then INFERISIGN_NEG_POS_POS | |
else if upper_sign = neg && | |
lower_sign = pos && | |
deriv_sign = neg then INFERISIGN_NEG_POS_NEG | |
(* Neg Neg *) | |
else if upper_sign = neg && | |
lower_sign = neg && | |
deriv_sign = pos then INFERISIGN_NEG_NEG_POS | |
else if upper_sign = neg && | |
lower_sign = neg && | |
deriv_sign = neg then INFERISIGN_NEG_NEG_NEG | |
(* Neg Zero *) | |
else if upper_sign = neg && | |
lower_sign = zero && | |
deriv_sign = pos then INFERISIGN_NEG_ZERO_POS | |
else if upper_sign = neg && | |
lower_sign = zero && | |
deriv_sign = neg then INFERISIGN_NEG_ZERO_NEG | |
(* Zero Pos *) | |
else if upper_sign = zero && | |
lower_sign = pos && | |
deriv_sign = pos then INFERISIGN_ZERO_POS_POS | |
else if upper_sign = zero && | |
lower_sign = pos && | |
deriv_sign = neg then INFERISIGN_ZERO_POS_NEG | |
(* Zero Neg *) | |
else if upper_sign = zero && | |
lower_sign = neg && | |
deriv_sign = pos then INFERISIGN_ZERO_NEG_POS | |
else if upper_sign = zero && | |
lower_sign = neg && | |
deriv_sign = neg then INFERISIGN_ZERO_NEG_NEG | |
(* Zero Zero *) | |
else if upper_sign = zero && | |
lower_sign = zero && | |
deriv_sign = pos then INFERISIGN_ZERO_ZERO_POS | |
else if upper_sign = zero && | |
lower_sign = zero && | |
deriv_sign = neg then INFERISIGN_ZERO_ZERO_NEG | |
else failwith "bad signs in thm";; | |
let tvars,tdiff,tmat,tex = ref [],ref TRUTH,ref TRUTH,ref [];; | |
(* | |
let vars,diff_thm,mat_thm,ex_thms = !tvars,!tdiff,!tmat,!tex | |
INFERISIGN vars diff_thm mat_thm ex_thms | |
let vars,diff_thm,mat_thm,ex_thms = vars, pdiff_thm, mat_thm''', ((v1,exthm1)::(v2,exthm2)::ex_thms) | |
*) | |
let rec INFERISIGN = | |
let real_app = `APPEND:real list -> real list -> real list` in | |
let sign_app = `APPEND:(sign list) list -> (sign list) list -> (sign list) list` in | |
let real_len = `LENGTH:real list -> num` in | |
let sign_len = `LENGTH:(sign list) list -> num` in | |
let unknown = `Unknown` in | |
let pos = `Pos` in | |
let zero = `Zero` in | |
let neg = `Neg` in | |
let num_mul = `( * ):num -> num -> num` in | |
let num_add = `( + ):num -> num -> num` in | |
let real_ty = `:real` in | |
let one = `1` in | |
let two = `2` in | |
let f = `F` in | |
let imat = `interpmat` in | |
let sl_ty = `:sign list` in | |
fun vars diff_thm mat_thm ex_thms -> | |
try | |
tvars := vars; | |
tdiff := diff_thm; | |
tmat := mat_thm; | |
tex := ex_thms; | |
let pts,ps,sgns = dest_interpmat (concl mat_thm) in | |
let pts' = dest_list pts in | |
if pts' = [] then mat_thm,ex_thms else | |
let sgns' = dest_list sgns in | |
let sgnl = map dest_list sgns' in | |
let i = get_index (fun x -> hd x = unknown) sgnl in | |
if i mod 2 = 1 then failwith "bad shifted matrix" else | |
let p::p'::_ = dest_list ps in | |
let p_thm = ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p))) in | |
let p'_thm = ONCE_REWRITE_RULE[GSYM diff_thm] (ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p')))) in | |
let pts1,qts1 = chop_list (i / 2 - 1) pts' in | |
let ps_thm = REWRITE_CONV[p_thm;p'_thm] ps in | |
let pts2 = mk_list(pts1,real_ty) in | |
let pts3 = mk_comb(mk_comb(real_app,pts2),mk_list(qts1,real_ty)) in | |
let pts_thm = prove(mk_eq(pts,pts3),REWRITE_TAC[APPEND]) in | |
let sgns1,rgns1 = chop_list (i - 1) sgns' in | |
let sgns2 = mk_list(sgns1,sl_ty) in | |
let sgns3 = mk_comb(mk_comb(sign_app,sgns2),mk_list(rgns1,sl_ty)) in | |
let sgns_thm = prove(mk_eq(sgns,sgns3),REWRITE_TAC[APPEND]) in | |
let len1 = mk_comb(sign_len,sgns2) in | |
let len2 = mk_binop num_add (mk_binop num_mul two (mk_comb(real_len,pts2))) one in | |
let len_thm = prove(mk_eq(len1,len2),REWRITE_TAC[LENGTH] THEN ARITH_TAC) in | |
