Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
override_interface ("-->",`(tends_num_real)`);; | |
prioritize_real();; | |
(* ---------------------------------------------------------------------- *) | |
(* properites of num sequences *) | |
(* ---------------------------------------------------------------------- *) | |
let LIM_INV_1N = prove_by_refinement( | |
`(\n. &1 / &n) --> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[SEQ;real_sub;REAL_ADD_RID;REAL_NEG_0;real_gt;real_ge;GT;GE]; | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPEC `&2 / e` REAL_ARCH_SIMPLE); | |
STRIP_TAC; | |
EXISTS_TAC `n`; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < &2 / e`; | |
ASM_MESON_TAC[REAL_LT_RDIV_0;REAL_ARITH `&0 < &2`]; | |
STRIP_TAC; | |
CLAIM `&0 < &n`; | |
ASM_MESON_TAC[REAL_LTE_TRANS;REAL_LE]; | |
STRIP_TAC; | |
CLAIM `&0 < &n'`; | |
ASM_MESON_TAC[REAL_LTE_TRANS;REAL_LE]; | |
STRIP_TAC; | |
CLAIM `~(&n' = &0)`; | |
ASM_MESON_TAC[REAL_LT_IMP_NZ]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[ABS_DIV]; | |
REWRITE_TAC[REAL_ABS_NUM]; | |
ASM_SIMP_TAC[REAL_LT_LDIV_EQ]; | |
CLAIM `&2 <= e * &n`; | |
ASM_MESON_TAC[REAL_LE_LDIV_EQ;REAL_MUL_SYM]; | |
STRIP_TAC; | |
CLAIM `e * &n <= e * &n'`; | |
MATCH_MP_TAC REAL_LE_LMUL; | |
ASM_MESON_TAC [REAL_LT_LE;REAL_LE]; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_LTE_TRANS;REAL_LE_TRANS;REAL_ARITH `&1 < &2`]; | |
]);; | |
(* }}} *) | |
let LIM_INV_CONST = prove_by_refinement( | |
`!c. (\n. c / &n) --> &0`, | |
(* {{{ Proof *) | |
[ | |
ONCE_REWRITE_TAC[REAL_ARITH `c / &n = c * &1 / &n`]; | |
STRIP_TAC; | |
CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV[REAL_ARITH `&0 = c * &0`])); | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC THENL [MATCH_ACCEPT_TAC SEQ_CONST;MATCH_ACCEPT_TAC LIM_INV_1N]; | |
]);; | |
(* }}} *) | |
let LIM_INV_1NP = prove_by_refinement( | |
`!c k. 0 < k ==> (\n. c / &n pow k) --> &0`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
INDUCT_TAC; | |
REWRITE_TAC[ARITH_RULE `~(0 < 0)`]; | |
REWRITE_TAC[real_pow;REAL_DIV_DISTRIB_R]; | |
STRIP_TAC; | |
CASES_ON `k = 0`; | |
ASM_REWRITE_TAC[real_pow;GSYM REAL_DIV_DISTRIB_R;REAL_MUL_RID]; | |
MATCH_ACCEPT_TAC LIM_INV_CONST; | |
CLAIM `(\n. c / &n pow k) --> &0`; | |
FIRST_ASSUM MATCH_MP_TAC; | |
EVERY_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `&0 = &0 * &0`]; | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC THENL [MATCH_ACCEPT_TAC LIM_INV_1N;FIRST_ASSUM MATCH_ACCEPT_TAC]; | |
]);; | |
(* }}} *) | |
let LIM_INV_CON = prove_by_refinement( | |
`!c d k. 0 < k ==> (\n. c / (d * &n pow k)) --> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[REAL_DIV_DISTRIB_R]; | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `&0 = (&1 / d) * &0`]; | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC; | |
MATCH_ACCEPT_TAC SEQ_CONST; | |
POP_ASSUM MP_TAC THEN MATCH_ACCEPT_TAC LIM_INV_1NP; | |
]);; | |
(* }}} *) | |
let LIM_NN = prove_by_refinement( | |
`(\n. &n / &n) --> &1`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[SEQ]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `1`; | |
REWRITE_TAC[GT;GE]; | |
REPEAT STRIP_TAC; | |
CLAIM `~(&n = &0)`; | |
MATCH_MP_TAC REAL_LT_IMP_NZ; | |
ASM_MESON_TAC[REAL_LE;REAL_ARITH `&0 < &1`;REAL_LTE_TRANS]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[REAL_DIV_REFL;real_sub;REAL_ADD_RINV;ABS_0]; | |
]);; | |
(* }}} *) | |
let LIM_NNC = prove_by_refinement( | |
`~(k = &0) ==> (\n. (k * &n) / (k * &n)) --> &1`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[REAL_DIV_DISTRIB_2]; | |
ONCE_REWRITE_TAC[REAL_ARITH `&1 = &1 * &1`]; | |
STRIP_TAC; | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC; | |
ASM_SIMP_TAC[real_div;REAL_MUL_RINV]; | |
MATCH_ACCEPT_TAC SEQ_CONST; | |
MATCH_ACCEPT_TAC LIM_NN; | |
]);; | |
(* }}} *) | |
let LIM_MONO = prove_by_refinement( | |
`!c d a b. ~(d = &0) /\ a < b ==> (\n. (c * &n pow a) / (d * &n pow b)) --> &0`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC THEN STRIP_TAC; | |
INDUCT_TAC; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[real_pow;REAL_MUL_RID]; | |
POP_ASSUM MP_TAC THEN MATCH_ACCEPT_TAC LIM_INV_CON; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[real_pow]; | |
CLAIM `(b = SUC(PRE b))`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ONCE_ASM_REWRITE_TAC[]; | |
REWRITE_TAC[real_pow]; | |
ONCE_REWRITE_TAC[ARITH_RULE `a * b * c = b * a * c`]; | |
ONCE_REWRITE_TAC[REAL_DIV_DISTRIB_2]; | |
ONCE_REWRITE_TAC[REAL_ARITH `&0 = &1 * &0`]; | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC; | |
MATCH_ACCEPT_TAC LIM_NN; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_REWRITE_TAC[]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let LIM_POLY_LT = prove_by_refinement( | |
`!p k. LENGTH p <= k ==> (\n. poly p (&n) / &n pow k) --> &0`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[poly;LENGTH]; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[REAL_DIV_LZERO;SEQ_CONST]; | |
REWRITE_TAC[poly;LENGTH]; | |
REPEAT STRIP_TAC; | |
CLAIM `~(k = 0)`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
CLAIM `LENGTH t <= PRE k`; | |
USE_THEN "Z-1" MP_TAC THEN ARITH_TAC; | |
DISCH_THEN (fun x -> FIRST_ASSUM (fun y -> MP_TAC (MATCH_MP y x))); | |
STRIP_TAC; | |
REWRITE_TAC[REAL_DIV_ADD_DISTRIB]; | |
ONCE_REWRITE_TAC[REAL_ARITH `&0 = &0 + &0`]; | |
MATCH_MP_TAC SEQ_ADD; | |
CONJ_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `n pow k = &1 * n pow k`]; | |
MATCH_MP_TAC LIM_INV_CON; | |
USE_THEN "Z-0" MP_TAC THEN ARITH_TAC; | |
CLAIM `k = SUC (PRE k)`; | |
USE_THEN "Z-0" MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ONCE_ASM_REWRITE_TAC[]; | |
REWRITE_TAC[real_pow]; | |
REWRITE_TAC[REAL_DIV_DISTRIB_2]; | |
ONCE_REWRITE_TAC[REAL_ARITH `&0 = &1 * &0`]; | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC; | |
MATCH_ACCEPT_TAC LIM_NN; | |
FIRST_ASSUM MATCH_MP_TAC; | |
USE_THEN "Z-1" MP_TAC THEN ARITH_TAC; | |
]);; | |
(* }}} *) | |
let LIM_POLY = prove_by_refinement( | |
`!p. (0 < LENGTH p /\ ~(LAST p = &0)) ==> | |
(\n. poly p (&n) / (LAST p * &n pow PRE (LENGTH p))) --> &1`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[LENGTH;LT]; | |
ASM_REWRITE_TAC[LENGTH;poly]; | |
REPEAT STRIP_TAC; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[PRE;real_pow;REAL_POW_1;LAST;poly;REAL_MUL_RZERO;REAL_ADD_RID;LENGTH;REAL_DIV_DISTRIB_L]; | |
CLAIM `~(h = &0)`; | |
ASM_MESON_TAC[LAST]; | |
STRIP_TAC; | |
CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV[REAL_ARITH `&1 = &1 * &1`])); | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC; | |
ASM_SIMP_TAC[DIV_ID]; | |
MATCH_ACCEPT_TAC SEQ_CONST; | |
ASM_SIMP_TAC[DIV_ID;REAL_10]; | |
MATCH_ACCEPT_TAC SEQ_CONST; | |
CLAIM `LAST (CONS h t) = LAST t`; | |
ASM_REWRITE_TAC[LAST]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[LAST;PRE]; | |
REWRITE_TAC[REAL_DIV_ADD_DISTRIB]; | |
ONCE_REWRITE_TAC [REAL_ARITH `&1 = &0 + &1`]; | |
MATCH_MP_TAC SEQ_ADD; | |
CLAIM `~(LENGTH t = 0)`; | |
ASM_MESON_TAC[LENGTH_0]; | |
STRIP_TAC; | |
CONJ_TAC; | |
MATCH_MP_TAC LIM_INV_CON; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
CLAIM `(LENGTH t = SUC (PRE (LENGTH t)))`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ONCE_ASM_REWRITE_TAC[]; | |
REWRITE_TAC[real_pow]; | |
ONCE_REWRITE_TAC[ARITH_RULE `a * b * c = b * a * c`]; | |
REWRITE_TAC[REAL_DIV_DISTRIB_2]; | |
ONCE_REWRITE_TAC [REAL_ARITH `&1 = &1 * &1`]; | |
MATCH_MP_TAC SEQ_MUL; | |
CONJ_TAC; | |
MATCH_ACCEPT_TAC LIM_NN; | |
FIRST_ASSUM MATCH_MP_TAC; | |
CONJ_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-1" MP_TAC THEN ARITH_TAC; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let mono_inc = new_definition( | |
`mono_inc (f:num -> real) = !(m:num) n. m <= n ==> f m <= f n`);; | |
let mono_dec = new_definition( | |
`mono_dec (f:num -> real) = !(m:num) n. m <= n ==> f n <= f m`);; | |
let mono_inc_dec = prove_by_refinement( | |
`!f. mono f <=> mono_inc f \/ mono_dec f`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_inc;mono_dec;mono;real_ge] | |
]);; | |
(* }}} *) | |
let mono_inc_pow = prove_by_refinement( | |
`!k. mono_inc (\n. &n pow k)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_inc]; | |
INDUCT_TAC THEN REWRITE_TAC[real_pow;REAL_LE_REFL]; | |
GEN_TAC THEN GEN_TAC; | |
DISCH_THEN (fun x -> (RULE_ASSUM_TAC (fun y -> MATCH_MP y x)) THEN ASSUME_TAC x); | |
MATCH_MP_TAC REAL_LE_MUL2; | |
REPEAT STRIP_TAC; | |
MATCH_ACCEPT_TAC REAL_NUM_LE_0; | |
ASM_REWRITE_TAC[REAL_LE]; | |
MATCH_MP_TAC REAL_POW_LE; | |
MATCH_ACCEPT_TAC REAL_NUM_LE_0; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let mono_inc_pow_const = prove_by_refinement( | |
`!k c. &0 < c ==> mono_inc (\n. c * &n pow k)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_inc]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC REAL_LE_MUL2; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[REAL_LT_LE]; | |
REAL_ARITH_TAC; | |
MATCH_MP_TAC REAL_POW_LE; | |
MATCH_ACCEPT_TAC REAL_NUM_LE_0; | |
ASM_MESON_TAC[mono_inc_pow;mono_inc] | |
]);; | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Unbounded sequences *) | |
(* ---------------------------------------------------------------------- *) | |
let mono_unbounded_above = new_definition( | |
`mono_unbounded_above (f:num -> real) = !c. ?N. !n. N <= n ==> c < f n`);; | |
let mono_unbounded_below = new_definition( | |
`mono_unbounded_below (f:num -> real) = !c. ?N. !n. N <= n ==> f n < c`);; | |
let mono_unbounded_above_pos = prove_by_refinement( | |
`mono_unbounded_above (f:num -> real) = !c. &0 <= c ==> ?N. !n. N <= n ==> c < f n`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded_above]; | |
EQ_TAC THENL [ASM_MESON_TAC[];ALL_TAC]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (ASSUME_TAC o ISPEC `abs c`); | |
POP_ASSUM (MP_TAC o (C MATCH_MP) (ISPEC `c:real` ABS_POS)); | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
GEN_TAC; | |
DISCH_THEN (fun x -> POP_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
ASM_MESON_TAC[ABS_LE;REAL_LET_TRANS]; | |
]);; | |
(* }}} *) | |
let mono_unbounded_below_neg = prove_by_refinement( | |
`mono_unbounded_below (f:num -> real) = !c. c <= &0 ==> ?N. !n. N <= n ==> f n < c`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded_below]; | |
EQ_TAC THENL [ASM_MESON_TAC[];ALL_TAC]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (ASSUME_TAC o ISPEC `-- (abs c)`); | |
POP_ASSUM (MP_TAC o (C MATCH_MP) (ISPEC `c:real` NEG_ABS)); | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
GEN_TAC; | |
DISCH_THEN (fun x -> POP_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let mua_quotient_limit = prove_by_refinement( | |
`!k f g. &0 < k /\ (\n. f n / g n) --> k /\ mono_unbounded_above g | |
==> mono_unbounded_above f`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[SEQ;mono_unbounded_above_pos;AND_IMP_THM]; | |
REPEAT GEN_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < k / &2`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
DISCH_THEN (fun x -> DISCH_THEN (fun y -> (ASSUME_TAC (MATCH_MP (ISPEC `k / &2` y) x)))); | |
POP_ASSUM (X_CHOOSE_TAC `M:num`); | |
STRIP_TAC; | |
X_GEN_TAC `d:real`; | |
STRIP_TAC; | |
CLAIM `&0 <= &2 * d / k`; | |
MATCH_MP_TAC REAL_LE_MUL; | |
CONJ_TAC THENL [REAL_ARITH_TAC;ALL_TAC]; | |
MATCH_MP_TAC REAL_LE_DIV; | |
CONJ_TAC THENL [FIRST_ASSUM MATCH_ACCEPT_TAC;ASM_MESON_TAC[REAL_LT_LE]]; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
MOVE_TO_FRONT "Z-2"; | |
POP_ASSUM (fun x -> USE_THEN "Z-0" (fun y -> MP_TAC (MATCH_MP x y))); | |
DISCH_THEN (X_CHOOSE_TAC `K:num`); | |
EXISTS_TAC `nmax M K`; | |
REPEAT STRIP_TAC; | |
