Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ---------------------------------------------------------------------- *) | |
(* Paper *) | |
(* ---------------------------------------------------------------------- *) | |
(* ---------------------------- Chebychev ----------------------------- *) | |
time REAL_QELIM_CONV | |
`!x. --(&1) <= x /\ x <= &1 ==> | |
-- (&1) <= &2 * x pow 2 - &1 /\ &2 * x pow 2 - &1 <= &1`;; | |
(* | |
DATE ------- HOL -------- | |
5/20 4.92 | |
5/22 4.67 | |
*) | |
time REAL_QELIM_CONV | |
`!x. --(&1) <= x /\ x <= &1 ==> | |
-- (&1) <= &4 * x pow 3 - &3 * x /\ &4 * x pow 3 - &3 * x <= &1`;; | |
(* | |
DATE ------- HOL -------- | |
5/20 14.38 | |
5/22 13.65 | |
*) | |
time REAL_QELIM_CONV | |
`&1 < &2 /\ (!x. &1 < x ==> &1 < x pow 2) /\ | |
(!x y. &1 < x /\ &1 < y ==> &1 < x * (&1 + &2 * y))`;; | |
(* | |
DATE ------- HOL -------- | |
5/22 23.61 | |
*) | |
time REAL_QELIM_CONV | |
`&0 <= b /\ &0 <= c /\ &0 < a * c ==> ?u. &0 < u /\ u * (u * c - a * c) - | |
(u * a * c - (a pow 2 * c + b)) < a pow 2 * c + b`;; | |
(* | |
DATE ------- HOL -------- | |
5/22 8.78 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Examples. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 + x^2 + 1 = 0>>;; | |
0.01 | |
let fm = `?x. x pow 4 + x pow 2 + &1 = &0`;; | |
let vars = [] | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 + x pow 2 + &1 = &0`;; | |
(* | |
DATE ------- HOL -------- | |
4/29/2005 3.19 | |
5/19 2.2 | |
5/20 1.96 | |
5/22 1.53 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^3 - x^2 + x - 1 = 0>>;; | |
0.01 | |
*) | |
time REAL_QELIM_CONV `?x. x pow 3 - x pow 2 + x - &1 = &0`;; | |
(* | |
DATE ------- HOL -------- | |
4/29/2005 3.83 | |
5/22/2005 1.69 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x y. x^3 - x^2 + x - 1 = 0 /\ | |
y^3 - y^2 + y - 1 = 0 /\ ~(x = y)>>;; | |
0.23 | |
*) | |
time REAL_QELIM_CONV | |
`?x y. (x pow 3 - x pow 2 + x - &1 = &0) /\ | |
(y pow 3 - y pow 2 + y - &1 = &0) /\ ~(x = y)`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 682.85 3000 | |
5/17/2005 345.27 | |
5/22 269 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a f k. (forall e. k < e ==> f < a * e) ==> f <= a * k>>;; | |
0.02 | |
*) | |
time REAL_QELIM_CONV | |
`!a f k. (!e. k < e ==> f < a * e) ==> f <= a * k`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 20.91 1000 | |
5/15/2005 17.98 | |
5/17/2005 15.12 | |
5/18/2005 12.87 | |
5/22 12.09 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x. a * x^2 + b * x + c = 0>>;; | |
0.01 | |
*) | |
time REAL_QELIM_CONV | |
`?x. a * x pow 2 + b * x + c = &0`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 10.99 1000 | |
5/17/2005 6.42 | |
5/18 5.39 | |
5/22 4.74 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. (exists x. a * x^2 + b * x + c = 0) <=> | |
b^2 >= 4 * a * c>>;; | |
0.51 | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. (?x. a * x pow 2 + b * x + c = &0) <=> | |
b pow 2 >= &4 * a * c`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 1200.99 2400 | |
5/17 878.25 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. (exists x. a * x^2 + b * x + c = 0) <=> | |
a = 0 /\ (~(b = 0) \/ c = 0) \/ | |
~(a = 0) /\ b^2 >= 4 * a * c>>;; | |
0.51 | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. (?x. a * x pow 2 + b * x + c = &0) <=> | |
(a = &0) /\ (~(b = &0) \/ (c = &0)) \/ | |
~(a = &0) /\ b pow 2 >= &4 * a * c`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 1173.9 2400 | |
5/17 848.4 | |
5/20 816 | |
1095 during depot update | |
*) | |
(* | |
time real_qelim <<exists x. 0 <= x /\ x <= 1 /\ (r * r * x * x - r * (1 + r) * x + (1 + r) = 0) | |
/\ ~(2 * r * x = 1 + r)>> | |
*) | |
time REAL_QELIM_CONV | |
`?x. &0 <= x /\ x <= &1 /\ (r pow 2 * x pow 2 - r * (&1 + r) * x + (&1 + r) = &0) | |
/\ ~(&2 * r * x = &1 + r)`;; | |
(* | |
DATE ------- HOL -------- Factor | |
5/20/2005 19021 1460 | |
4000 line output | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Termination ordering for group theory completion. *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* Left this out *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* This one works better using DNF. *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* And this *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* Linear examples. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x - 1 > 0>>;; | |