let mat_thm1 = MK_COMB(MK_COMB((AP_TERM imat pts_thm), ps_thm),sgns_thm) in | |
let mat_thm2 = EQ_MP mat_thm1 mat_thm in | |
let upper_sign = hd (ith (i - 1) sgnl) in | |
let lower_sign = hd (ith (i + 1) sgnl) in | |
let deriv_sign = hd (tl (ith i sgnl)) in | |
let mp_thm = get_mp upper_sign lower_sign deriv_sign in | |
let mat_thm3 = MATCH_MP (MATCH_MP mp_thm mat_thm2) len_thm in | |
let mat_thm4 = REWRITE_RULE[GSYM p_thm;GSYM p'_thm;APPEND] mat_thm3 in | |
let c = concl mat_thm4 in | |
if c = f then raise (Isign (mat_thm4,ex_thms)) else | |
if not (is_exists c) then | |
INFERISIGN vars diff_thm mat_thm4 ex_thms else | |
let x,bod = dest_exists c in | |
let x' = new_var real_ty in | |
let assume_thm = ASSUME (subst [x',x] bod) in | |
INFERISIGN vars diff_thm assume_thm ((x',mat_thm4)::ex_thms) | |
with | |
Failure "get_index" -> mat_thm,ex_thms | |
| Failure x -> failwith ("INFERISIGN: " ^ x);; | |
(* | |
let vars,diff_thm,mat_thm,ex_thms = vars,pdiff_thm, mat_thm''',[] | |
let mat_thm = ASSUME ` interpmat [x_25; x1; x2; x4; x5; x_26] | |
[\x. &1 + x * (&1 + x * (&1 + x * &1)); \x. &1 + x * (&2 + x * &3); | |
\x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1)] | |
[[Neg; Pos; Pos; Pos]; | |
[Neg; Pos; Pos; Pos]; | |
[Unknown; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Zero]; | |
[Unknown; Neg; Pos; Neg]; | |
[Unknown; Neg; Neg; Neg]; | |
[Unknown; Neg; Pos; Neg]; | |
[Pos; Zero; Zero; Neg]; | |
[Unknown; Pos; Neg; Neg]; | |
[Pos; Pos; Zero; Zero]; | |
[Unknown; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos]]` | |
*) | |
(* ---------------------------------------------------------------------- *) | |
(* Timing *) | |
(* ---------------------------------------------------------------------- *) | |
let INFERISIGN vars diff_thm mat_thm ex_thms = | |
let start_time = Sys.time() in | |
let res = INFERISIGN vars diff_thm mat_thm ex_thms in | |
inferisign_timer +.= (Sys.time() -. start_time); | |
res;; | |
(* {{{ Examples *) | |
(* | |
let is_thms = isigns_thms''' | |
let vars,diff_thm,mat_thm = | |
[`w:real`; `z:real`; `y:real`; `x:real`], | |
ASSUME `poly_diff [&0 + y * (&0 + x * &1); &0 + z * -- &1] = [&0 + z * -- &1]`, | |
ASSUME `interpmat [x_178; x_179] | |
[\w. (&0 + y * (&0 + x * &1)) + w * (&0 + z * -- &1); \w. &0 + z * -- &1] | |
[[Pos; Neg]; [Pos; Neg]; [Unknown; Neg]; [Neg; Neg]; [Neg; Neg]]` | |
INFERISIGN vars pdiff_thm mat_thm | |
let diff | |
let vars,diff_thm,mat_thm = | |
let vars,diff_thm,mat_thm = | |
[`x:real`], | |
ASSUME `poly_diff [&0; &2; &0; &4] = [&2; &0; &12]`, | |
ASSUME `interpmat [x_79; x_68; x_80] | |
[\x. &0 + x * (&2 + x * (&0 + x * &4)); \x. &2 + x * (&0 + x * &12); | |
\x. &4 + x * (&0 + x * &2)] | |
[[Neg; Pos; Pos]; [Neg; Pos; Pos]; [Unknown; Pos; Pos]; [Unknown; Pos; Pos]; [Unknown; Pos; Pos]; [Pos; Pos; Pos]; [Pos; Pos; Pos]]` | |
let mat_thm = mat_thm''' | |
let diff_thm = pdiff_thm | |
INFERISIGN vars pdiff_thm mat_thm''' | |
let diff_thm = POLY_DIFF_CONV `poly_diff [&1; &1; &1; &1]`;; | |
let vars = [`x:real`] | |
let mat_thm = ASSUME | |
`interpmat | |
[xminf; x1; x4; x5; xinf] | |
[\x. &1 + x * (&1 + x * (&1 + x * &1)); \x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1)] | |
[[Neg; Pos; Pos; Pos]; | |
[Neg; Pos; Pos; Pos]; | |
[Unknown; Pos; Pos; Pos]; | |
[Neg; Pos; Pos; Zero]; | |
[Unknown; Pos; Pos; Neg]; | |
[Pos; Pos; Zero; Neg]; | |
[Unknown; Pos; Neg; Neg]; | |
[Pos; Pos; Zero; Zero]; | |
[Unknown; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos]; | |
[Pos; Pos; Pos; Pos]]`;; | |
let mat_thm1,_ = INFERISIGN vars diff_thm mat_thm [] | |
*) | |
(* }}} *) | |