CLAIM `M <= n /\ K <= (n:num)`; | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[nmax] THEN COND_CASES_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
RULE_ASSUM_TAC (REWRITE_RULE[GE]); | |
FIRST_X_ASSUM (fun x -> FIRST_X_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
FIRST_X_ASSUM (fun x -> FIRST_X_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
RULE_ASSUM_TAC (REWRITE_RULE[real_div]); | |
CASES_ON `k <= f n * inv (g n)`; | |
MATCH_MP_TAC (prove(`d <= &2 * d /\ &2 * d < k * (g n) /\ k * (g n) <= f n ==> d < f n`,MESON_TAC !REAL_REWRITES)); | |
REPEAT STRIP_TAC; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
FIRST_ASSUM (fun x -> ASSUME_TAC (MATCH_MP (REWRITE_RULE[AND_IMP_THM] REAL_LT_LMUL) x)); | |
LABEL_ALL_TAC; | |
POP_ASSUM (fun y -> USE_THEN "Z-6" (fun x -> ASSUME_TAC (MATCH_MP y x))); | |
CLAIM `k * &2 * d * inv k = (k * inv k) * &2 * d`; | |
REAL_ARITH_TAC; | |
CLAIM `k * inv k = &1`; | |
ASM_MESON_TAC[REAL_MUL_RINV;REAL_LT_NZ]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[REAL_MUL_LID]; | |
ASM_MESON_TAC[]; | |
(* *) | |
MATCH_MP_TAC REAL_LE_RCANCEL_IMP; | |
EXISTS_TAC `inv (g n)`; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC]; | |
CLAIM `&0 < inv (g n)`; | |
CLAIM `&0 < inv k`; | |
MATCH_MP_TAC REAL_LT_INV THEN FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < g n`; | |
ASM_MESON_TAC !REAL_REWRITES; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_LT_INV]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
CLAIM `g n * inv (g n) = &1`; | |
ASM_MESON_TAC[REAL_MUL_RINV;REAL_LT_NZ;REAL_LT_INV_EQ]; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[REAL_MUL_RID]; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
(* *) | |
RULE_ASSUM_TAC (REWRITE_RULE[REAL_NOT_LE]); | |
CLAIM `f n * inv (g n) - k < &0`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `abs (f n * inv (g n) - k) = k - (f n * inv (g n))`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
DISCH_THEN (RULE_ASSUM_TAC o REWRITE_RULE o list); | |
CLAIM `k * inv(&2) < f n * inv (g n)`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-5" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `k * g n < &2 * f n`; | |
CLAIM `&0 < g n`; | |
LABEL_ALL_TAC; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `&2 * d * inv k`; | |
CONJ_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP; | |
EXISTS_TAC `inv(&2)`; | |
CONJ_TAC THENL [REAL_ARITH_TAC;ALL_TAC]; | |
REWRITE_TAC[ARITH_RULE `inv(&2) * &2 = &1`;REAL_MUL_LID;REAL_MUL_ASSOC]; | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP; | |
EXISTS_TAC `inv(g n)`; | |
CONJ_TAC; | |
ASM_MESON_TAC[REAL_LT_INV]; | |
ONCE_REWRITE_TAC[ARITH_RULE `a * (b * c) * d = c * b * (d * a)`]; | |
CLAIM `g n * inv (g n) = &1`; | |
POP_ASSUM MP_TAC THEN ASM_MESON_TAC[REAL_MUL_RINV;REAL_LT_IMP_NZ]; | |
DISCH_THEN SUBST1_TAC; | |
ASM_MESON_TAC[REAL_MUL_RID;REAL_MUL_SYM]; | |
STRIP_TAC; | |
CLAIM `&2 * d < k * g n`; | |
MATCH_MP_TAC REAL_LT_RCANCEL_IMP; | |
EXISTS_TAC `inv k`; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_LT_INV]; | |
MATCH_MP_TAC REAL_LTE_TRANS; | |
EXISTS_TAC `g n`; | |
CONJ_TAC; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC]; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
LABEL_ALL_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `(a * b) * c = b * (a * c)`]; | |
CLAIM `k * inv k = &1`; | |
ASM_MESON_TAC[REAL_MUL_RINV;REAL_LT_IMP_NZ]; | |
DISCH_THEN SUBST1_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&2 * d < &2 * f n`; | |
POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let mua_neg = prove_by_refinement( | |
`!f. mono_unbounded_above f = mono_unbounded_below (\n. -- (f n))`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[mono_unbounded_above;mono_unbounded_below;REAL_ARITH `x < y ==> --y < -- x`;REAL_ARITH `-- (-- x) = x`]; | |
]);; | |
(* }}} *) | |
let mua_neg2 = prove_by_refinement( | |
`!f. mono_unbounded_below f = mono_unbounded_above (\n. -- (f n))`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[mono_unbounded_above;mono_unbounded_below;REAL_ARITH `x < y ==> --y < -- x`;REAL_ARITH `-- (-- x) = x`]; | |
]);; | |
(* }}} *) | |
let mua_quotient_limit_neg = prove_by_refinement( | |
`!k f g. &0 < k /\ (\n. f n / g n) --> k /\ mono_unbounded_below g | |
==> mono_unbounded_below f`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC (mua_quotient_limit); | |
EXISTS_TAC `k`; | |
EXISTS_TAC `\n. -- g n`; | |
ASM_REWRITE_TAC[]; | |
POP_ASSUM (fun x -> ALL_TAC); | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[SEQ]; | |
DISCH_THEN (fun x -> REPEAT STRIP_TAC THEN MP_TAC x); | |
DISCH_THEN (MP_TAC o ISPEC `e:real`); | |
ANTS_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[real_div;REAL_NEG_MUL2;REAL_INV_NEG]; | |
ASM_MESON_TAC[real_div]; | |
]);; | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Polynomial properties *) | |
(* ---------------------------------------------------------------------- *) | |
let normal = new_definition( | |
`normal p <=> ((normalize p = p) /\ ~(p = []))`);; | |
let nonconstant = new_definition( | |
`nonconstant p <=> normal p /\ (!x. ~(p = [x]))`);; | |
let NORMALIZE_SING = prove_by_refinement( | |
`!x. (normalize [x] = [x]) <=> ~(x = &0)`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[NOT_CONS_NIL;normalize]; | |
]);; | |
(* }}} *) | |
let NORMALIZE_PAIR = prove_by_refinement( | |
`!x y. ~(y = &0) <=> (normalize [x; y] = [x; y])`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[normalize;NOT_CONS_NIL]; | |
REPEAT GEN_TAC; | |
COND_CASES_TAC; | |
CLAIM `y = &0`; | |
ASM_MESON_TAC !LIST_REWRITES; | |
DISCH_THEN SUBST1_TAC; | |
ASM_MESON_TAC !LIST_REWRITES; | |
ASM_MESON_TAC !LIST_REWRITES; | |
]);; | |
(* }}} *) | |
let POLY_NORMALIZE = prove | |
(`!p. poly (normalize p) = poly p`, | |
(* {{{ Proof *) | |
LIST_INDUCT_TAC THEN REWRITE_TAC[normalize; poly] THEN | |
ASM_CASES_TAC `h = &0` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[poly; FUN_EQ_THM] THEN | |
UNDISCH_TAC `poly (normalize t) = poly t` THEN | |
DISCH_THEN(SUBST1_TAC o SYM) THEN ASM_REWRITE_TAC[poly] THEN | |
REWRITE_TAC[REAL_MUL_RZERO; REAL_ADD_LID]);; | |
(* }}} *) | |
let NORMAL_CONS = prove_by_refinement( | |
`!h t. normal t ==> normal (CONS h t)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[normal;normalize]; | |
REPEAT STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
]);; | |
(* }}} *) | |
let NORMAL_TAIL = prove_by_refinement( | |
`!h t. ~(t = []) /\ normal (CONS h t) ==> normal t`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[normal;normalize]; | |
REPEAT STRIP_TAC THENL [ALL_TAC;ASM_MESON_TAC[]]; | |
CASES_ON `normalize t = []`; | |
ASM_MESON_TAC[NOT_CONS_NIL;CONS_11]; | |
ASM_MESON_TAC[NOT_CONS_NIL;CONS_11]; | |
]);; | |
(* }}} *) | |
let NORMAL_LAST_NONZERO = prove_by_refinement( | |
`!p. normal p ==> ~(LAST p = &0)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
ASM_MESON_TAC[normal]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[normal;normalize;NOT_CONS_NIL;LAST]; | |
MESON_TAC[NOT_CONS_NIL]; | |
ASM_SIMP_TAC[GSYM LAST_CONS]; | |
ASM_REWRITE_TAC[LAST;NOT_CONS_NIL;]; | |
STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let NORMAL_LENGTH = prove_by_refinement( | |
`!p. normal p ==> 0 < LENGTH p`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[normal;LENGTH_0;ARITH_RULE `~(n = 0) <=> 0 < n`] | |
]);; | |
(* }}} *) | |
let NORMAL_LAST_LENGTH = prove_by_refinement( | |
`!p. 0 < LENGTH p /\ ~(LAST p = &0) ==> normal p`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
MESON_TAC[LENGTH;LT_REFL]; | |
STRIP_TAC; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[normal;NORMALIZE_SING;NOT_CONS_NIL;]; | |
ASM_MESON_TAC[LAST]; | |
MATCH_MP_TAC NORMAL_CONS; | |
FIRST_ASSUM MATCH_MP_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[LENGTH_0;ARITH_RULE `~(n = 0) <=> 0 < n`]; | |
ASM_MESON_TAC[LAST_CONS]; | |
]);; | |
(* }}} *) | |
let NORMAL_ID = prove_by_refinement( | |
`!p. normal p <=> 0 < LENGTH p /\ ~(LAST p = &0)`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[NORMAL_LAST_LENGTH;NORMAL_LENGTH;NORMAL_LAST_NONZERO]; | |
]);; | |
(* }}} *) | |
let LIM_POLY2 = prove_by_refinement( | |
`!p. normal p ==> (\n. poly p (&n) / (LAST p * &n pow (degree p))) --> &1`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[degree]; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[normal]; | |
DISCH_THEN SUBST1_TAC; | |
MATCH_MP_TAC LIM_POLY; | |
ASM_MESON_TAC[NORMAL_ID]; | |
]);; | |
(* }}} *) | |
let POW_UNB = prove_by_refinement( | |
`!k. 0 < k ==> mono_unbounded_above (\n. (&n) pow k)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded_above]; | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPEC `max (&1) c` REAL_ARCH_SIMPLE_LT); | |
STRIP_TAC; | |
EXISTS_TAC `n`; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC REAL_LTE_TRANS; | |
EXISTS_TAC `&n`; | |
CONJ_TAC; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `max (&1) c`; | |
ASM_MESON_TAC[REAL_MAX_MAX]; | |
MATCH_MP_TAC REAL_LE_TRANS; | |
EXISTS_TAC `&n'`; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_LE]; | |
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV[REAL_ARITH `x = x pow 1`])); | |
MATCH_MP_TAC REAL_POW_MONO; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LE_TRANS; | |
EXISTS_TAC `max (&1) c`; | |
CONJ_TAC THENL [ASM_MESON_TAC[REAL_MAX_MAX];ALL_TAC]; | |
MATCH_MP_TAC REAL_LE_TRANS; | |
EXISTS_TAC `&n`; | |
ASM_MESON_TAC (!REAL_REWRITES @ [REAL_LE;REAL_LT_LE]); | |
EVERY_ASSUM MP_TAC THEN ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POW_UNB_CON = prove_by_refinement( | |
`!k a. 0 < k /\ &0 < a ==> mono_unbounded_above (\n. a * (&n) pow k)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded_above;AND_IMP_THM;]; | |
REPEAT STRIP_TAC; | |
LABEL_ALL_TAC; | |
MOVE_TO_FRONT "Z-1"; | |
POP_ASSUM (fun x -> MP_TAC (MATCH_MP POW_UNB x)); | |
REWRITE_TAC[mono_unbounded_above]; | |
DISCH_THEN (MP_TAC o ISPEC `inv a * c`); | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
STRIP_TAC; | |
DISCH_THEN (fun x -> POP_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
CLAIM `inv a * a = &1`; | |
MATCH_MP_TAC REAL_MUL_LINV; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LT_LCANCEL_IMP; | |
EXISTS_TAC `inv a`; | |
CONJ_TAC; | |
ASM_MESON_TAC[REAL_LT_INV]; | |
ASM_REWRITE_TAC[REAL_MUL_ASSOC;REAL_MUL_LID]; | |
]);; | |
(* }}} *) | |
let POW_UNBB_CON = prove_by_refinement( | |
`!k a. 0 < k /\ a < &0 ==> mono_unbounded_below (\n. a * (&n) pow k)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2;ARITH_RULE `--(x * y) = -- x * y`]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC POW_UNB_CON; | |
STRIP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_SING = prove_by_refinement( | |
`!x y. poly [x] y = x`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[poly]; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_LAST_GT = prove_by_refinement( | |
`!p. normal p /\ (?X. !x. X < x ==> &0 < poly p x) ==> &0 < LAST p`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
CASES_ON `LENGTH p = 1`; | |
RULE_ASSUM_TAC (REWRITE_RULE[LENGTH_1]); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
ASM_REWRITE_TAC[LAST_SING;POLY_SING]; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
EXISTS_TAC `X + &1`; | |
REAL_ARITH_TAC; | |
(* *) | |
REWRITE_TAC[AND_IMP_THM;]; | |
DISCH_THEN (fun x -> MP_TAC (MATCH_MP LIM_POLY2 x) THEN ASSUME_TAC x); | |
REPEAT STRIP_TAC; | |
DISJ_CASES_TAC (ISPECL [`&0`;`LAST (p:real list)`] REAL_LT_TOTAL); | |
ASM_MESON_TAC[NORMAL_ID]; | |
POP_ASSUM DISJ_CASES_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
(* save *) | |
CLAIM `mono_unbounded_below (\n. LAST p * &n pow degree p)`; | |