0 | |
*) | |
time REAL_QELIM_CONV `?x. x - &1 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 .56 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. 3 - x > 0 /\ x - 1 > 0>>;; | |
0 | |
*) | |
time REAL_QELIM_CONV `?x. &3 - x > &0 /\ x - &1 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.66 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Quadratics. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 = 0>>;; | |
0 | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.12 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 + &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.11 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 - 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 - &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.54 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 - 2 * x + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 - &2 * x + &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.21 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 - 3 * x + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 - &3 * x + &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.75 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Cubics. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^3 - 1 > 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 3 - &1 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.96 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^3 - 3 * x^2 + 3 * x - 1 > 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 3 - &3 * x pow 2 + &3 * x - &1 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.97 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^3 - 4 * x^2 + 5 * x - 2 > 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 3 - &4 * x pow 2 + &5 * x - &2 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4.89 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^3 - 6 * x^2 + 11 * x - 6 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 3 - &6 * x pow 2 + &11 * x - &6 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4.17 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Quartics. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 - 1 > 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 - &1 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 3.07 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 + 1 > 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 + &1 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 2.47 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 2.48 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 - x^3 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 - x pow 3 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.76 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 - x^2 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 - x pow 2 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 2.16 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 - 2 * x^2 + 2 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 - &2 * x pow 2 + &2 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 6.87 | |
5/16/2005 5.22 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Quintics. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x. x^5 - 15 * x^4 + 85 * x^3 - 225 * x^2 + 274 * x - 120 = 0>>;; | |
0.03 | |
print_timers() | |
*) | |
time REAL_QELIM_CONV | |
`?x. x pow 5 - &15 * x pow 4 + &85 * x pow 3 - &225 * x pow 2 + &274 * x - &120 = &0`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 65.64 2500 | |
5/15/2005 55.93 | |
5/16/2005 47.72 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Sextics(?) *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. | |
x^6 - 21 * x^5 + 175 * x^4 - 735 * x^3 + 1624 * x^2 - 1764 * x + 720 = 0>>;; | |
0.15 | |
*) | |
time REAL_QELIM_CONV `?x. | |
x pow 6 - &21 * x pow 5 + &175 * x pow 4 - &735 * x pow 3 + &1624 * x pow 2 - &1764 * x + &720 = &0`;; | |
`?x. x pow 5 - &15 * x pow 4 + &85 * x pow 3 - &225 * x pow 2 + &274 * x - &120 = &0`;; | |
(* | |
DATE ------- HOL -------- Factor | |
4/29/2005 1400.4 10000 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. | |
