Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Rqe /inferisign.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
8.89 kB
exception Isign of (thm * ((term * thm) list));;
(* ---------------------------------------------------------------------- *)
(* Opt *)
(* ---------------------------------------------------------------------- *)
let get_mp =
let unknown = `Unknown` in
let pos = `Pos` in
let zero = `Zero` in
let neg = `Neg` in
fun upper_sign lower_sign deriv_sign ->
(* Pos Pos *)
if upper_sign = pos &&
lower_sign = pos &&
deriv_sign = pos then INFERISIGN_POS_POS_POS
else if upper_sign = pos &&
lower_sign = pos &&
deriv_sign = neg then INFERISIGN_POS_POS_NEG
(* Pos Neg *)
else if upper_sign = pos &&
lower_sign = neg &&
deriv_sign = pos then INFERISIGN_POS_NEG_POS
else if upper_sign = pos &&
lower_sign = neg &&
deriv_sign = neg then INFERISIGN_POS_NEG_NEG
(* Pos Zero *)
else if upper_sign = pos &&
lower_sign = zero &&
deriv_sign = pos then INFERISIGN_POS_ZERO_POS
else if upper_sign = pos &&
lower_sign = zero &&
deriv_sign = neg then INFERISIGN_POS_ZERO_NEG
(* Neg Pos *)
else if upper_sign = neg &&
lower_sign = pos &&
deriv_sign = pos then INFERISIGN_NEG_POS_POS
else if upper_sign = neg &&
lower_sign = pos &&
deriv_sign = neg then INFERISIGN_NEG_POS_NEG
(* Neg Neg *)
else if upper_sign = neg &&
lower_sign = neg &&
deriv_sign = pos then INFERISIGN_NEG_NEG_POS
else if upper_sign = neg &&
lower_sign = neg &&
deriv_sign = neg then INFERISIGN_NEG_NEG_NEG
(* Neg Zero *)
else if upper_sign = neg &&
lower_sign = zero &&
deriv_sign = pos then INFERISIGN_NEG_ZERO_POS
else if upper_sign = neg &&
lower_sign = zero &&
deriv_sign = neg then INFERISIGN_NEG_ZERO_NEG
(* Zero Pos *)
else if upper_sign = zero &&
lower_sign = pos &&
deriv_sign = pos then INFERISIGN_ZERO_POS_POS
else if upper_sign = zero &&
lower_sign = pos &&
deriv_sign = neg then INFERISIGN_ZERO_POS_NEG
(* Zero Neg *)
else if upper_sign = zero &&
lower_sign = neg &&
deriv_sign = pos then INFERISIGN_ZERO_NEG_POS
else if upper_sign = zero &&
lower_sign = neg &&
deriv_sign = neg then INFERISIGN_ZERO_NEG_NEG
(* Zero Zero *)
else if upper_sign = zero &&
lower_sign = zero &&
deriv_sign = pos then INFERISIGN_ZERO_ZERO_POS
else if upper_sign = zero &&
lower_sign = zero &&
deriv_sign = neg then INFERISIGN_ZERO_ZERO_NEG
else failwith "bad signs in thm";;
let tvars,tdiff,tmat,tex = ref [],ref TRUTH,ref TRUTH,ref [];;
(*
let vars,diff_thm,mat_thm,ex_thms = !tvars,!tdiff,!tmat,!tex
INFERISIGN vars diff_thm mat_thm ex_thms
let vars,diff_thm,mat_thm,ex_thms = vars, pdiff_thm, mat_thm''', ((v1,exthm1)::(v2,exthm2)::ex_thms)
*)
let rec INFERISIGN =
let real_app = `APPEND:real list -> real list -> real list` in
let sign_app = `APPEND:(sign list) list -> (sign list) list -> (sign list) list` in
let real_len = `LENGTH:real list -> num` in
let sign_len = `LENGTH:(sign list) list -> num` in
let unknown = `Unknown` in
let pos = `Pos` in
let zero = `Zero` in
let neg = `Neg` in
let num_mul = `( * ):num -> num -> num` in
let num_add = `( + ):num -> num -> num` in
let real_ty = `:real` in
let one = `1` in
let two = `2` in
let f = `F` in
let imat = `interpmat` in
let sl_ty = `:sign list` in
fun vars diff_thm mat_thm ex_thms ->
try
tvars := vars;
tdiff := diff_thm;
tmat := mat_thm;
tex := ex_thms;
let pts,ps,sgns = dest_interpmat (concl mat_thm) in
let pts' = dest_list pts in
if pts' = [] then mat_thm,ex_thms else
let sgns' = dest_list sgns in
let sgnl = map dest_list sgns' in
let i = get_index (fun x -> hd x = unknown) sgnl in
if i mod 2 = 1 then failwith "bad shifted matrix" else
let p::p'::_ = dest_list ps in
let p_thm = ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p))) in
let p'_thm = ONCE_REWRITE_RULE[GSYM diff_thm] (ABS (hd vars) (POLY_ENLIST_CONV vars (snd(dest_abs p')))) in
let pts1,qts1 = chop_list (i / 2 - 1) pts' in
let ps_thm = REWRITE_CONV[p_thm;p'_thm] ps in