MATCH_MP_TAC POW_UNBB_CON; | |
REWRITE_TAC[degree]; | |
CONJ_TAC THENL [ALL_TAC;FIRST_ASSUM MATCH_ACCEPT_TAC]; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[normal]; | |
DISCH_THEN SUBST1_TAC; | |
CLAIM `~(LENGTH p = 0)`; | |
ASM_MESON_TAC[normal;LENGTH_EQ_NIL]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-4" MP_TAC; | |
ARITH_TAC; | |
(* save *) | |
STRIP_TAC; | |
CLAIM `mono_unbounded_below (\n. poly p (&n))`; | |
MATCH_MP_TAC mua_quotient_limit_neg; | |
BETA_TAC; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. LAST p * &n pow degree p)`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
BETA_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
REWRITE_TAC[mono_unbounded_below]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM_LIST (fun x -> ALL_TAC); | |
MP_TAC (ISPEC `X:real` REAL_ARCH_SIMPLE); | |
STRIP_TAC; | |
DISCH_THEN (ASSUME_TAC o ISPEC `1 + nmax N n`); | |
DISCH_THEN (ASSUME_TAC o ISPEC `&1 + &(nmax N n)`); | |
POP_ASSUM MP_TAC THEN ANTS_TAC; | |
REWRITE_TAC[nmax]; | |
COND_CASES_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (REWRITE_RULE[NOT_LE;GSYM REAL_LT]); | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
POP_ASSUM MP_TAC THEN ANTS_TAC; | |
REWRITE_TAC[nmax]; | |
ARITH_TAC; | |
ASM_MESON_TAC[ARITH_RULE `~(x < y /\ y < x)`;GSYM REAL_OF_NUM_ADD]; | |
]);; | |
(* }}} *) | |
let POLY_LAST_LT = prove_by_refinement( | |
`!p. normal p /\ (?X. !x. X < x ==> poly p x < &0) ==> LAST p < &0`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
CASES_ON `LENGTH p = 1`; | |
RULE_ASSUM_TAC (REWRITE_RULE[LENGTH_1]); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
ASM_REWRITE_TAC[LAST_SING;POLY_SING]; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
EXISTS_TAC `X + &1`; | |
REAL_ARITH_TAC; | |
(* *) | |
REWRITE_TAC[AND_IMP_THM;]; | |
DISCH_THEN (fun x -> MP_TAC (MATCH_MP LIM_POLY2 x) THEN ASSUME_TAC x); | |
REPEAT STRIP_TAC; | |
DISJ_CASES_TAC (ISPECL [`&0`;`LAST (p:real list)`] REAL_LT_TOTAL); | |
ASM_MESON_TAC[NORMAL_ID]; | |
POP_ASSUM DISJ_CASES_TAC THENL [ALL_TAC;FIRST_ASSUM MATCH_ACCEPT_TAC]; | |
(* save *) | |
CLAIM `mono_unbounded_above (\n. LAST p * &n pow degree p)`; | |
MATCH_MP_TAC POW_UNB_CON; | |
REWRITE_TAC[degree]; | |
CONJ_TAC THENL [ALL_TAC;FIRST_ASSUM MATCH_ACCEPT_TAC]; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[normal]; | |
DISCH_THEN SUBST1_TAC; | |
CLAIM `~(LENGTH p = 0)`; | |
ASM_MESON_TAC[normal;LENGTH_EQ_NIL]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-4" MP_TAC; | |
ARITH_TAC; | |
(* save *) | |
STRIP_TAC; | |
CLAIM `mono_unbounded_above (\n. poly p (&n))`; | |
MATCH_MP_TAC mua_quotient_limit; | |
BETA_TAC; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. LAST p * &n pow degree p)`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
BETA_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
REWRITE_TAC[mono_unbounded_above]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-3" MP_TAC; | |
POP_ASSUM MP_TAC; | |
POP_ASSUM_LIST (fun x -> ALL_TAC); | |
MP_TAC (ISPEC `X:real` REAL_ARCH_SIMPLE); | |
STRIP_TAC; | |
DISCH_THEN (ASSUME_TAC o ISPEC `1 + nmax N n`); | |
DISCH_THEN (ASSUME_TAC o ISPEC `&1 + &(nmax N n)`); | |
POP_ASSUM MP_TAC THEN ANTS_TAC; | |
REWRITE_TAC[nmax]; | |
COND_CASES_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
RULE_ASSUM_TAC (REWRITE_RULE[NOT_LE;GSYM REAL_LT]); | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
POP_ASSUM MP_TAC THEN ANTS_TAC; | |
REWRITE_TAC[nmax]; | |
ARITH_TAC; | |
ASM_MESON_TAC[ARITH_RULE `~(x < y /\ y < x)`;GSYM REAL_OF_NUM_ADD]; | |
]);; | |
(* }}} *) | |
let NORMALIZE_LENGTH_MONO = prove_by_refinement( | |
`!l. LENGTH (normalize l) <= LENGTH l`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
MESON_TAC[normalize;LE_REFL]; | |
REWRITE_TAC[LENGTH;normalize]; | |
REPEAT COND_CASES_TAC THEN REWRITE_TAC[LENGTH] THEN EVERY_ASSUM MP_TAC THEN ARITH_TAC; | |
]);; | |
(* }}} *) | |
let DEGREE_SING = prove_by_refinement( | |
`!x. (degree [x] = 0)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[degree]; | |
STRIP_TAC; | |
CASES_ON `x = &0`; | |
ASM_REWRITE_TAC[normalize;LENGTH]; | |
ARITH_TAC; | |
CLAIM `normalize [x] = [x]`; | |
ASM_MESON_TAC[NORMALIZE_SING]; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let DEGREE_CONS = prove_by_refinement( | |
`!h t. normal t ==> (degree (CONS h t) = 1 + degree t)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `normal (CONS h t)`; | |
ASM_MESON_TAC[NORMAL_CONS]; | |
REWRITE_TAC[normal;degree]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
RULE_ASSUM_TAC (REWRITE_RULE[normal]); | |
CLAIM `~(LENGTH t = 0)`; | |
ASM_MESON_TAC[LENGTH_0]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[LENGTH]; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
]);; | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Now the derivative *) | |
(* ---------------------------------------------------------------------- *) | |
let PDA_LENGTH = prove_by_refinement( | |
`!p n. ~(p = []) ==> (LENGTH(poly_diff_aux n p) = LENGTH p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[]; | |
GEN_TAC THEN DISCH_THEN IGNORE; | |
REWRITE_TAC[LENGTH;poly_diff_aux;]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[LENGTH;poly_diff_aux;]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_LENGTH = prove_by_refinement( | |
`!p. LENGTH (poly_diff p) = PRE (LENGTH p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[poly_diff;LENGTH;PRE]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[LENGTH;PRE]; | |
REWRITE_TAC[poly_diff;NOT_CONS_NIL;TL;PRE;poly_diff_aux;LENGTH;]; | |
REWRITE_TAC[poly_diff;TL;LENGTH;PRE;NOT_CONS_NIL;]; | |
MATCH_MP_TAC PDA_LENGTH; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_SING = prove_by_refinement( | |
`!p h. (poly_diff p = [h]) <=> ?x. p = [x; h]`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
DISJ_CASES_TAC (ISPEC `LENGTH (p:real list)` (ARITH_RULE `!n. (n = 0) \/ (n = 1) \/ (n = 2) \/ 2 < n`)); | |
ASM_MESON_TAC[poly_diff;LENGTH_0;NOT_CONS_NIL;]; | |
POP_ASSUM DISJ_CASES_TAC; | |
RULE_ASSUM_TAC (REWRITE_RULE[LENGTH_1]); | |
POP_ASSUM MP_TAC THEN STRIP_TAC THEN POP_ASSUM SUBST1_TAC; | |
REWRITE_TAC[poly_diff;NOT_CONS_NIL;TL;poly_diff_aux;]; | |
ASM_MESON_TAC !LIST_REWRITES; | |
POP_ASSUM DISJ_CASES_TAC; | |
RULE_ASSUM_TAC (MATCH_EQ_MP LENGTH_PAIR); | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
ASM_REWRITE_TAC[poly_diff;NOT_CONS_NIL;TL;poly_diff_aux;REAL_MUL_LID;]; | |
ASM_MESON_TAC[CONS_11]; | |
EQ_TAC; | |
STRIP_TAC; | |
POP_ASSUM (ASSUME_TAC o (AP_TERM `LENGTH:((real) list) -> num`)); | |
RULE_ASSUM_TAC(REWRITE_RULE[LENGTH]); | |
CLAIM `PRE (LENGTH p) = 1`; | |
ASM_MESON_TAC[POLY_DIFF_LENGTH;ARITH_RULE `SUC 0 = 1`]; | |
STRIP_TAC; | |
CLAIM `LENGTH p = 2`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
ASM_MESON_TAC[LT_REFL]; | |
REPEAT STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[poly_diff;NOT_CONS_NIL;TL;poly_diff_aux;REAL_MUL_LID;]; | |
]);; | |
(* }}} *) | |
let lem = prove_by_refinement( | |
`!p n. ~(p = []) ==> (LAST (poly_diff_aux n p) = LAST p * &(PRE(LENGTH p) + n))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM IGNORE; | |
REWRITE_TAC[LENGTH;poly_diff_aux;]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[poly_diff_aux;LAST;LENGTH;GSYM REAL_OF_NUM_ADD]; | |
CLAIM `((SUC 0) - 1) + n = n`; | |
ARITH_TAC; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[PRE]; | |
REAL_ARITH_TAC; | |
POP_ASSUM (fun x -> FIRST_ASSUM (fun y -> MP_TAC (MATCH_MP y x)) THEN ASSUME_TAC x); | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
LIST_SIMP_TAC; | |
ASM_REWRITE_TAC[]; | |
COND_CASES_TAC; | |
REWRITE_TAC[PRE]; | |
ASM_MESON_TAC[PDA_LENGTH;LENGTH;LENGTH_0]; | |
REWRITE_TAC[PRE]; | |
MATCH_EQ_MP_TAC (GSYM REAL_EQ_MUL_LCANCEL); | |
DISJ2_TAC; | |
AP_TERM_TAC; | |
CLAIM `~(LENGTH t = 0)`; | |
ASM_MESON_TAC[LENGTH_0]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let NONCONSTANT_LENGTH = prove_by_refinement( | |
`!p. nonconstant p ==> 1 < LENGTH p`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[nonconstant;normal]; | |
ASM_MESON_TAC[LENGTH_0;LENGTH_1;ARITH_RULE `(x = 0) \/ (x = 1) \/ 1 < x`]; | |
]);; | |
(* }}} *) | |
let NONCONSTANT_DIFF_NIL = prove_by_refinement( | |
`!p. nonconstant p ==> ~(poly_diff p = [])`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `1 < LENGTH p`; | |
ASM_MESON_TAC[NONCONSTANT_LENGTH]; | |
STRIP_TAC; | |
CLAIM `0 < LENGTH (poly_diff p)`; | |
REWRITE_TAC[POLY_DIFF_LENGTH]; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
ASM_REWRITE_TAC[LENGTH]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let NONCONSTANT_DEGREE = prove_by_refinement( | |
`!p. nonconstant p ==> 0 < degree p`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
DISCH_THEN (fun x -> ASSUME_TAC x THEN MP_TAC x); | |
REWRITE_TAC[nonconstant;degree]; | |
REPEAT STRIP_TAC; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[normal]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
CLAIM `1 < LENGTH p`; | |
ASM_MESON_TAC[NONCONSTANT_LENGTH]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_LAST_LEM = prove_by_refinement( | |
`!p. nonconstant p ==> (LAST (poly_diff p) = LAST p * &(degree p))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[nonconstant;poly_diff;]; | |
REPEAT STRIP_TAC; | |
COND_CASES_TAC; | |
ASM_MESON_TAC[normal]; | |
CLAIM `~(TL p = [])`; | |
ASM_MESON_TAC[TL;NOT_CONS_NIL;list_CASES;TL_NIL]; | |
DISCH_THEN (fun x -> MP_TAC (MATCH_MP lem x) THEN ASSUME_TAC x); | |
DISCH_THEN (ASSUME_TAC o ISPEC `1`); | |
ASM_REWRITE_TAC[]; | |
CLAIM `LAST (TL p) = LAST p`; | |
ASM_MESON_TAC[LAST_TL]; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[degree]; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[normal]; | |
DISCH_THEN SUBST1_TAC; | |
MATCH_EQ_MP_TAC (GSYM REAL_EQ_MUL_LCANCEL); | |
DISJ2_TAC; | |
AP_TERM_TAC; | |
ASM_SIMP_TAC[LENGTH_TL]; | |
CLAIM `~(LENGTH p = 0)`; | |
ASM_MESON_TAC[LENGTH_0]; | |
CLAIM `~(LENGTH p = 1)`; | |
ASM_MESON_TAC[LENGTH_1]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let NONCONSTANT_DIFF_0 = prove_by_refinement( | |
`!p. nonconstant p ==> ~(poly_diff p = [&0])`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
DISCH_THEN (fun x -> MP_TAC x THEN ASSUME_TAC x); | |
REWRITE_TAC[nonconstant]; | |
REPEAT STRIP_TAC; | |
CLAIM `~(p = [])`; | |
ASM_MESON_TAC[normal]; | |
DISCH_THEN (fun x -> RULE_ASSUM_TAC (REWRITE_RULE[x]) THEN ASSUME_TAC x); | |
CLAIM `~(LAST p = &0)`; | |
MATCH_MP_TAC NORMAL_LAST_NONZERO; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
CLAIM `LAST p * &(degree p) = &0`; | |
ASM_SIMP_TAC[GSYM POLY_DIFF_LAST_LEM]; | |
REWRITE_TAC[LAST]; | |
STRIP_TAC; | |
CLAIM `(LAST p = &0) \/ (&(degree p) = &0)`; | |
ASM_MESON_TAC[REAL_ENTIRE]; | |
STRIP_TAC; | |
ASM_MESON_TAC[]; | |
CLAIM `?h t. p = CONS h t`; | |
ASM_MESON_TAC[list_CASES]; | |
STRIP_TAC; | |
CLAIM `normal t`; | |
ASM_MESON_TAC[NORMAL_TAIL]; | |
STRIP_TAC; | |
FIRST_ASSUM (MP_TAC o (MATCH_MP (ISPECL [`h:real`;`t:real list`] DEGREE_CONS))); | |
STRIP_TAC; | |
CLAIM `degree p = 0`; | |
ASM_MESON_TAC [REAL_OF_NUM_EQ]; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_LAST_LT = prove_by_refinement( | |
`!p. nonconstant p ==> (LAST (poly_diff p) < &0 <=> LAST p < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
ASM_SIMP_TAC[POLY_DIFF_LAST_LEM]; | |
CLAIM `&0 <= &(degree p)`; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
EQ_TAC; | |
ASM_MESON_TAC([REAL_MUL_LT] @ !REAL_REWRITES); | |
STRIP_TAC; | |
CLAIM `0 < degree p`; | |
ASM_MESON_TAC[NONCONSTANT_DEGREE]; | |
STRIP_TAC; | |
CLAIM `&0 < &(degree p)`; | |
REAL_SIMP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
