Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
let le_lem = prove_by_refinement( | |
`(!y. y <= Y ==> P y) ==> | |
(!y. y < Y ==> P y) /\ | |
(!y. (y = Y) ==> P y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let lt_int_lem = prove_by_refinement( | |
`(!y. y < Y ==> P y) ==> X < Y ==> | |
(!y. X < y /\ y < Y ==> P y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let ge_lem = prove_by_refinement( | |
`(!y. Y <= y ==> P y) ==> | |
(!y. Y < y ==> P y) /\ | |
(!y. (y = Y) ==> P y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let gt_int_lem = prove_by_refinement( | |
`(!y. Y < y ==> P y) ==> Y < X ==> | |
(!y. Y < y /\ y < X ==> P y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let rest_lt_lem = prove_by_refinement( | |
`Y < X ==> (!x. x < X ==> P x) ==> (!x. x < Y ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_LT_TRANS;real_gt]; | |
]);; | |
(* }}} *) | |
let rest_gt_lem = prove_by_refinement( | |
`X < Y ==> (!x. X < x ==> P x) ==> (!x. Y < x ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_LT_TRANS;real_gt]; | |
]);; | |
(* }}} *) | |
let rest_eq_lt_lem = prove_by_refinement( | |
`Y < X ==> (!x. x < X ==> P x) ==> (!x. (x = Y) ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_LT_TRANS]; | |
]);; | |
(* }}} *) | |
let rest_eq_gt_lem = prove_by_refinement( | |
`X < Y ==> (!x. X < x ==> P x) ==> (!x. (x = Y) ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_LT_TRANS]; | |
]);; | |
(* }}} *) | |
let rest_int_lt_lem = prove_by_refinement( | |
`Y < X ==> (!x. x < X ==> P x) ==> (!x. Y < x /\ x < X ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_LT_TRANS]; | |
]);; | |
(* }}} *) | |
let rest_int_gt_lem = prove_by_refinement( | |
`X < Y ==> (!x. X < x ==> P x) ==> (!x. X < x /\ x < Y ==> P x)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_LT_TRANS]; | |
]);; | |
(* }}} *) | |
let INTERPSIGN_SUBSET = prove_by_refinement( | |
`!P Q p s. interpsign P p s /\ Q SUBSET P ==> interpsign Q p s`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[SUBSET;IN]; | |
REPEAT_N 4 STRIP_TAC; | |
STRUCT_CASES_TAC (ISPEC `s:sign` SIGN_CASES) THEN | |
REWRITE_TAC[interpsign] THEN MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let INTERPSIGNS_SUBSET = prove_by_refinement( | |
`!P Q ps ss. interpsigns ps P ss /\ Q SUBSET P ==> interpsigns ps Q ss`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[SUBSET;IN]; | |
REPEAT_N 2 STRIP_TAC; | |
LIST_INDUCT_TAC; | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[ALL2;interpsigns;interpsign]; | |
REWRITE_TAC[ALL2;interpsigns;interpsign]; | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[ALL2;interpsigns;interpsign]; | |
REWRITE_TAC[ALL2;interpsigns;interpsign]; | |
(* save *) | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC INTERPSIGN_SUBSET; | |
ASM_MESON_TAC[SUBSET;IN]; | |
REWRITE_ASSUMS[ALL2;interpsigns;interpsign]; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let NOPOINT_LEM = prove_by_refinement( | |
`!pl sl. interpsigns pl (\x. T) sl ==> | |
(interpsigns pl (\x. x < &0) sl /\ | |
interpsigns pl (\x. x = &0) sl /\ | |
interpsigns pl (\x. &0 < x) sl)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC INTERPSIGNS_SUBSET THEN ASM_MESON_TAC[SUBSET;IN] | |
]);; | |
(* }}} *) | |