x^6 - 12 * x^5 + 56 * x^4 - 130 * x^3 + 159 * x^2 - 98 * x + 24 = 0>>;; | |
7.54 | |
*) | |
(* NOT YET *) | |
(* | |
time REAL_QELIM_CONV `?x. | |
x pow 6 - &12 * x pow 5 + &56 * x pow 4 - &130 * x pow 3 + &159 * x pow 2 - &98 * x + &24 = &0`;; | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Multiple polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 + 2 > 0 /\ x^3 - 11 = 0 /\ x + 131 >= 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 + &2 > &0 /\ (x pow 3 - &11 = &0) /\ x + &131 >= &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 13.1 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* With more variables. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. a * x^2 + b * x + c = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. a * x pow 2 + b * x + c = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 10.94 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. a * x^3 + b * x^2 + c * x + d = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. a * x pow 3 + b * x pow 2 + c * x + d = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 269.17 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Constraint solving. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x1 x2. x1^2 + x2^2 - u1 <= 0 /\ x1^2 - u2 > 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x1 x2. x1 pow 2 + x2 pow 2 - u1 <= &0 /\ x1 pow 2 - u2 > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 89.97 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Huet & Oppen (interpretation of group theory). *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x > 0 /\ y > 0 ==> x * (1 + 2 * y) > 0>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. x > &0 /\ y > &0 ==> x * (&1 + &2 * y) > &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 5.03 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Other examples. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 - x + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 - x + &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.19 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^2 - 3 * x + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 2 - &3 * x + &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.65 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x > 6 /\ (x^2 - 3 * x + 1 = 0)>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x > &6 /\ (x pow 2 - &3 * x + &1 = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 3.63 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. 7 * x^2 - 5 * x + 3 > 0 /\ | |
x^2 - 3 * x + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. &7 * x pow 2 - &5 * x + &3 > &0 /\ | |
(x pow 2 - &3 * x + &1 = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 8.62 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. 11 * x^3 - 7 * x^2 - 2 * x + 1 = 0 /\ | |
7 * x^2 - 5 * x + 3 > 0 /\ | |
x^2 - 8 * x + 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. (&11 * x pow 3 - &7 * x pow 2 - &2 * x + &1 = &0) /\ | |
&7 * x pow 2 - &5 * x + &3 > &0 /\ | |
(x pow 2 - &8 * x + &1 = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 221.4 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Quadratic inequality from Liska and Steinberg *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x. -(1) <= x /\ x <= 1 ==> | |
C * (x - 1) * (4 * x * a * C - x * C - 4 * a * C + C - 2) >= 0>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x. -- &1 <= x /\ x <= &1 ==> | |
C * (x - &1) * (&4 * x * a * C - x * C - &4 * a * C + C - &2) >= &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1493 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Metal-milling example from Loos and Weispfenning *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x y. 0 < x /\ | |
y < 0 /\ | |
x * r - x * t + t = q * x - s * x + s /\ | |
x * b - x * d + d = a * y - c * y + c>>;; | |
*) | |
time REAL_QELIM_CONV | |
`?x y. &0 < x /\ | |
y < &0 /\ | |
(x * r - x * t + t = q * x - s * x + s) /\ | |
(x * b - x * d + d = a * y - c * y + c)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Linear example from Collins and Johnson *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists r. 0 < r /\ | |
r < 1 /\ | |
0 < (1 - 3 * r) * (a^2 + b^2) + 2 * a * r /\ | |