MATCH_EQ_MP_TAC (GSYM REAL_MUL_LT); | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_LAST_GT = prove_by_refinement( | |
`!p. nonconstant p ==> (&0 < LAST (poly_diff p) <=> &0 < LAST p)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
ASM_SIMP_TAC[POLY_DIFF_LAST_LEM]; | |
CLAIM `&0 < &(degree p)`; | |
ASM_MESON_TAC[NONCONSTANT_DEGREE;REAL_OF_NUM_LT]; | |
STRIP_TAC; | |
EQ_TAC; | |
REWRITE_TAC[REAL_MUL_GT]; | |
STRIP_TAC; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
ONCE_REWRITE_TAC [ARITH_RULE `&0 = &0 * &0`]; | |
MATCH_MP_TAC REAL_LT_MUL2; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let NONCONSTANT_DIFF_NORMAL = prove_by_refinement( | |
`!p. nonconstant p ==> normal (poly_diff p)`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
DISCH_THEN (fun x -> ASSUME_TAC x THEN MP_TAC x); | |
REWRITE_TAC[nonconstant]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC NORMAL_LAST_LENGTH; | |
STRIP_TAC; | |
CLAIM `1 < LENGTH p`; | |
ASM_MESON_TAC[NONCONSTANT_LENGTH]; | |
STRIP_TAC; | |
CLAIM `LENGTH (poly_diff p) = PRE (LENGTH p)`; | |
ASM_MESON_TAC[POLY_DIFF_LENGTH]; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
CASES_ON `LAST p < &0`; | |
CLAIM `LAST (poly_diff p) < &0`; | |
ASM_MESON_TAC[POLY_DIFF_LAST_LT]; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
REWRITE_ASSUMS !REAL_REWRITES; | |
REWRITE_ASSUMS[REAL_LE_LT]; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `&0 < LAST (poly_diff p)`; | |
ASM_MESON_TAC[POLY_DIFF_LAST_GT]; | |
ASM_REWRITE_TAC[]; | |
REAL_ARITH_TAC; | |
ASM_MESON_TAC[NORMAL_ID]; | |
]);; | |
(* }}} *) | |
let PDIFF_POS_LAST = prove_by_refinement( | |
`!p. nonconstant p /\ (?X. !x. X < x ==> &0 < poly (poly_diff p) x) ==> &0 < LAST p`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `&0 < LAST (poly_diff p)`; | |
MATCH_MP_TAC POLY_LAST_GT; | |
ASM_SIMP_TAC[NONCONSTANT_DIFF_NORMAL]; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[GSYM POLY_DIFF_LAST_GT]; | |
]);; | |
(* }}} *) | |
let LAST_UNB = prove_by_refinement( | |
`!p. nonconstant p /\ &0 < LAST p ==> mono_unbounded_above (\n. poly p (&n))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC mua_quotient_limit; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. (LAST p) * (&n) pow (degree p))`; | |
BETA_TAC; | |
STRIP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
MATCH_MP_TAC LIM_POLY2; | |
ASM_MESON_TAC[nonconstant]; | |
MATCH_MP_TAC POW_UNB_CON; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[NONCONSTANT_DEGREE]; | |
]);; | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Finally, the positive theorems *) | |
(* ---------------------------------------------------------------------- *) | |
let POLY_DIFF_UP_RIGHT = prove_by_refinement( | |
`nonconstant p /\ (?X. !x. X < x ==> &0 < poly (poly_diff p) x) ==> | |
(?Y. !y. Y < y ==> &0 < poly p y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `mono_unbounded_above (\n. poly p (&n))`; | |
MATCH_MP_TAC LAST_UNB; | |
ASM_MESON_TAC[PDIFF_POS_LAST]; | |
REWRITE_TAC[mono_unbounded_above]; | |
DISCH_THEN (MP_TAC o (ISPEC `&0`)); | |
STRIP_TAC; | |
CLAIM `?K. max X (&N) < &K`; | |
ASM_MESON_TAC[REAL_ARCH_SIMPLE_LT]; | |
STRIP_TAC; | |
EXISTS_TAC `&K`; | |
REPEAT STRIP_TAC; | |
CCONTR_TAC; | |
REWRITE_ASSUMS[REAL_NOT_LT]; | |
CLAIM `&N < y /\ X < y`; | |
ASM_MESON_TAC([REAL_MAX_MAX] @ !REAL_REWRITES); | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`&K`;`y:real`] POLY_MVT); | |
ANTS_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
CLAIM `poly p y - poly p (&K) <= &0`; | |
MATCH_MP_TAC (REAL_ARITH `x <= &0 /\ &0 < y ==> x - y <= &0`); | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC; | |
CLAIM `&N < &K`; | |
ASM_MESON_TAC [REAL_MAX_MAX;REAL_LET_TRANS]; | |
STRIP_TAC; | |
CLAIM `N:num < K`; | |
ASM_MESON_TAC [REAL_OF_NUM_LT]; | |
ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - &K`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-7" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < poly (poly_diff p) x`; | |
FIRST_ASSUM MATCH_MP_TAC; | |
ASM_MESON_TAC[REAL_MAX_MAX;REAL_LET_TRANS;REAL_LT_TRANS]; | |
STRIP_TAC; | |
CLAIM `&0 < (y - &K) * poly (poly_diff p) x`; | |
ONCE_REWRITE_TAC [ARITH_RULE `&0 = &0 * &0`]; | |
MATCH_MP_TAC REAL_LT_MUL2 THEN REPEAT STRIP_TAC THEN TRY REAL_ARITH_TAC THEN FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
REAL_SOLVE_TAC; | |
]);; | |
(* }}} *) | |
let PDIFF_NEG_LAST = prove_by_refinement( | |
`!p. nonconstant p /\ (?X. !x. X < x ==> poly (poly_diff p) x < &0) ==> LAST p < &0`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `LAST (poly_diff p) < &0`; | |
MATCH_MP_TAC POLY_LAST_LT; | |
ASM_SIMP_TAC[NONCONSTANT_DIFF_NORMAL]; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[GSYM POLY_DIFF_LAST_LT]; | |
]);; | |
(* }}} *) | |
let LAST_UNB_NEG = prove_by_refinement( | |
`!p. nonconstant p /\ LAST p < &0 ==> mono_unbounded_below (\n. poly p (&n))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC mua_quotient_limit_neg; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. (LAST p) * (&n) pow (degree p))`; | |
BETA_TAC; | |
STRIP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
MATCH_MP_TAC LIM_POLY2; | |
ASM_MESON_TAC[nonconstant]; | |
MATCH_MP_TAC POW_UNBB_CON; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[NONCONSTANT_DEGREE]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_RIGHT = prove_by_refinement( | |
`nonconstant p /\ (?X. !x. X < x ==> poly (poly_diff p) x < &0) ==> | |
(?Y. !y. Y < y ==> poly p y < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `mono_unbounded_below (\n. poly p (&n))`; | |
MATCH_MP_TAC LAST_UNB_NEG; | |
ASM_MESON_TAC[PDIFF_NEG_LAST]; | |
REWRITE_TAC[mono_unbounded_below]; | |
DISCH_THEN (MP_TAC o (ISPEC `&0`)); | |
STRIP_TAC; | |
CLAIM `?K. max X (&N) < &K`; | |
ASM_MESON_TAC[REAL_ARCH_SIMPLE_LT]; | |
STRIP_TAC; | |
EXISTS_TAC `&K`; | |
REPEAT STRIP_TAC; | |
CCONTR_TAC; | |
REWRITE_ASSUMS[REAL_NOT_LT]; | |
CLAIM `&N < y /\ X < y`; | |
ASM_MESON_TAC([REAL_MAX_MAX] @ !REAL_REWRITES); | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`&K`;`y:real`] POLY_MVT); | |
ANTS_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
STRIP_TAC; | |
CLAIM `&0 <= poly p y - poly p (&K)`; | |
MATCH_MP_TAC (REAL_ARITH `&0 <= x /\ y < &0 ==> &0 <= x - y`); | |
ASM_REWRITE_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC; | |
CLAIM `&N < &K`; | |
ASM_MESON_TAC (!REAL_REWRITES @ !NUM_REWRITES); | |
STRIP_TAC; | |
CLAIM `N:num < K`; | |
ASM_MESON_TAC [REAL_OF_NUM_LT]; | |
ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < y - &K`; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-7" MP_TAC; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `poly (poly_diff p) x < &0`; | |
FIRST_ASSUM MATCH_MP_TAC; | |
REAL_SOLVE_TAC; | |
STRIP_TAC; | |
CLAIM `(y - &K) * poly (poly_diff p) x < &0`; | |
ASM_MESON_TAC[REAL_MUL_LT]; | |
REPEAT STRIP_TAC; | |
REAL_SOLVE_TAC; | |
]);; | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* Now the negative ones *) | |
(* ---------------------------------------------------------------------- *) | |
let UNB_LEFT_EVEN = prove_by_refinement( | |
`!k. 0 < k /\ EVEN k ==> mono_unbounded_above (\n. (-- &n) pow k)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
ASM_REWRITE_TAC[REAL_POW_NEG]; | |
MATCH_MP_TAC POW_UNB; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let UNB_LEFT_ODD = prove_by_refinement( | |
`!k. 0 < k /\ ODD k ==> mono_unbounded_below (\n. (-- &n) pow k)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_ASSUMS[GSYM NOT_EVEN]; | |
ASM_REWRITE_TAC[REAL_POW_NEG]; | |
MATCH_EQ_MP_TAC mua_neg; | |
MATCH_MP_TAC POW_UNB; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let EVEN_CONS = prove_by_refinement( | |
`!t h. ODD (LENGTH (CONS h t)) = EVEN (LENGTH t)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN | |
ASM_MESON_TAC[LENGTH_SING;LENGTH;EVEN;ODD;ONE]; | |
]);; | |
(* }}} *) | |
let ODD_CONS = prove_by_refinement( | |
`!t h. EVEN (LENGTH (CONS h t)) = ODD (LENGTH t)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN | |
ASM_MESON_TAC[LENGTH_SING;LENGTH;EVEN;ODD;ONE]; | |
]);; | |
(* }}} *) | |
let MUA_DIV_CONST = prove_by_refinement( | |
`!a b p. mono_unbounded_above (\n. p n) ==> (\n. a / (b + p n)) --> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded_above;SEQ]; | |
REPEAT STRIP_TAC; | |
REAL_SIMP_TAC; | |
CASES_ON `a = &0`; | |
ASM_REWRITE_TAC[real_div;REAL_MUL_LZERO;ABS_0]; | |
ABBREV_TAC `k = (max (&1) (abs a / e - b))`; | |
FIRST_ASSUM (MP_TAC o (ISPEC `k:real`)); | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
REPEAT STRIP_TAC; | |
REWRITE_ASSUMS (!REAL_REWRITES @ !NUM_REWRITES); | |
POP_ASSUM (fun x -> POP_ASSUM (fun y -> ASSUME_TAC (MATCH_MP y x))); | |
REWRITE_TAC[REAL_ABS_DIV]; | |
MATCH_MP_TAC REAL_LTE_TRANS; | |
EXISTS_TAC `abs a / (b + k)`; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_DIV_DENOM_LT; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[REAL_ABS_NZ]; | |
LABEL_ALL_TAC; | |
CLAIM `(abs a / e - b) <= k`; | |
ASM_MESON_TAC[REAL_MAX_MAX]; | |
STRIP_TAC; | |
CLAIM `&0 < abs a / e`; | |
REWRITE_TAC[real_div]; | |
MATCH_MP_TAC REAL_LT_MUL; | |
ASM_MESON_TAC[REAL_INV_POS;REAL_ABS_NZ]; | |
STRIP_TAC; | |
POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `-- b < p n`; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `k`; | |
ASM_REWRITE_TAC[]; | |
CLAIM `(abs a / e - b) <= k`; | |
ASM_MESON_TAC[REAL_MAX_MAX]; | |
STRIP_TAC; | |
CLAIM `&0 < abs a / e`; | |
REWRITE_TAC[real_div]; | |
MATCH_MP_TAC REAL_LT_MUL; | |
ASM_MESON_TAC[REAL_INV_POS;REAL_ABS_NZ]; | |
STRIP_TAC; | |
POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `abs (b + p n) = b + p n`; | |
MATCH_EQ_MP_TAC REAL_ABS_REFL; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
DISCH_THEN SUBST1_TAC; | |
POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
CLAIM `(abs a / e - b) <= k`; | |
ASM_MESON_TAC[REAL_MAX_MAX]; | |
STRIP_TAC; | |
CLAIM `&0 < abs a / e`; | |
REWRITE_TAC[real_div]; | |
MATCH_MP_TAC REAL_LT_MUL; | |
ASM_MESON_TAC[REAL_INV_POS;REAL_ABS_NZ]; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
CLAIM `abs a / e <= b + k`; | |
USE_THEN "Z-1" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CASES_ON `&1 <= abs a / e - b`; | |
CLAIM `k = abs a / e - b`; | |
USE_THEN "Z-3" (SUBST1_TAC o GSYM); | |
ASM_REWRITE_TAC[real_max]; | |
ASM_MESON_TAC[real_max]; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[ARITH_RULE `b + a - b = a`]; | |
REWRITE_TAC[real_div;]; | |
REAL_SIMP_TAC; | |
REWRITE_TAC[REAL_MUL_ASSOC]; | |
CLAIM `~(abs a = &0)`; | |
ASM_MESON_TAC[REAL_ABS_NZ;REAL_LT_LE]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[REAL_MUL_RINV]; | |
REAL_SIMP_TAC; | |
(* save *) | |
REWRITE_ASSUMS !REAL_REWRITES; | |
CLAIM `k = &1`; | |
ASM_MESON_TAC([real_max] @ !REAL_REWRITES); | |
STRIP_TAC; | |
CLAIM `&0 < b + k`; | |
MATCH_MP_TAC REAL_LTE_TRANS; | |
EXISTS_TAC `abs a / e`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
MATCH_MP_TAC REAL_LE_RCANCEL_IMP; | |
EXISTS_TAC `b + k`; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[real_div]; | |
REWRITE_TAC[GSYM REAL_MUL_ASSOC]; | |
CLAIM `inv (b + &1) * (b + &1) = &1`; | |
LABEL_ALL_TAC; | |
POP_ASSUM MP_TAC; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_MUL_LINV;REAL_LT_LE]; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[REAL_MUL_RID]; | |
MATCH_MP_TAC REAL_LE_LCANCEL_IMP; | |
EXISTS_TAC `inv e`; | |
REPEAT STRIP_TAC; | |
USE_THEN "Z-5" MP_TAC; | |
MESON_TAC[REAL_INV_POS;REAL_LT_LE]; | |
REWRITE_TAC[REAL_MUL_ASSOC]; | |
CLAIM `~(e = &0)`; | |
ASM_MESON_TAC[REAL_INV_NZ;REAL_LT_LE]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[REAL_MUL_LINV]; | |