let pts2 = mk_list(pts1,real_ty) in
let pts3 = mk_comb(mk_comb(real_app,pts2),mk_list(qts1,real_ty)) in
let pts_thm = prove(mk_eq(pts,pts3),REWRITE_TAC[APPEND]) in
let sgns1,rgns1 = chop_list (i - 1) sgns' in
let sgns2 = mk_list(sgns1,sl_ty) in
let sgns3 = mk_comb(mk_comb(sign_app,sgns2),mk_list(rgns1,sl_ty)) in
let sgns_thm = prove(mk_eq(sgns,sgns3),REWRITE_TAC[APPEND]) in
let len1 = mk_comb(sign_len,sgns2) in
let len2 = mk_binop num_add (mk_binop num_mul two (mk_comb(real_len,pts2))) one in
let len_thm = prove(mk_eq(len1,len2),REWRITE_TAC[LENGTH] THEN ARITH_TAC) in
let mat_thm1 = MK_COMB(MK_COMB((AP_TERM imat pts_thm), ps_thm),sgns_thm) in
let mat_thm2 = EQ_MP mat_thm1 mat_thm in
let upper_sign = hd (ith (i - 1) sgnl) in
let lower_sign = hd (ith (i + 1) sgnl) in
let deriv_sign = hd (tl (ith i sgnl)) in
let mp_thm = get_mp upper_sign lower_sign deriv_sign in
let mat_thm3 = MATCH_MP (MATCH_MP mp_thm mat_thm2) len_thm in
let mat_thm4 = REWRITE_RULE[GSYM p_thm;GSYM p'_thm;APPEND] mat_thm3 in
let c = concl mat_thm4 in
if c = f then raise (Isign (mat_thm4,ex_thms)) else
if not (is_exists c) then
INFERISIGN vars diff_thm mat_thm4 ex_thms else
let x,bod = dest_exists c in
let x' = new_var real_ty in
let assume_thm = ASSUME (subst [x',x] bod) in
INFERISIGN vars diff_thm assume_thm ((x',mat_thm4)::ex_thms)
with
Failure "get_index" -> mat_thm,ex_thms
| Failure x -> failwith ("INFERISIGN: " ^ x);;
(*
let vars,diff_thm,mat_thm,ex_thms = vars,pdiff_thm, mat_thm''',[]
let mat_thm = ASSUME ` interpmat [x_25; x1; x2; x4; x5; x_26]
[\x. &1 + x * (&1 + x * (&1 + x * &1)); \x. &1 + x * (&2 + x * &3);
\x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1)]
[[Neg; Pos; Pos; Pos];
[Neg; Pos; Pos; Pos];
[Unknown; Pos; Pos; Pos];
[Pos; Pos; Pos; Zero];
[Unknown; Neg; Pos; Neg];
[Unknown; Neg; Neg; Neg];
[Unknown; Neg; Pos; Neg];
[Pos; Zero; Zero; Neg];
[Unknown; Pos; Neg; Neg];
[Pos; Pos; Zero; Zero];
[Unknown; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos]]`
*)
(* ---------------------------------------------------------------------- *)
(* Timing *)
(* ---------------------------------------------------------------------- *)
let INFERISIGN vars diff_thm mat_thm ex_thms =
let start_time = Sys.time() in
let res = INFERISIGN vars diff_thm mat_thm ex_thms in
inferisign_timer +.= (Sys.time() -. start_time);
res;;
(* {{{ Examples *)
(*
let is_thms = isigns_thms'''
let vars,diff_thm,mat_thm =
[`w:real`; `z:real`; `y:real`; `x:real`],
ASSUME `poly_diff [&0 + y * (&0 + x * &1); &0 + z * -- &1] = [&0 + z * -- &1]`,
ASSUME `interpmat [x_178; x_179]
[\w. (&0 + y * (&0 + x * &1)) + w * (&0 + z * -- &1); \w. &0 + z * -- &1]
[[Pos; Neg]; [Pos; Neg]; [Unknown; Neg]; [Neg; Neg]; [Neg; Neg]]`
INFERISIGN vars pdiff_thm mat_thm
let diff
let vars,diff_thm,mat_thm =
let vars,diff_thm,mat_thm =
[`x:real`],
ASSUME `poly_diff [&0; &2; &0; &4] = [&2; &0; &12]`,
ASSUME `interpmat [x_79; x_68; x_80]
[\x. &0 + x * (&2 + x * (&0 + x * &4)); \x. &2 + x * (&0 + x * &12);
\x. &4 + x * (&0 + x * &2)]
[[Neg; Pos; Pos]; [Neg; Pos; Pos]; [Unknown; Pos; Pos]; [Unknown; Pos; Pos]; [Unknown; Pos; Pos]; [Pos; Pos; Pos]; [Pos; Pos; Pos]]`
let mat_thm = mat_thm'''
let diff_thm = pdiff_thm
INFERISIGN vars pdiff_thm mat_thm'''
let diff_thm = POLY_DIFF_CONV `poly_diff [&1; &1; &1; &1]`;;
let vars = [`x:real`]
let mat_thm = ASSUME
`interpmat
[xminf; x1; x4; x5; xinf]
[\x. &1 + x * (&1 + x * (&1 + x * &1)); \x. &1 + x * (&2 + x * &3); \x. &2 + x * (-- &3 + x * &1); \x. -- &4 + x * (&0 + x * &1)]
[[Neg; Pos; Pos; Pos];
[Neg; Pos; Pos; Pos];
[Unknown; Pos; Pos; Pos];
[Neg; Pos; Pos; Zero];
[Unknown; Pos; Pos; Neg];
[Pos; Pos; Zero; Neg];
[Unknown; Pos; Neg; Neg];
[Pos; Pos; Zero; Zero];
[Unknown; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos];
[Pos; Pos; Pos; Pos]]`;;
let mat_thm1,_ = INFERISIGN vars diff_thm mat_thm []
*)
(* }}} *)