(2 - 3 * r) * (a^2 + b^2) + 4 * a * r - 2 * a - r < 0>>;; | |
*) | |
time REAL_QELIM_CONV | |
`?r. &0 < r /\ | |
r < &1 /\ | |
&0 < (&1 - &3 * r) * (a pow 2 + b pow 2) + &2 * a * r /\ | |
(&2 - &3 * r) * (a pow 2 + b pow 2) + &4 * a * r - &2 * a - r < &0`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Dave Griffioen #4 *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x y. (1 - t) * x <= (1 + t) * y /\ (1 - t) * y <= (1 + t) * x | |
==> 0 <= y>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x y. (&1 - t) * x <= (&1 + t) * y /\ (&1 - t) * y <= (&1 + t) * x | |
==> &0 <= y`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 893 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Some examples from "Real Quantifier Elimination in practice". *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x2. x1^2 + x2^2 <= u1 /\ x1^2 > u2>>;; | |
*) | |
time REAL_QELIM_CONV `?x2. x1 pow 2 + x2 pow 2 <= u1 /\ x1 pow 2 > u2`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x1 x2. x1^2 + x2^2 <= u1 /\ x1^2 > u2>>;; | |
*) | |
time REAL_QELIM_CONV `?x1 x2. x1 pow 2 + x2 pow 2 <= u1 /\ x1 pow 2 > u2`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 90 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x1 x2. x1 + x2 <= 2 /\ x1 <= 1 /\ x1 >= 0 /\ x2 >= 0 | |
==> 3 * (x1 + 3 * x2^2 + 2) <= 8 * (2 * x1 + x2 + 1)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x1 x2. x1 + x2 <= &2 /\ x1 <= &1 /\ x1 >= &0 /\ x2 >= &0 | |
==> &3 * (x1 + &3 * x2 pow 2 + &2) <= &8 * (&2 * x1 + x2 + &1)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 18430 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* From Collins & Johnson's "Sign variation..." article. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists r. 0 < r /\ r < 1 /\ | |
(1 - 3 * r) * (a^2 + b^2) + 2 * a * r > 0 /\ | |
(2 - 3 * r) * (a^2 + b^2) + 4 * a * r - 2 * a - r < 0>>;; | |
*) | |
time REAL_QELIM_CONV `?r. &0 < r /\ r < &1 /\ | |
(&1 - &3 * r) * (a pow 2 + b pow 2) + &2 * a * r > &0 /\ | |
(&2 - &3 * r) * (a pow 2 + b pow 2) + &4 * a * r - &2 * a - r < &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4595.11 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* From "Parallel implementation of CAD" article. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. forall y. x^2 + y^2 > 1 /\ x * y >= 1>>;; | |
*) | |
time REAL_QELIM_CONV `?x. !y. x pow 2 + y pow 2 > &1 /\ x * y >= &1`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 89.51 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Other misc examples. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x^2 + y^2 = 1 ==> 2 * x * y <= 1>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. (x pow 2 + y pow 2 = &1) ==> &2 * x * y <= &1`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 83.02 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x^2 + y^2 = 1 ==> 2 * x * y < 1>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. (x pow 2 + y pow 2 = &1) ==> &2 * x * y < &1`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 83.7 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x * y > 0 <=> x > 0 /\ y > 0 \/ x < 0 /\ y < 0>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. x * y > &0 <=> x > &0 /\ y > &0 \/ x < &0 /\ y < &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 27.4 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x y. x > y /\ x^2 < y^2>>;; | |
*) | |
time REAL_QELIM_CONV `?x y. x > y /\ x pow 2 < y pow 2`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 1.19 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x < y ==> exists z. x < z /\ z < y>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. x < y ==> ?z. x < z /\ z < y`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 3.8 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x. 0 < x <=> exists y. x * y^2 = 1>>;; | |
*) | |
time REAL_QELIM_CONV `!x. &0 < x <=> ?y. x * y pow 2 = &1`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 3.76 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x. 0 <= x <=> exists y. x * y^2 = 1>>;; | |
*) | |
time REAL_QELIM_CONV `!x. &0 <= x <=> ?y. x * y pow 2 = &1`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4.38 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x. 0 <= x <=> exists y. x = y^2>>;; | |
*) | |