REAL_SIMP_TAC; | |
ASM_MESON_TAC[real_div;REAL_MUL_SYM] | |
]);; | |
(* }}} *) | |
let SEQ_0_NEG = prove_by_refinement( | |
`!p. (\n. p n) --> &0 <=> (\n. -- p n) --> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[SEQ]; | |
GEN_TAC THEN EQ_TAC; | |
REPEAT STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-0" (fun x -> FIRST_ASSUM (fun y -> MP_TAC (MATCH_MP y x))); | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> FIRST_ASSUM (fun y -> MP_TAC (MATCH_MP y x))); | |
REAL_SIMP_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ABS_NEG]; | |
REPEAT STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-0" (fun x -> FIRST_ASSUM (fun y -> MP_TAC (MATCH_MP y x))); | |
STRIP_TAC; | |
EXISTS_TAC `N`; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> FIRST_ASSUM (fun y -> MP_TAC (MATCH_MP y x))); | |
REAL_SIMP_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ABS_NEG]; | |
]);; | |
(* }}} *) | |
let lem = prove_by_refinement( | |
`!x y z. --(x / (y + z)) = x / (-- y + -- z)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[real_div]; | |
REWRITE_TAC[ARITH_RULE `--(x * y) = x * -- y`]; | |
REWRITE_TAC[ARITH_RULE `-- y + -- z = --(y + z)`]; | |
REWRITE_TAC[REAL_INV_NEG]; | |
]);; | |
(* }}} *) | |
let MUB_DIV_CONST = prove_by_refinement( | |
`!a b p. mono_unbounded_below (\n. p n) ==> (\n. a / (b + p n)) --> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2]; | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_TAC[SEQ_0_NEG]; | |
REWRITE_TAC[lem]; | |
MATCH_MP_TAC MUA_DIV_CONST; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let mono_unbounded = new_definition( | |
`mono_unbounded p <=> mono_unbounded_above p \/ mono_unbounded_below p`);; | |
let MU_DIV_CONST = prove_by_refinement( | |
`!a b p. mono_unbounded p ==> (\n. a / (b + p n)) --> &0`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC MUA_DIV_CONST; | |
REWRITE_TAC[ETA_AX]; | |
POP_ASSUM MATCH_ACCEPT_TAC; | |
MATCH_MP_TAC MUB_DIV_CONST; | |
REWRITE_TAC[ETA_AX]; | |
POP_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let MUA_MUA = prove_by_refinement( | |
`!p q. mono_unbounded_above (\n. p n) /\ mono_unbounded_above (\n. q n) ==> | |
mono_unbounded_above (\n. p n * q n)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded_above_pos]; | |
REPEAT STRIP_TAC; | |
CLAIM `&0 <= max c (&1)`; | |
REWRITE_TAC[real_max]; | |
COND_CASES_TAC; | |
REAL_ARITH_TAC; | |
ASM_REWRITE_TAC[]; | |
DISCH_THEN (fun y -> POP_ASSUM (fun x -> RULE_ASSUM_TAC (C MATCH_MP y) THEN ASSUME_TAC x)); | |
EVERY_ASSUM MP_TAC THEN REPEAT STRIP_TAC; | |
EXISTS_TAC `nmax N N'`; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `max c (&1)`; | |
ASM_REWRITE_TAC[REAL_MAX_MAX]; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `max c (&1) * max c (&1)`; | |
REPEAT STRIP_TAC; | |
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV [GSYM REAL_MUL_RID])); | |
MATCH_MP_TAC REAL_LE_MUL2; | |
REPEAT STRIP_TAC; | |
REAL_SOLVE_TAC; | |
REAL_SIMP_TAC; | |
REAL_ARITH_TAC; | |
REAL_SOLVE_TAC; | |
MATCH_MP_TAC REAL_LT_MUL2; | |
REPEAT STRIP_TAC; | |
REAL_SOLVE_TAC; | |
CLAIM `N <= n /\ N' <= (n:num)`; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[nmax]; | |
COND_CASES_TAC; | |
REPEAT STRIP_TAC; | |
POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
POP_ASSUM MP_TAC THEN POP_ASSUM MP_TAC THEN ARITH_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
REAL_SOLVE_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[nmax] THEN ARITH_TAC; | |
]);; | |
(* }}} *) | |
let MUA_MUB = prove_by_refinement( | |
`!p q. mono_unbounded_above (\n. p n) /\ mono_unbounded_below (\n. q n) ==> | |
mono_unbounded_below (\n. p n * q n)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2]; | |
REWRITE_TAC[ARITH_RULE `--(x * y) = x * -- y`]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC MUA_MUA; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let MUB_MUA = prove_by_refinement( | |
`!p q. mono_unbounded_below (\n. p n) /\ mono_unbounded_above (\n. q n) ==> | |
mono_unbounded_below (\n. p n * q n)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2]; | |
REWRITE_TAC[ARITH_RULE `--(x * y) = -- x * y`]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC MUA_MUA; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let MUB_MUB = prove_by_refinement( | |
`!p q. mono_unbounded_below (\n. p n) /\ mono_unbounded_below (\n. q n) ==> | |
mono_unbounded_above (\n. p n * q n)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2]; | |
ONCE_REWRITE_TAC[ARITH_RULE `(x * y) = -- x * -- y`]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC MUA_MUA; | |
ASM_REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let MU_PROD = prove_by_refinement( | |
`!p q. mono_unbounded (\n. p n) /\ mono_unbounded (\n. q n) ==> mono_unbounded (\n. p n * q n)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mono_unbounded]; | |
ASM_MESON_TAC[MUA_MUA;MUA_MUB;MUB_MUA;MUB_MUB]; | |
]);; | |
(* }}} *) | |
let mub_quotient_limit = prove_by_refinement( | |
`!k f g. &0 < k /\ (\n. f n / g n) --> k /\ mono_unbounded_below g | |
==> mono_unbounded_below f`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[mua_neg2]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC mua_quotient_limit; | |
EXISTS_TAC `k`; | |
EXISTS_TAC `\n. -- g n`; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
BETA_TAC; | |
REWRITE_TAC[REAL_NEG_DIV]; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
]);; | |
(* }}} *) | |
let POLY_UB = prove_by_refinement( | |
`!p. nonconstant p ==> mono_unbounded (\n. poly p (&n))`, | |
(* {{{ Proof *) | |
[ | |
GEN_TAC; | |
DISCH_THEN (fun x -> ASSUME_TAC x THEN MP_TAC x); | |
REWRITE_TAC[nonconstant]; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM (fun x -> ASSUME_TAC (MATCH_MP LIM_POLY2 x)); | |
CASES_ON `LAST p < &0`; | |
REWRITE_TAC[mono_unbounded]; | |
DISJ2_TAC; | |
MATCH_MP_TAC mub_quotient_limit; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. LAST p * &n pow degree p)`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
BETA_TAC; | |
MATCH_MP_TAC LIM_POLY2; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
MATCH_MP_TAC POW_UNBB_CON; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC NONCONSTANT_DEGREE; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
REWRITE_ASSUMS !REAL_REWRITES; | |
REWRITE_ASSUMS[REAL_LE_LT]; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
(* save *) | |
REWRITE_TAC[mono_unbounded]; | |
DISJ1_TAC; | |
MATCH_MP_TAC mua_quotient_limit; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. LAST p * &n pow degree p)`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
BETA_TAC; | |
MATCH_MP_TAC LIM_POLY2; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
MATCH_MP_TAC POW_UNB_CON; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC NONCONSTANT_DEGREE; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
ASM_MESON_TAC[NORMAL_LAST_NONZERO]; | |
]);; | |
(* }}} *) | |
(* ---------------------------------------------------------------------- *) | |
(* A polynomial applied to a negative argument *) | |
(* ---------------------------------------------------------------------- *) | |
let pneg_aux = new_recursive_definition list_RECURSION | |
`(pneg_aux n [] = []) /\ | |
(pneg_aux n (CONS h t) = CONS (--(&1) pow n * h) (pneg_aux (SUC n) t))`;; | |
let pneg = new_recursive_definition list_RECURSION | |
`(pneg [] = []) /\ | |
(pneg (CONS h t) = pneg_aux 0 (CONS h t))`;; | |
let POLY_PNEG_AUX_SUC = prove_by_refinement( | |
`!t n. pneg_aux (SUC (SUC n)) t = pneg_aux n t`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
STRIP_TAC; | |
REWRITE_TAC[pneg_aux]; | |
REWRITE_TAC[pneg_aux;pow]; | |
REAL_SIMP_TAC; | |
STRIP_TAC; | |
AP_TERM_TAC; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let POLY_NEG_NEG = prove_by_refinement( | |
`!p. poly_neg (poly_neg p) = p`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[poly_neg;poly_cmul]; | |
REWRITE_TAC[poly_neg;poly_cmul]; | |
REAL_SIMP_TAC; | |
AP_TERM_TAC; | |
ASM_MESON_TAC[poly_neg;poly_cmul]; | |
]);; | |
(* }}} *) | |
let POLY_PNEG_NEG = prove_by_refinement( | |
`!p n. poly_neg (pneg_aux (SUC n) p) = pneg_aux n p`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
ASM_REWRITE_TAC[pneg_aux;poly_neg;poly_cmul]; | |
REWRITE_TAC[pneg_aux]; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[POLY_PNEG_AUX_SUC]; | |
REWRITE_TAC[poly_neg;poly_cmul]; | |
REAL_SIMP_TAC; | |
AP_TERM_TAC; | |
REWRITE_TAC[GSYM poly_neg]; | |
CONV_TAC (RAND_CONV (ONCE_REWRITE_CONV[GSYM POLY_NEG_NEG])); | |
POP_ASSUM (ONCE_REWRITE_TAC o list); | |
REWRITE_TAC[]; | |
]);; | |
(* }}} *) | |
let POLY_PNEG_AUX = prove_by_refinement( | |
`!k p n. EVEN n ==> (poly p (-- k) = poly (pneg_aux n p) k)`, | |
(* {{{ Proof *) | |
[ | |
STRIP_TAC; | |
LIST_INDUCT_TAC; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[pneg_aux;poly]; | |
REPEAT STRIP_TAC; | |
POP_ASSUM (fun x -> RULE_ASSUM_TAC (fun y -> MATCH_MP y x) THEN ASSUME_TAC x); | |
REWRITE_TAC[poly;pneg_aux]; | |
REAL_SIMP_TAC; | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
CLAIM `-- &1 pow n = &1`; | |
REWRITE_TAC[REAL_POW_NEG]; | |
ASM_REWRITE_TAC[]; | |
REAL_SIMP_TAC; | |
DISCH_THEN SUBST1_TAC; | |
REAL_SIMP_TAC; | |
AP_TERM_TAC; | |
CONV_TAC (LAND_CONV (ONCE_REWRITE_CONV[GSYM POLY_PNEG_NEG])); | |
REWRITE_TAC[POLY_NEG]; | |
REAL_SIMP_TAC; | |
]);; | |
(* }}} *) | |
let POLY_PNEG = prove_by_refinement( | |
`!p x. poly p (-- x) = poly (pneg p) x`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[pneg;poly]; | |
REWRITE_TAC[pneg;poly]; | |
REPEAT STRIP_TAC; | |
CLAIM `poly (pneg_aux 0 (CONS h t)) x = poly (CONS h t) (--x)`; | |
ASM_MESON_TAC[POLY_PNEG_AUX;EVEN]; | |
DISCH_THEN SUBST1_TAC; | |
REWRITE_TAC[poly]; | |
]);; | |
(* }}} *) | |
let DEGREE_0 = prove_by_refinement( | |
`degree [] = 0 `, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[degree]; | |
REWRITE_TAC[normalize;LENGTH]; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let EVEN_ODD = prove_by_refinement( | |
`!x. EVEN (SUC x) = ODD x`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[EVEN;NOT_EVEN]; | |
]);; | |
(* }}} *) | |
let ODD_EVEN = prove_by_refinement( | |
`!x. ODD (SUC x) = EVEN x`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[ODD;NOT_ODD]; | |
]);; | |
(* }}} *) | |
let PNEG_CONS = prove_by_refinement( | |
`!p. pneg (CONS h t) = CONS h (neg (pneg t))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[pneg;pneg_aux]; | |
REAL_SIMP_TAC; | |
ONCE_REWRITE_TAC[GSYM POLY_PNEG_NEG]; | |
REWRITE_TAC[POLY_PNEG_AUX_SUC]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[pneg;pneg_aux;]; | |
REWRITE_ASSUMS !LIST_REWRITES; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[GSYM pneg]; | |
]);; | |
(* }}} *) | |
let PNEG_NIL = prove_by_refinement( | |
`!p. (pneg p = []) <=> (p = [])`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN | |
MESON_TAC[pneg;NOT_CONS_NIL;pneg_aux]; | |
]);; | |
(* }}} *) | |
let PNEG_AUX_NIL = prove_by_refinement( | |
`!p n. (pneg_aux n p = []) <=> (p = [])`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN | |
MESON_TAC[pneg;NOT_CONS_NIL;pneg_aux]; | |
]);; | |
(* }}} *) | |
let POLY_CMUL_NIL = prove_by_refinement( | |
`!p. (c ## p = []) <=> (p = [])`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN | |
MESON_TAC[poly_cmul;NOT_CONS_NIL;pneg_aux]; | |
]);; | |
(* }}} *) | |
let POLY_NEG_NIL = prove_by_refinement( | |
`!p. (poly_neg p = []) <=> (p = [])`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN | |
MESON_TAC[poly_neg;poly_cmul;NOT_CONS_NIL]; | |
]);; | |
(* }}} *) | |
let NEG_LAST = prove_by_refinement( | |