time REAL_QELIM_CONV `!x. &0 <= x <=> ?y. x = y pow 2`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4.38 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. 0 < x /\ x < y ==> exists z. x < z^2 /\ z^2 < y>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. &0 < x /\ x < y ==> ?z. x < z pow 2 /\ z pow 2 < y`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 93.1 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x < y ==> exists z. x < z^2 /\ z^2 < y>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. x < y ==> ?z. x < z pow 2 /\ z pow 2 < y`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 93.22 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x^2 + y^2 = 0 ==> x = 0 /\ y = 0>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. (x pow 2 + y pow 2 = &0) ==> (x = &0) /\ (y = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 17.21 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y z. x^2 + y^2 + z^2 = 0 ==> x = 0 /\ y = 0 /\ z = 0>>;; | |
*) | |
time REAL_QELIM_CONV `!x y z. (x pow 2 + y pow 2 + z pow 2 = &0) ==> (x = &0) /\ (y = &0) /\ (z = &0)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall w x y z. w^2 + x^2 + y^2 + z^2 = 0 | |
==> w = 0 /\ x = 0 /\ y = 0 /\ z = 0>>;; | |
*) | |
time REAL_QELIM_CONV `!w x y z. (w pow 2 + x pow 2 + y pow 2 + z pow 2 = &0) | |
==> (w = &0) /\ (x = &0) /\ (y = &0) /\ (z = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 596 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall a. a^2 = 2 ==> forall x. ~(x^2 + a*x + 1 = 0)>>;; | |
*) | |
time REAL_QELIM_CONV `!a. (a pow 2 = &2) ==> !x. ~(x pow 2 + a*x + &1 = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 8.7 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall a. a^2 = 2 ==> forall x. ~(x^2 - a*x + 1 = 0)>>;; | |
*) | |
time REAL_QELIM_CONV `!a. (a pow 2 = &2) ==> !x. ~(x pow 2 - a*x + &1 = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 8.82 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. x^2 = 2 /\ y^2 = 3 ==> (x * y)^2 = 6>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. (x pow 2 = &2) /\ (y pow 2 = &3) ==> ((x * y) pow 2 = &6)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 48.59 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x. exists y. x^2 = y^3>>;; | |
*) | |
time REAL_QELIM_CONV `!x. ?y. x pow 2 = y pow 3`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 6.93 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x. exists y. x^3 = y^2>>;; | |
*) | |
time REAL_QELIM_CONV `!x. ?y. x pow 3 = y pow 2`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 5.76 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. | |
(a * x^2 + b * x + c = 0) /\ | |
(a * y^2 + b * y + c = 0) /\ | |
~(x = y) | |
==> (a * (x + y) + b = 0)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. | |
(a * x pow 2 + b * x + c = &0) /\ | |
(a * y pow 2 + b * y + c = &0) /\ | |
~(x = y) | |
==> (a * (x + y) + b = &0)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 76.5 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall y_1 y_2 y_3 y_4. | |
(y_1 = 2 * y_3) /\ | |
(y_2 = 2 * y_4) /\ | |
(y_1 * y_3 = y_2 * y_4) | |
==> (y_1^2 = y_2^2)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!y_1 y_2 y_3 y_4. | |
(y_1 = &2 * y_3) /\ | |
(y_2 = &2 * y_4) /\ | |
(y_1 * y_3 = y_2 * y_4) | |
==> (y_1 pow 2 = y_2 pow 2)`;; | |
(* | |
time real_qelim <<forall x. x^2 < 1 <=> x^4 < 1>>;; | |
*) | |
(* | |
DATE ------- HOL | |
4/29/2005 1327 | |
*) | |
(* ------------------------------------------------------------------------- *) | |
(* Counting roots. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^3 - x^2 + x - 1 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 3 - x pow 2 + x - &1 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 3.8 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x y. x^3 - x^2 + x - 1 = 0 /\ y^3 - y^2 + y - 1 = 0 /\ ~(x = y)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`?x y. (x pow 3 - x pow 2 + x - &1 = &0) /\ (y pow 3 - y pow 2 + y - &1 = &0) /\ ~(x = y)`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 670 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x. x^4 + x^2 - 2 = 0>>;; | |
*) | |
time REAL_QELIM_CONV `?x. x pow 4 + x pow 2 - &2 = &0`;; | |
(* | |
DATE ------- HOL | |