`!p. ~(p = []) ==> (LAST (neg p) = -- LAST p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[]; | |
DISCH_THEN IGNORE; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[poly_neg;poly_cmul;LAST;]; | |
REAL_ARITH_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS[x] THEN ASSUME_TAC x); | |
ASM_SIMP_TAC[LAST_CONS;poly_neg;poly_cmul;]; | |
CLAIM `~(-- &1 ## t = [])`; | |
ASM_MESON_TAC[POLY_CMUL_NIL]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[LAST_CONS]; | |
ASM_MESON_TAC[poly_neg;]; | |
]);; | |
(* }}} *) | |
let POLY_PNEG_LAST = prove_by_refinement( | |
`!p. normal p ==> | |
(EVEN (degree p) ==> (LAST p = LAST (pneg p))) /\ | |
(ODD (degree p) ==> (LAST p = -- LAST (pneg p)))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[normal]; | |
STRIP_TAC; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[LAST;pneg;pneg_aux]; | |
REAL_SIMP_TAC; | |
ASM_MESON_TAC[DEGREE_SING;EVEN;NOT_EVEN]; | |
CLAIM `normal t`; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_MESON_TAC[]; | |
DISCH_THEN (fun x -> RULE_ASSUM_TAC (REWRITE_RULE [x]) THEN ASSUME_TAC x); | |
STRIP_TAC; | |
STRIP_TAC; | |
CLAIM `ODD (degree t)`; | |
MATCH_EQ_MP_TAC EVEN_ODD; | |
ASM_MESON_TAC[DEGREE_CONS;ADD1;ADD_SYM]; | |
DISCH_THEN (fun x -> RULE_ASSUM_TAC (REWRITE_RULE [x]) THEN ASSUME_TAC x); | |
ASM_SIMP_TAC[LAST_CONS]; | |
REWRITE_TAC[PNEG_CONS]; | |
CLAIM `~(neg (pneg t) = [])`; | |
ASM_MESON_TAC[POLY_NEG_NIL;PNEG_NIL]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[LAST_CONS]; | |
ASM_MESON_TAC[NEG_LAST;PNEG_NIL]; | |
CLAIM `normal t`; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC; | |
CLAIM `EVEN (degree t)`; | |
MATCH_EQ_MP_TAC ODD_EVEN; | |
ASM_MESON_TAC[DEGREE_CONS;ADD1;ADD_SYM]; | |
DISCH_THEN (fun x -> RULE_ASSUM_TAC (REWRITE_RULE [x]) THEN ASSUME_TAC x); | |
ASM_SIMP_TAC[LAST_CONS]; | |
REWRITE_TAC[PNEG_CONS]; | |
CLAIM `~(neg (pneg t) = [])`; | |
ASM_MESON_TAC[POLY_NEG_NIL;PNEG_NIL]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[LAST_CONS]; | |
ASM_SIMP_TAC[NEG_LAST;PNEG_NIL]; | |
REAL_SIMP_TAC; | |
]);; | |
(* }}} *) | |
let PNEG_AUX_LENGTH = prove_by_refinement( | |
`!p n. LENGTH (pneg_aux n p) = LENGTH p`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[LENGTH;pneg;pneg_aux;]; | |
REWRITE_TAC[LENGTH;pneg;pneg_aux;]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let PNEG_LENGTH = prove_by_refinement( | |
`!p. LENGTH (pneg p) = LENGTH p`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[LENGTH;pneg;pneg_aux;]; | |
REWRITE_TAC[LENGTH;pneg;pneg_aux;]; | |
ASM_MESON_TAC[PNEG_AUX_LENGTH]; | |
]);; | |
(* }}} *) | |
let LAST_PNEG_AUX_0 = prove_by_refinement( | |
`!p n. ~(p = []) ==> ((LAST p = &0) <=> (LAST (pneg_aux n p) = &0))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[]; | |
STRIP_TAC; | |
DISCH_THEN IGNORE; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[LAST;pneg;pneg_aux;]; | |
REAL_SIMP_TAC; | |
ASM_SIMP_TAC[LAST_CONS;pneg;pneg_aux;]; | |
REAL_SIMP_TAC; | |
EQ_TAC; | |
DISCH_THEN SUBST1_TAC; | |
REAL_SIMP_TAC; | |
STRIP_TAC; | |
MP_TAC (ISPECL[`-- &1`;`n:num`] POW_NZ); | |
REAL_SIMP_TAC; | |
REWRITE_TAC[ARITH_RULE `~(-- &1 = &0)`]; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE]; | |
ASM_SIMP_TAC[LAST_CONS]; | |
REWRITE_TAC[pneg_aux]; | |
CLAIM `~(pneg_aux (SUC n) t = [])`; | |
ASM_MESON_TAC[PNEG_AUX_NIL]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[LAST_CONS]; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let LAST_PNEG_0 = prove_by_refinement( | |
`!p n. ~(p = []) ==> ((LAST p = &0) = (LAST (pneg p) = &0))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC THEN MESON_TAC[LAST_PNEG_AUX_0;pneg]; | |
]);; | |
(* }}} *) | |
let PNEG_LAST = prove_by_refinement( | |
`!p. ~(p = []) ==> (LAST (pneg p) = LAST p) \/ (LAST (pneg p) = -- LAST p)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CASES_ON `normal p`; | |
MP_TAC (ISPEC `p:real list` POLY_PNEG_LAST); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
DISJ_CASES_TAC (ISPEC `degree p` EVEN_OR_ODD); | |
ASM_MESON_TAC[]; | |
ASM_MESON_TAC !REAL_REWRITES; | |
REWRITE_ASSUMS[NORMAL_ID;DE_MORGAN_THM;]; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `LENGTH p = 0`; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
ASM_MESON_TAC[LENGTH_0]; | |
ASM_REWRITE_TAC[]; | |
DISJ1_TAC; | |
ASM_MESON_TAC[LAST_PNEG_0]; | |
]);; | |
(* }}} *) | |
let NORMAL_PNEG = prove_by_refinement( | |
`!p. normal p = normal (pneg p)`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[NORMAL_ID]; | |
REPEAT STRIP_TAC; | |
EQ_TAC; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[PNEG_LENGTH]; | |
MP_TAC (ISPEC `p:real list` PNEG_LAST); | |
CLAIM `~(p = [])`; | |
ASM_MESON_TAC[LENGTH_NZ]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
(* save *) | |
REPEAT STRIP_TAC; | |
ONCE_REWRITE_TAC[GSYM PNEG_LENGTH]; | |
ASM_REWRITE_TAC[]; | |
MP_TAC (ISPEC `p:real list` PNEG_LAST); | |
CLAIM `~(p = [])`; | |
ASM_MESON_TAC[LENGTH_NZ;PNEG_LENGTH]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
EVERY_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let PNEG_AUX_NORMALIZE_LENGTH = prove_by_refinement( | |
`!p n. LENGTH (normalize (pneg_aux n p)) = LENGTH (normalize p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[normalize;LENGTH;pneg_aux;]; | |
REWRITE_TAC[normalize;LENGTH;pneg;pneg_aux;]; | |
STRIP_TAC; | |
REPEAT COND_CASES_TAC THEN TRY (ASM_SIMP_TAC !LIST_REWRITES); | |
LABEL_ALL_TAC; | |
KEEP ["Z-2";"Z-0"]; | |
CLAIM `~(-- &1 pow n = &0)`; | |
MATCH_MP_TAC REAL_POW_NZ; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE]; | |
ASM_MESON_TAC[LENGTH_0]; | |
CLAIM `~(-- &1 pow n = &0)`; | |
MATCH_MP_TAC REAL_POW_NZ; | |
REAL_ARITH_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE]; | |
ASM_MESON_TAC[LENGTH_0]; | |
ASM_MESON_TAC[LENGTH_0]; | |
]);; | |
(* }}} *) | |
let PNEG_NORMALIZE_LENGTH = prove_by_refinement( | |
`!p n. LENGTH (normalize (pneg p)) = LENGTH (normalize p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[pneg]; | |
ASM_MESON_TAC[PNEG_AUX_NORMALIZE_LENGTH;pneg;pneg_aux;]; | |
]);; | |
(* }}} *) | |
let DEGREE_PNEG = prove_by_refinement( | |
`!p. degree (pneg p) = degree p`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[degree]; | |
ASM_MESON_TAC[PNEG_NORMALIZE_LENGTH]; | |
]);; | |
(* }}} *) | |
let PNEG_SING = prove_by_refinement( | |
`!p. (pneg p = [x]) <=> (p = [x])`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[pneg;pneg_aux]; | |
EQ_TAC; | |
REPEAT STRIP_TAC; | |
LIST_SIMP_TAC; | |
STRIP_TAC; | |
REWRITE_ASSUMS[pneg;pneg_aux]; | |
POP_ASSUM MP_TAC; | |
REAL_SIMP_TAC; | |
LIST_SIMP_TAC; | |
MESON_TAC[]; | |
POP_ASSUM MP_TAC; | |
REWRITE_TAC[pneg;pneg_aux]; | |
LIST_SIMP_TAC; | |
ASM_MESON_TAC[PNEG_AUX_NIL]; | |
REWRITE_TAC[pneg;pneg_aux]; | |
REAL_SIMP_TAC; | |
LIST_SIMP_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[pneg_aux]; | |
]);; | |
(* }}} *) | |
let PNEG_NONCONSTANT = prove_by_refinement( | |
`!p. nonconstant (pneg p) = nonconstant p`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[nonconstant]; | |
STRIP_TAC THEN EQ_TAC; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[NORMAL_PNEG]; | |
POP_ASSUM (REWRITE_ASSUMS o list); | |
REWRITE_ASSUMS[pneg;pneg_aux]; | |
POP_ASSUM MP_TAC; | |
REAL_SIMP_TAC; | |
MESON_TAC[]; | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[NORMAL_PNEG]; | |
ASM_MESON_TAC[PNEG_SING]; | |
]);; | |
(* }}} *) | |
let LAST_UNBB_EVEN_NEG = prove_by_refinement( | |
`!p. nonconstant p /\ EVEN (degree p) /\ LAST p < &0 ==> | |
mono_unbounded_below (\n. poly p (-- &n))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[POLY_PNEG]; | |
MATCH_MP_TAC LAST_UNB_NEG; | |
ASM_REWRITE_TAC[PNEG_NONCONSTANT]; | |
ASM_MESON_TAC[POLY_PNEG_LAST;nonconstant;]; | |
]);; | |
(* }}} *) | |
let POLY_PNEG_LAST2 = prove_by_refinement( | |
`!p. normal p | |
==> (EVEN (degree p) ==> (LAST (pneg p) = LAST p)) /\ | |
(ODD (degree p) ==> (LAST (pneg p) = -- LAST p))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
ASM_MESON_TAC[POLY_PNEG_LAST]; | |
ASM_MESON_TAC([POLY_PNEG_LAST; ARITH_RULE `(--x = y) <=> (x = -- y)` ]); | |
]);; | |
(* }}} *) | |
let LAST_UNB_ODD_NEG = prove_by_refinement( | |
`!p. nonconstant p /\ ODD (degree p) /\ LAST p < &0 ==> | |
mono_unbounded_above (\n. poly p (-- &n))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[POLY_PNEG]; | |
MATCH_MP_TAC LAST_UNB; | |
ASM_REWRITE_TAC[PNEG_NONCONSTANT]; | |
CLAIM `LAST (pneg p) = -- LAST p`; | |
ASM_MESON_TAC[POLY_PNEG_LAST2;nonconstant;]; | |
DISCH_THEN SUBST1_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let LAST_UNB_EVEN_POS = prove_by_refinement( | |
`!p. nonconstant p /\ EVEN (degree p) /\ &0 < LAST p ==> | |
mono_unbounded_above (\n. poly p (-- &n))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[POLY_PNEG]; | |
MATCH_MP_TAC LAST_UNB; | |
ASM_REWRITE_TAC[PNEG_NONCONSTANT]; | |
ASM_MESON_TAC[POLY_PNEG_LAST2;nonconstant;]; | |
]);; | |
(* }}} *) | |
let LAST_UNB_ODD_POS = prove_by_refinement( | |
`!p. nonconstant p /\ ODD (degree p) /\ &0 < LAST p ==> | |
mono_unbounded_below (\n. poly p (-- &n))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[POLY_PNEG]; | |
MATCH_MP_TAC LAST_UNB_NEG; | |
ASM_REWRITE_TAC[PNEG_NONCONSTANT]; | |
CLAIM `LAST (pneg p) = -- LAST p`; | |
ASM_MESON_TAC[POLY_PNEG_LAST2;nonconstant;]; | |
DISCH_THEN SUBST1_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let PNEG_NORMALIZE_LENGTH = prove_by_refinement( | |
`!p n. LENGTH (normalize (pneg p)) = LENGTH (normalize p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[pneg]; | |
ASM_MESON_TAC[PNEG_AUX_NORMALIZE_LENGTH;pneg;pneg_aux;]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_AUX_NORMAL = prove_by_refinement( | |
`!p n. ~(n = 0) ==> (normal p = normal (poly_diff_aux n p))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[normal;poly_diff_aux;]; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[poly_diff_aux]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[poly_diff_aux;]; | |
REWRITE_TAC[normal]; | |
EQ_TAC; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[normalize]; | |
COND_CASES_TAC; | |
CLAIM `~(h = &0)`; | |
ASM_MESON_TAC[normal;normalize]; | |
STRIP_TAC; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_INJ]; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[NOT_CONS_NIL]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[NOT_CONS_NIL]; | |
REWRITE_TAC[NORMALIZE_SING]; | |
CLAIM `~(&n * h = &0)`; | |
ASM_MESON_TAC[normalize]; | |
ASM_MESON_TAC[REAL_ENTIRE;REAL_INJ;normalize]; | |
EQ_TAC; | |
REPEAT STRIP_TAC; | |
CLAIM `normal t`; | |
ASM_MESON_TAC[NORMAL_TAIL]; | |
STRIP_TAC; | |
MATCH_MP_TAC NORMAL_CONS; | |
ASM_MESON_TAC[ARITH_RULE `~(SUC x = 0)`]; | |
STRIP_TAC; | |
MATCH_MP_TAC NORMAL_CONS; | |
MP_TAC (ARITH_RULE `~(SUC n = 0)`); | |
DISCH_THEN (fun x -> FIRST_ASSUM (fun y -> (MP_TAC (MATCH_MP y x)))); | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC NORMAL_TAIL; | |
EXISTS_TAC `&n * h`; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[poly_diff_aux;NOT_CONS_NIL;list_CASES]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_NORMAL = prove_by_refinement( | |
`!p. nonconstant p ==> normal (poly_diff p)`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
ASM_MESON_TAC[normal;poly_diff;poly_diff_aux;POLY_DIFF_AUX_NORMAL;ARITH_RULE `~(1 = 0)`;nonconstant;]; | |
REWRITE_TAC[poly_diff;NOT_CONS_NIL;TL]; | |
REWRITE_TAC[nonconstant]; | |
STRIP_TAC; | |
CLAIM `normal t`; | |
MATCH_MP_TAC NORMAL_TAIL; | |
EXISTS_TAC `h:real`; | |
ASM_MESON_TAC[normal]; | |
STRIP_TAC; | |
ASM_MESON_TAC[normal;poly_diff;poly_diff_aux;POLY_DIFF_AUX_NORMAL;ARITH_RULE `~(1 = 0)`]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_AUX_NORMAL2 = prove_by_refinement( | |
`!p n. ~(n = 0) ==> (normal (poly_diff_aux n p) <=> normal p)`, | |
(* {{{ Proof *) | |
[MESON_TAC[POLY_DIFF_AUX_NORMAL]]);; | |
(* }}} *) | |
let POLY_DIFF_AUX_DEGREE = prove_by_refinement( | |
`!p m n. ~(n = 0) /\ ~(m = 0) /\ normal p ==> | |
(degree (poly_diff_aux n p) = degree (poly_diff_aux m p))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[poly_diff_aux]; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC[poly_diff_aux]; | |
CASES_ON `t = []`; | |
ASM_REWRITE_TAC[poly_diff_aux;DEGREE_SING]; | |
CLAIM `normal (poly_diff_aux (SUC n) t)`; | |
ASM_SIMP_TAC[POLY_DIFF_AUX_NORMAL2;NOT_SUC]; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_REWRITE_TAC[]; | |
EXISTS_TAC `h:real`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
CLAIM `normal (poly_diff_aux (SUC m) t)`; | |
ASM_SIMP_TAC[POLY_DIFF_AUX_NORMAL2;NOT_SUC]; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_REWRITE_TAC[]; | |
EXISTS_TAC `h:real`; | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[DEGREE_CONS]; | |
AP_TERM_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
STRIP_TAC; | |
ARITH_TAC; | |
STRIP_TAC; | |
ARITH_TAC; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_MESON_TAC[]; | |
]);; | |
(* }}} *) | |
let poly_diff_aux_odd = prove_by_refinement( | |
`!p n. nonconstant p ==> | |
(EVEN (degree p) = EVEN (degree (poly_diff_aux n p))) /\ | |
(ODD (degree p) = ODD (degree (poly_diff_aux n p)))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[normal;nonconstant;]; | |
STRIP_TAC; | |
DISCH_THEN (fun x -> ASSUME_TAC x THEN MP_TAC x); | |
REWRITE_TAC[nonconstant]; | |
STRIP_TAC; | |
CASES_ON `t = []`; | |
ASM_MESON_TAC[nonconstant;normal]; | |
REWRITE_TAC[poly_diff_aux]; | |
CLAIM `normal t`; | |
ASM_MESON_TAC[NORMAL_TAIL]; | |
STRIP_TAC; | |
CLAIM `normal (poly_diff_aux (SUC n) t)`; | |
ASM_MESON_TAC[nonconstant;normal;POLY_DIFF_AUX_NORMAL;NOT_SUC]; | |
STRIP_TAC; | |
CASES_ON `?x. t = [x]`; | |
POP_ASSUM MP_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]; | |
CLAIM `~(x = &0)`; | |
ASM_MESON_TAC[normal;normalize]; | |
STRIP_TAC; | |
CLAIM `degree [h; x] = 1`; | |
CLAIM `normalize [h; x] = [h; x]`; | |
ASM_MESON_TAC[normal]; | |
DISCH_THEN SUBST1_TAC; | |
CLAIM `LENGTH [h; x] = 2`; | |
ASM_MESON_TAC[LENGTH_PAIR]; | |
STRIP_TAC; | |
REWRITE_TAC[degree]; | |
CLAIM `normal [h; x]`; | |
ASM_MESON_TAC[normal;normalize]; | |
DISCH_THEN (fun x -> ASSUME_TAC x THEN MP_TAC x); | |
REWRITE_TAC[normal]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
ARITH_TAC; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[poly_diff_aux;]; | |
CLAIM `~(&(SUC n) * x = &0)`; | |
ASM_MESON_TAC[normal;normalize;REAL_ENTIRE;ARITH_RULE `~(SUC n = 0)`;REAL_INJ]; | |
STRIP_TAC; | |
CLAIM `degree [&n * h; &(SUC n) * x] = 1`; | |
REWRITE_TAC[degree]; | |
ASM_REWRITE_TAC[normalize;NOT_CONS_NIL;LENGTH;]; | |
ARITH_TAC; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[DEGREE_CONS]; | |
CLAIM `nonconstant t`; | |
ASM_MESON_TAC[nonconstant]; | |
STRIP_TAC; | |
ONCE_REWRITE_TAC[ADD_SYM]; | |
REWRITE_TAC[GSYM ADD1]; | |
ASM_SIMP_TAC[EVEN;ODD]; | |
ASM_MESON_TAC[POLY_DIFF_AUX_DEGREE]; | |
]);; | |
(* }}} *) | |
let poly_diff_parity = prove_by_refinement( | |
`!p n. nonconstant p ==> | |
(EVEN (degree p) = ODD (degree (poly_diff p))) /\ | |
(ODD (degree p) = EVEN (degree (poly_diff p)))`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[nonconstant;normal]; | |
STRIP_TAC; | |
DISCH_ASS; | |
REWRITE_TAC[nonconstant]; | |
STRIP_TAC; | |
REWRITE_TAC[poly_diff]; | |
LIST_SIMP_TAC; | |
CLAIM `~(1 = 0)`; | |
ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `normal t`; | |
MATCH_MP_TAC NORMAL_TAIL; | |
ASM_MESON_TAC[nonconstant;normal]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[DEGREE_CONS]; | |
CASES_ON `?x. t = [x]`; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
CLAIM `~(x = &0)`; | |
ASM_MESON_TAC[normal;normalize]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[poly_diff_aux;DEGREE_SING;degree;normalize;LENGTH;NOT_CONS_NIL;]; | |
CLAIM `~(&1 * x = &0)`; | |
ASM_MESON_TAC[REAL_ENTIRE;ARITH_RULE `~(&1 = &0)`]; | |
STRIP_TAC; | |
ASM_REWRITE_TAC[LENGTH]; | |
REWRITE_TAC[ARITH_RULE `1 + x = SUC x`]; | |
ASM_MESON_TAC[EVEN;ODD;NOT_EVEN;NOT_ODD;]; | |
CLAIM `nonconstant t`; | |
ASM_MESON_TAC[nonconstant]; | |
DISCH_ASS; | |
DISCH_THEN (fun x -> REWRITE_ASSUMS[x] THEN ASSUME_TAC x); | |
ONCE_REWRITE_TAC[ADD_SYM]; | |
REWRITE_TAC[GSYM ADD1;EVEN;ODD]; | |
CLAIM `?h' t'. t = CONS h' t'`; | |
ASM_MESON_TAC[nonconstant;normal;list_CASES]; | |
STRIP_TAC; | |
POP_ASSUM (fun x -> REWRITE_ASSUMS [x] THEN REWRITE_TAC[x] THEN ASSUME_TAC x); | |
REWRITE_ASSUMS[poly_diff;NOT_CONS_NIL;TL]; | |
REWRITE_TAC[poly_diff_aux]; | |
CLAIM `normal t'`; | |
ASM_MESON_TAC[nonconstant;NORMAL_TAIL;normal]; | |
STRIP_TAC; | |
CLAIM `normal (poly_diff_aux (SUC 1) t')`; | |
ASM_MESON_TAC[POLY_DIFF_AUX_NORMAL2;NOT_SUC]; | |
STRIP_TAC; | |
ASM_SIMP_TAC[DEGREE_CONS]; | |
ONCE_REWRITE_TAC[ADD_SYM]; | |
REWRITE_TAC[GSYM ADD1;EVEN;ODD]; | |
CLAIM `normal (poly_diff_aux 1 t')`; | |
ASM_MESON_TAC[POLY_DIFF_AUX_NORMAL2;ONE;NOT_SUC]; | |
STRIP_TAC; | |
ASM_MESON_TAC[POLY_DIFF_AUX_DEGREE;ONE;NOT_SUC]; | |
]);; | |
(* }}} *) | |
let poly_diff_parity2 = prove_by_refinement( | |
`!p n. nonconstant p ==> | |
(ODD (degree (poly_diff p)) = EVEN (degree p)) /\ | |
(EVEN (degree (poly_diff p)) = ODD (degree p))`, | |
(* {{{ Proof *) | |
[MESON_TAC[poly_diff_parity]]);; | |
(* }}} *) | |
let normal_nonconstant = prove_by_refinement( | |
`!p. normal p /\ 0 < degree p ==> nonconstant p`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[nonconstant]; | |
ASM_MESON_TAC[DEGREE_SING;LT_REFL]; | |
]);; | |
(* }}} *) | |
let nmax_le = prove_by_refinement( | |
`!n m. n <= nmax n m /\ m <= nmax n m`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[nmax]; | |
REPEAT STRIP_TAC; | |
COND_CASES_TAC; | |
ARITH_TAC; | |
ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_LEFT = prove_by_refinement( | |
`!p. nonconstant p /\ (?X. !x. x < X ==> poly (poly_diff p) x < &0) ==> | |
(?Y. !y. y < Y ==> &0 < poly p y)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `mono_unbounded_above (\n. poly p (-- &n))`; | |
REWRITE_TAC[POLY_PNEG]; | |
DISJ_CASES_TAC (ISPEC `degree p` EVEN_OR_ODD); | |
MATCH_MP_TAC mua_quotient_limit; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. LAST (pneg p) * &n pow degree (pneg p))`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
BETA_TAC; | |
MATCH_MP_TAC LIM_POLY2; | |
MATCH_EQ_MP_TAC NORMAL_PNEG; | |
ASM_MESON_TAC[nonconstant]; | |
MATCH_MP_TAC POW_UNB_CON; | |
STRIP_TAC; | |
REWRITE_TAC[DEGREE_PNEG]; | |
REWRITE_TAC[degree]; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[nonconstant;normal]; | |
DISCH_THEN SUBST1_TAC; | |
CLAIM `~(LENGTH p = 0)`; | |
ASM_MESON_TAC[nonconstant;normal;LENGTH_NZ;LENGTH_0;degree]; | |
STRIP_TAC; | |
CLAIM `~(LENGTH p = 1)`; | |
ASM_MESON_TAC[nonconstant;normal;LENGTH_NZ;LENGTH_1;degree]; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
(* save *) | |
CLAIM `LAST (pneg p) = LAST p`; | |
ASM_MESON_TAC[GSYM POLY_PNEG_LAST;nonconstant;]; | |
DISCH_THEN SUBST1_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `x < y <=> ~(x = y) /\ ~(y < x)`]; | |
STRIP_TAC; | |
ASM_MESON_TAC[NORMAL_ID;nonconstant]; | |
STRIP_TAC; | |
CLAIM `ODD (degree (poly_diff p))`; | |
ASM_SIMP_TAC[poly_diff_parity2]; | |
STRIP_TAC; | |
CLAIM `nonconstant (poly_diff p)`; | |
MATCH_MP_TAC normal_nonconstant; | |
STRIP_TAC; | |
MATCH_MP_TAC NONCONSTANT_DIFF_NORMAL; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `mono_unbounded_above (\n. poly (poly_diff p) (-- &n))`; | |
MATCH_MP_TAC LAST_UNB_ODD_NEG; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[POLY_DIFF_LAST_LT]; | |
REWRITE_TAC[mono_unbounded_above]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
(* save *) | |
MP_TAC (ISPEC `-- (X - &1)` REAL_ARCH_SIMPLE); | |
DISCH_THEN (X_CHOOSE_TAC `M:num`); | |
CLAIM `-- &M <= X - &1`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-2" (MP_TAC o ISPEC `nmax M N`); | |
STRIP_TAC; | |
CLAIM `N <= nmax M N`; | |
REWRITE_TAC[nmax_le]; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
CLAIM `-- &(nmax M N) < X`; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `-- &M`; | |
STRIP_TAC; | |
REWRITE_TAC[nmax]; | |
REWRITE_TAC[REAL_LE_NEG2; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
USE_THEN "Z-0" MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[ARITH_RULE `~(x < &0 /\ &0 < x)`]; | |
(* save *) | |
REWRITE_TAC[GSYM POLY_PNEG]; | |
MATCH_MP_TAC LAST_UNB_ODD_NEG; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[GSYM POLY_DIFF_LAST_LT]; | |
CASES_ON `?x. poly_diff p = [x]`; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
ASM_REWRITE_TAC[LAST]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-2" MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_TAC[x] THEN ASSUME_TAC x); | |
REWRITE_TAC[poly]; | |
REAL_SIMP_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
EXISTS_TAC `X - &1`; | |
REAL_ARITH_TAC; | |
CLAIM `nonconstant (poly_diff p)`; | |
REWRITE_TAC[nonconstant]; | |
STRIP_TAC; | |
MATCH_MP_TAC POLY_DIFF_NORMAL; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
CLAIM `EVEN (degree (poly_diff p))`; | |
ASM_MESON_TAC[poly_diff_parity]; | |
STRIP_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x) /\ ~(y = x)`]; | |
REPEAT STRIP_TAC; | |
CLAIM `mono_unbounded_above (\n. poly (poly_diff p) (-- (&n)))`; | |
MATCH_MP_TAC LAST_UNB_EVEN_POS; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[mono_unbounded_above]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
(* save *) | |
MP_TAC (ISPEC `-- (X - &1)` REAL_ARCH_SIMPLE); | |
DISCH_THEN (X_CHOOSE_TAC `M:num`); | |
CLAIM `-- &M <= X - &1`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-2" (MP_TAC o ISPEC `nmax M N`); | |
STRIP_TAC; | |
CLAIM `N <= nmax M N`; | |
REWRITE_TAC[nmax_le]; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
CLAIM `-- &(nmax M N) < X`; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `-- &M`; | |
STRIP_TAC; | |
REWRITE_TAC[nmax]; | |
REWRITE_TAC[REAL_LE_NEG2; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
USE_THEN "Z-0" MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[ARITH_RULE `~(x < &0 /\ &0 < x)`]; | |
ASM_MESON_TAC[nonconstant;NORMAL_ID]; | |
(* save xxx *) | |
REWRITE_TAC[mono_unbounded_above]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
MP_TAC (ISPEC `-- (X - &1)` REAL_ARCH_SIMPLE); | |
DISCH_THEN (X_CHOOSE_TAC `M:num`); | |
ABBREV_TAC `k = nmax N M`; | |
EXISTS_TAC `-- &k`; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC [ARITH_RULE `x < y <=> ~(y <= x)`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`y:real`;`-- &k`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
CLAIM `&0 < (-- &k) - y`; | |
USE_THEN "Z-4" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `poly (poly_diff p) x < &0`; | |
FIRST_ASSUM MATCH_MP_TAC; | |
MATCH_MP_TAC REAL_LTE_TRANS; | |
EXISTS_TAC `-- &k`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LE_TRANS; | |
EXISTS_TAC `-- &M`; | |
STRIP_TAC; | |
USE_THEN "Z-5" (SUBST1_TAC o GSYM); | |
REWRITE_TAC[nmax]; | |
REWRITE_TAC[REAL_LE_NEG2; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
(* save *) | |
CLAIM `N <= k:num`; | |
USE_THEN "Z-5" (SUBST1_TAC o GSYM); | |
REWRITE_TAC[nmax] THEN ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < poly p (-- &k)`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
CLAIM `&0 < poly p (-- &k) - poly p y`; | |
LABEL_ALL_TAC; | |