4/29/2005 4.9 | |
*) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x y. x^4 + x^2 - 2 = 0 /\ y^4 + y^2 - 2 = 0 /\ ~(x = y)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`?x y. x pow 4 + x pow 2 - &2 = &0 /\ y pow 4 + y pow 2 - &2 = &0 /\ ~(x = y)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists x y. x^3 + x^2 - x - 1 = 0 /\ y^3 + y^2 - y - 1 = 0 /\ ~(x = y)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`?x y. (x pow 3 + x pow 2 - x - &1 = &0) /\ (y pow 3 + y pow 2 - y - &1 = &0) /\ ~(x = y)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<exists x y z. x^3 + x^2 - x - 1 = 0 /\ | |
y^3 + y^2 - y - 1 = 0 /\ | |
z^3 + z^2 - z - 1 = 0 /\ ~(x = y) /\ ~(x = z)>>;; | |
*) | |
time REAL_QELIM_CONV `?x y z. (x pow 3 + x pow 2 - x - &1 = &0) /\ | |
(y pow 3 + y pow 2 - y - &1 = &0) /\ | |
(z pow 3 + z pow 2 - z - &1 = &0) /\ ~(x = y) /\ ~(x = z)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Existence of tangents, so to speak. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x y. exists s c. s^2 + c^2 = 1 /\ s * x + c * y = 0>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x y. ?s c. (s pow 2 + c pow 2 = &1) /\ s * x + c * y = &0`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Another useful thing (componentwise ==> normwise accuracy etc.) *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. (x + y)^2 <= 2 * (x^2 + y^2)>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. (x + y) pow 2 <= &2 * (x pow 2 + y pow 2)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some related quantifier elimination problems. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall x y. (x + y)^2 <= c * (x^2 + y^2)>>;; | |
*) | |
time REAL_QELIM_CONV `!x y. (x + y) pow 2 <= c * (x pow 2 + y pow 2)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall c. (forall x y. (x + y)^2 <= c * (x^2 + y^2)) <=> 2 <= c>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!c. (!x y. (x + y) pow 2 <= c * (x pow 2 + y pow 2)) <=> &2 <= c`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim <<forall a b. a * b * c <= a^2 + b^2>>;; | |
*) | |
time REAL_QELIM_CONV `!a b. a * b * c <= a pow 2 + b pow 2`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall c. (forall a b. a * b * c <= a^2 + b^2) <=> c^2 <= 4>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!c. (!a b. a * b * c <= a pow 2 + b pow 2) <=> c pow 2 <= &4`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Tedious lemmas I once proved manually in HOL. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. 0 < a /\ 0 < b /\ 0 < c | |
==> 0 < a * b /\ 0 < a * c /\ 0 < b * c>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. &0 < a /\ &0 < b /\ &0 < c | |
==> &0 < a * b /\ &0 < a * c /\ &0 < b * c`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. a * b > 0 ==> (c * a < 0 <=> c * b < 0)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. a * b > &0 ==> (c * a < &0 <=> c * b < &0)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. a * b > 0 ==> (a * c < 0 <=> b * c < 0)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. a * b > &0 ==> (a * c < &0 <=> b * c < &0)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b. a < 0 ==> (a * b > 0 <=> b < 0)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b. a < &0 ==> (a * b > &0 <=> b < &0)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c. a * b < 0 /\ ~(c = 0) ==> (c * a < 0 <=> ~(c * b < 0))>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c. a * b < &0 /\ ~(c = &0) ==> (c * a < &0 <=> ~(c * b < &0))`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b. a * b < 0 <=> a > 0 /\ b < 0 \/ a < 0 /\ b > 0>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b. a * b < &0 <=> a > &0 /\ b < &0 \/ a < &0 /\ b > &0`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b. a * b <= 0 <=> a >= 0 /\ b <= 0 \/ a <= 0 /\ b >= 0>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b. a * b <= &0 <=> a >= &0 /\ b <= &0 \/ a <= &0 /\ b >= &0`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Vaguely connected with reductions for Robinson arithmetic. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b. ~(a <= b) <=> forall d. d <= b ==> d < a>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b. ~(a <= b) <=> !d. d <= b ==> d < a`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b. ~(a <= b) <=> forall d. d <= b ==> ~(d = a)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b. ~(a <= b) <=> !d. d <= b ==> ~(d = a)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b. ~(a < b) <=> forall d. d < b ==> d < a>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b. ~(a < b) <=> !d. d < b ==> d < a`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Another nice problem. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x y. x^2 + y^2 = 1 ==> (x + y)^2 <= 2>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x y. (x pow 2 + y pow 2 = &1) ==> (x + y) pow 2 <= &2`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Some variants / intermediate steps in Cauchy-Schwartz inequality. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x y. 2 * x * y <= x^2 + y^2>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x y. &2 * x * y <= x pow 2 + y pow 2`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c d. 2 * a * b * c * d <= a^2 * b^2 + c^2 * d^2>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c d. &2 * a * b * c * d <= a pow 2 * b pow 2 + c pow 2 * d pow 2`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall x1 x2 y1 y2. | |
(x1 * y1 + x2 * y2)^2 <= (x1^2 + x2^2) * (y1^2 + y2^2)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!x1 x2 y1 y2. | |
(x1 * y1 + x2 * y2) pow 2 <= (x1 pow 2 + x2 pow 2) * (y1 pow 2 + y2 pow 2)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The determinant example works OK here too. *) | |
(* ------------------------------------------------------------------------- *) | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<exists w x y z. (a * w + b * y = 1) /\ | |
(a * x + b * z = 0) /\ | |
(c * w + d * y = 0) /\ | |
(c * x + d * z = 1)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`?w x y z. (a * w + b * y = &1) /\ | |
(a * x + b * z = &0) /\ | |
(c * w + d * y = &0) /\ | |
(c * x + d * z = &1)`;; | |
(* --------------------------------- --------------------------------- *) | |
(* | |
time real_qelim | |
<<forall a b c d. | |
(exists w x y z. (a * w + b * y = 1) /\ | |
(a * x + b * z = 0) /\ | |
(c * w + d * y = 0) /\ | |
(c * x + d * z = 1)) | |
<=> ~(a * d = b * c)>>;; | |
*) | |
time REAL_QELIM_CONV | |
`!a b c d. | |
(?w x y z. (a * w + b * y = &1) /\ | |
(a * x + b * z = &0) /\ | |
(c * w + d * y = &0) /\ | |
(c * x + d * z = &1)) | |
<=> ~(a * d = b * c)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* From applying SOLOVAY_VECTOR_TAC. *) | |
(* ------------------------------------------------------------------------- *) | |
let th = prove | |
(`&0 <= c' /\ &0 <= c /\ &0 < h * c' | |
==> (?u. &0 < u /\ | |
(!v. &0 < v /\ v <= u | |
==> v * (v * (h * h * c' + c) - h * c') - (v * h * c' - c') < | |
c'))`, | |
W(fun (asl,w) -> MAP_EVERY (fun v -> SPEC_TAC(v,v)) (frees w)) THEN | |
CONV_TAC REAL_QELIM_CONV);; | |
(* ------------------------------------------------------------------------- *) | |
(* Two notions of parallelism. *) | |
(* ------------------------------------------------------------------------- *) | |
time REAL_QELIM_CONV | |
`!x1 x2 y1 y2. (?c. (x2 = c * x1) /\ (y2 = c * y1)) <=> | |
(x1 = &0 /\ y1 = &0 ==> x2 = &0 /\ y2 = &0) /\ | |
x1 * y2 = x2 * y1`;; | |
(* ------------------------------------------------------------------------- *) | |
(* From Behzad Akbarpour (takes about 300 seconds). *) | |
(* ------------------------------------------------------------------------- *) | |
time REAL_QELIM_CONV | |
`!x. &0 <= x /\ x <= &1 | |
==> &0 < &1 - x + x pow 2 / &2 - x pow 3 / &6 /\ | |
&1 <= (&1 + x + x pow 2) * | |
(&1 - x + x pow 2 / &2 - x pow 3 / &6)`;; | |
(* ------------------------------------------------------------------------- *) | |
(* A natural simplification of "limit of a product" result. *) | |
(* Takes about 450 seconds. *) | |
(* ------------------------------------------------------------------------- *) | |
(*** Would actually like to get rid of abs internally and state it like this: | |
time REAL_QELIM_CONV | |
`!x y e. &0 < e ==> ?d. &0 < d /\ abs((x + d) * (y + d) - x * y) < e`;; | |
****) | |
time REAL_QELIM_CONV | |
`!x y e. &0 < e ==> ?d. &0 < d /\ (x + d) * (y + d) - x * y < e /\ | |
x * y - (x + d) * (y + d) < e`;; | |