USE_ASSUM_LIST ["Z-10";"Z-3"] MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `(-- &k - y) * poly (poly_diff p) x < &0`; | |
REWRITE_TAC[REAL_MUL_LT]; | |
ASM_REWRITE_TAC[]; | |
POP_ASSUM MP_TAC; | |
USE_THEN "Z-0" MP_TAC; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_LEFT = prove_by_refinement( | |
`!p. nonconstant p /\ (?X. !x. x < X ==> &0 < poly (poly_diff p) x) ==> | |
(?Y. !y. y < Y ==> poly p y < &0)`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
CLAIM `mono_unbounded_below (\n. poly p (-- &n))`; | |
REWRITE_TAC[POLY_PNEG]; | |
DISJ_CASES_TAC (ISPEC `degree p` EVEN_OR_ODD); | |
MATCH_MP_TAC mua_quotient_limit_neg; | |
EXISTS_TAC `&1`; | |
EXISTS_TAC `(\n. LAST (pneg p) * &n pow degree (pneg p))`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
BETA_TAC; | |
MATCH_MP_TAC LIM_POLY2; | |
MATCH_EQ_MP_TAC NORMAL_PNEG; | |
ASM_MESON_TAC[nonconstant]; | |
MATCH_MP_TAC POW_UNBB_CON; | |
STRIP_TAC; | |
REWRITE_TAC[DEGREE_PNEG]; | |
REWRITE_TAC[degree]; | |
CLAIM `normalize p = p`; | |
ASM_MESON_TAC[nonconstant;normal]; | |
DISCH_THEN SUBST1_TAC; | |
CLAIM `~(LENGTH p = 0)`; | |
ASM_MESON_TAC[nonconstant;normal;LENGTH_NZ;LENGTH_0;degree]; | |
STRIP_TAC; | |
CLAIM `~(LENGTH p = 1)`; | |
ASM_MESON_TAC[nonconstant;normal;LENGTH_NZ;LENGTH_1;degree]; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
(* save *) | |
CLAIM `LAST (pneg p) = LAST p`; | |
ASM_MESON_TAC[GSYM POLY_PNEG_LAST;nonconstant;]; | |
DISCH_THEN SUBST1_TAC; | |
ONCE_REWRITE_TAC[REAL_ARITH `x < y <=> ~(x = y) /\ ~(y < x)`]; | |
STRIP_TAC; | |
ASM_MESON_TAC[NORMAL_ID;nonconstant]; | |
STRIP_TAC; | |
CLAIM `ODD (degree (poly_diff p))`; | |
ASM_SIMP_TAC[poly_diff_parity2]; | |
STRIP_TAC; | |
CLAIM `nonconstant (poly_diff p)`; | |
MATCH_MP_TAC normal_nonconstant; | |
STRIP_TAC; | |
MATCH_MP_TAC NONCONSTANT_DIFF_NORMAL; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
POP_ASSUM MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `mono_unbounded_below (\n. poly (poly_diff p) (-- &n))`; | |
MATCH_MP_TAC LAST_UNB_ODD_POS; | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[POLY_DIFF_LAST_GT]; | |
REWRITE_TAC[mono_unbounded_below]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
(* save *) | |
MP_TAC (ISPEC `-- (X - &1)` REAL_ARCH_SIMPLE); | |
DISCH_THEN (X_CHOOSE_TAC `M:num`); | |
CLAIM `-- &M <= X - &1`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-2" (MP_TAC o ISPEC `nmax M N`); | |
STRIP_TAC; | |
CLAIM `N <= nmax M N`; | |
REWRITE_TAC[nmax_le]; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
CLAIM `-- &(nmax M N) < X`; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `-- &M`; | |
STRIP_TAC; | |
REWRITE_TAC[nmax]; | |
REWRITE_TAC[REAL_LE_NEG2; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
USE_THEN "Z-0" MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[ARITH_RULE `~(x < &0 /\ &0 < x)`]; | |
(* save *) | |
REWRITE_TAC[GSYM POLY_PNEG]; | |
MATCH_MP_TAC LAST_UNB_ODD_POS; | |
ASM_REWRITE_TAC[]; | |
ASM_SIMP_TAC[GSYM POLY_DIFF_LAST_GT]; | |
CASES_ON `?x. poly_diff p = [x]`; | |
POP_ASSUM MP_TAC THEN STRIP_TAC; | |
ASM_REWRITE_TAC[LAST]; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-2" MP_TAC; | |
POP_ASSUM (fun x -> REWRITE_TAC[x] THEN ASSUME_TAC x); | |
REWRITE_TAC[poly]; | |
REAL_SIMP_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
EXISTS_TAC `X - &1`; | |
REAL_ARITH_TAC; | |
CLAIM `nonconstant (poly_diff p)`; | |
REWRITE_TAC[nonconstant]; | |
STRIP_TAC; | |
MATCH_MP_TAC POLY_DIFF_NORMAL; | |
FIRST_ASSUM MATCH_ACCEPT_TAC; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
CLAIM `EVEN (degree (poly_diff p))`; | |
ASM_MESON_TAC[poly_diff_parity]; | |
STRIP_TAC; | |
ONCE_REWRITE_TAC[ARITH_RULE `x < y <=> ~(y < x) /\ ~(y = x)`]; | |
REPEAT STRIP_TAC; | |
CLAIM `mono_unbounded_below (\n. poly (poly_diff p) (-- (&n)))`; | |
MATCH_MP_TAC LAST_UNBB_EVEN_NEG; | |
ASM_REWRITE_TAC[]; | |
REWRITE_TAC[mono_unbounded_below]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
(* save *) | |
MP_TAC (ISPEC `-- (X - &1)` REAL_ARCH_SIMPLE); | |
DISCH_THEN (X_CHOOSE_TAC `M:num`); | |
CLAIM `-- &M <= X - &1`; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
USE_THEN "Z-2" (MP_TAC o ISPEC `nmax M N`); | |
STRIP_TAC; | |
CLAIM `N <= nmax M N`; | |
REWRITE_TAC[nmax_le]; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
CLAIM `-- &(nmax M N) < X`; | |
MATCH_MP_TAC REAL_LET_TRANS; | |
EXISTS_TAC `-- &M`; | |
STRIP_TAC; | |
REWRITE_TAC[nmax]; | |
REWRITE_TAC[REAL_LE_NEG2; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
USE_THEN "Z-0" MP_TAC THEN ARITH_TAC; | |
STRIP_TAC; | |
ASM_MESON_TAC[ARITH_RULE `~(x < &0 /\ &0 < x)`]; | |
ASM_MESON_TAC[nonconstant;NORMAL_ID]; | |
(* save *) | |
REWRITE_TAC[mono_unbounded_below]; | |
DISCH_THEN (MP_TAC o ISPEC `&0`); | |
STRIP_TAC; | |
MP_TAC (ISPEC `-- (X - &1)` REAL_ARCH_SIMPLE); | |
DISCH_THEN (X_CHOOSE_TAC `M:num`); | |
ABBREV_TAC `k = nmax N M`; | |
EXISTS_TAC `-- &k`; | |
REPEAT STRIP_TAC; | |
REWRITE_TAC [ARITH_RULE `x < y <=> ~(y <= x)`]; | |
STRIP_TAC; | |
MP_TAC (ISPECL [`p:real list`;`y:real`;`-- &k`] POLY_MVT); | |
ASM_REWRITE_TAC[]; | |
STRIP_TAC; | |
LABEL_ALL_TAC; | |
CLAIM `&0 < (-- &k) - y`; | |
USE_THEN "Z-4" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < poly (poly_diff p) x`; | |
FIRST_ASSUM MATCH_MP_TAC; | |
MATCH_MP_TAC REAL_LTE_TRANS; | |
EXISTS_TAC `-- &k`; | |
ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC REAL_LE_TRANS; | |
EXISTS_TAC `-- &M`; | |
STRIP_TAC; | |
USE_THEN "Z-5" (SUBST1_TAC o GSYM); | |
REWRITE_TAC[nmax]; | |
REWRITE_TAC[REAL_LE_NEG2; REAL_OF_NUM_LE] THEN ARITH_TAC; | |
USE_THEN "Z-6" MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
(* save *) | |
CLAIM `N <= k:num`; | |
USE_THEN "Z-5" (SUBST1_TAC o GSYM); | |
REWRITE_TAC[nmax] THEN ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `poly p (-- &k) < &0`; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
CLAIM `poly p (-- &k) - poly p y < &0`; | |
LABEL_ALL_TAC; | |
USE_ASSUM_LIST ["Z-10";"Z-3"] MP_TAC THEN REAL_ARITH_TAC; | |
STRIP_TAC; | |
CLAIM `&0 < (-- &k - y) * poly (poly_diff p) x`; | |
REWRITE_TAC[REAL_MUL_GT]; | |
ASM_REWRITE_TAC[]; | |
POP_ASSUM MP_TAC; | |
USE_THEN "Z-0" MP_TAC; | |
REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_LEFT2 = prove_by_refinement( | |
`!p X. nonconstant p /\ (!x. x < X ==> &0 < poly (poly_diff p) x) ==> | |
(?Y. Y < X /\ (!y. y < Y ==> poly p y < &0))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPEC `p:real list` POLY_DIFF_DOWN_LEFT); | |
ASM_REWRITE_TAC[]; | |
ANTS_TAC; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
EXISTS_TAC `min X Y - &1`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_LEFT2 = prove_by_refinement( | |
`!p X. nonconstant p /\ (!x. x < X ==> poly (poly_diff p) x < &0) ==> | |
(?Y. Y < X /\ (!y. y < Y ==> &0 < poly p y))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPEC `p:real list` POLY_DIFF_UP_LEFT); | |
ASM_REWRITE_TAC[]; | |
ANTS_TAC; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
EXISTS_TAC `min X Y - &1`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_LEFT3 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. x < X ==> &0 < poly p' x) ==> | |
(?Y. Y < X /\ (!y. y < Y ==> poly p y < &0))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPEC `p:real list` POLY_DIFF_DOWN_LEFT); | |
ASM_REWRITE_TAC[]; | |
ANTS_TAC; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
EXISTS_TAC `min X Y - &1`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_LEFT3 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. x < X ==> poly p' x < &0) ==> | |
(?Y. Y < X /\ (!y. y < Y ==> &0 < poly p y))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPEC `p:real list` POLY_DIFF_UP_LEFT); | |
ASM_REWRITE_TAC[]; | |
ANTS_TAC; | |
ASM_MESON_TAC[]; | |
STRIP_TAC; | |
EXISTS_TAC `min X Y - &1`; | |
REPEAT STRIP_TAC; | |
REAL_ARITH_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_LEFT4 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. x < X ==> &0 < poly p' x) ==> | |
(?Y. Y < X /\ (!y. y <= Y ==> poly p y < &0))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL[ `p:real list`;`p':real list`;`X:real`] POLY_DIFF_DOWN_LEFT3); | |
ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `Y - &1`; | |
STRIP_TAC; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_LEFT4 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. x < X ==> poly p' x < &0) ==> | |
(?Y. Y < X /\ (!y. y <= Y ==> &0 < poly p y))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL[ `p:real list`;`p':real list`;`X:real`] POLY_DIFF_UP_LEFT3); | |
ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `Y - &1`; | |
STRIP_TAC; | |
POP_ASSUM IGNORE; | |
POP_ASSUM MP_TAC; | |
REAL_ARITH_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_LEFT5 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. x < X ==> poly p' x > &0) ==> | |
(?Y. Y < X /\ (!y. y <= Y ==> poly p y < &0))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt]; | |
ASM_MESON_TAC[POLY_DIFF_DOWN_LEFT4]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_LEFT5 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. x < X ==> poly p' x < &0) ==> | |
(?Y. Y < X /\ (!y. y <= Y ==> poly p y > &0))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt]; | |
MESON_TAC[POLY_DIFF_UP_LEFT4]; | |
]);; | |
(* }}} *) | |
let NORMAL_PDIFF_LEM = prove_by_refinement( | |
`!p. normal (poly_diff p) ==> nonconstant p`, | |
(* {{{ Proof *) | |
[ | |
LIST_INDUCT_TAC; | |
REWRITE_TAC[normal;poly_diff;poly_diff_aux]; | |
REWRITE_TAC[nonconstant]; | |
REWRITE_TAC[poly_diff;poly_diff_aux;NOT_CONS_NIL;TL;]; | |
REPEAT STRIP_TAC; | |
MATCH_MP_TAC NORMAL_CONS; | |
ASM_MESON_TAC[POLY_DIFF_AUX_NORMAL;ARITH_RULE `~(1 = 0)`]; | |
CLAIM `t = []`; | |
ASM_MESON_TAC !LIST_REWRITES; | |
DISCH_THEN (REWRITE_ASSUMS o list); | |
ASM_MESON_TAC[normal;poly_diff_aux]; | |
]);; | |
(* }}} *) | |
let NORMAL_PDIFF = prove_by_refinement( | |
`!p. nonconstant p = normal (poly_diff p)`, | |
(* {{{ Proof *) | |
[ | |
MESON_TAC[NORMAL_PDIFF_LEM;POLY_DIFF_NORMAL]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_RIGHT2 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. X < x ==> &0 < poly p' x) ==> | |
(?Y. X < Y /\ (!y. Y <= y ==> &0 < poly p y))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL[ `p:real list`] (GEN_ALL POLY_DIFF_UP_RIGHT)); | |
ASM_REWRITE_TAC[]; | |
ANTS_TAC; | |
ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `(max X Y) + &1`; | |
STRIP_TAC; | |
REAL_ARITH_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_RIGHT2 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. X < x ==> poly p' x < &0) ==> | |
(?Y. X < Y /\ (!y. Y <= y ==> poly p y < &0))`, | |
(* {{{ Proof *) | |
[ | |
REPEAT STRIP_TAC; | |
MP_TAC (ISPECL[ `p:real list`] (GEN_ALL POLY_DIFF_DOWN_RIGHT)); | |
ASM_REWRITE_TAC[]; | |
ANTS_TAC; | |
ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC; | |
EXISTS_TAC `(max X Y) + &1`; | |
STRIP_TAC; | |
REAL_ARITH_TAC; | |
REPEAT STRIP_TAC; | |
FIRST_ASSUM MATCH_MP_TAC; | |
POP_ASSUM MP_TAC THEN REAL_ARITH_TAC; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_UP_RIGHT3 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. X < x ==> poly p' x > &0) ==> | |
(?Y. X < Y /\ (!y. Y <= y ==> poly p y > &0))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt;real_ge]; | |
MESON_TAC[POLY_DIFF_UP_RIGHT2]; | |
]);; | |
(* }}} *) | |
let POLY_DIFF_DOWN_RIGHT3 = prove_by_refinement( | |
`!p p' X. nonconstant p ==> (poly_diff p = p') ==> | |
(!x. X < x ==> poly p' x < &0) ==> | |
(?Y. X < Y /\ (!y. Y <= y ==> poly p y < &0))`, | |
(* {{{ Proof *) | |
[ | |
REWRITE_TAC[real_gt;real_ge]; | |
MESON_TAC[POLY_DIFF_DOWN_RIGHT2]; | |
]);; | |
(* }}} *) | |