Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11 kB
(* (c) Copyright, Bill Richter 2013 *)
(* Distributed under the same license as HOL Light *)
(* *)
(* Examples showing error messages displayed by readable.ml when raising the *)
(* exception Readable_fail, with some working examples interspersed. *)
needs "RichterHilbertAxiomGeometry/readable.ml";;
let s = "abc]edf" in Str.string_before s (FindMatch "\[" "\]" s);;
let s = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!!]xyz" in
Str.string_before s (FindMatch "\[" "\]" s);;
(* val it : string = "abc]"
val it : string = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!!]" *)
let s = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!![]xyz" in Str.string_before s
(FindMatch "\[" "\]" s);;
(* Exception:
No matching right bracket operator \] to left bracket operator \[ in xyz. *)
let s = "123456[abc]lmn[op[a; b; c]pq]rs[];xyz" in
Str.string_before s (FindSemicolon s);;
let s = "123456[abc]lmn[op[a; b; c]pq]rs![]xyz" in
Str.string_before s (FindSemicolon s);;
(* val it : string = "123456[abc]lmn[op[a; b; c]pq]rs[]"
Exception: No final semicolon in 123456[abc]lmn[op[a; b; c]pq]rs![]xyz. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* 0..0..3..6..solved at 21
0..0..3..6..31..114..731..5973..solved at 6087
val MOD_MOD_REFL : thm = |- !m n. ~(n = 0) ==> m MOD n MOD n = m MOD n *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
INTRO_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception: Can't parse as a Proof:
INTRO_TAC !m n, H1. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] mod_mod;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception: Not a theorem:
mod_mod. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception: termlist->thm->thm ISPECL
not followed by term list in
MOD_MOD. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL m n 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception:
termlist->thm->thm ISPECL
not followed by term list in
m n 1] MOD_MOD. *)
interactive_goal `;∀p q. p * p = 2 * q * q ⇒ q = 0
`;;
interactive_proof `;
MATCH_MP_TAC ;
intro_TAC ∀p, A, ∀q, B;
EVEN(p * p) ⇔ EVEN(2 * q * q) [] proof qed;
`;;
(* Exception: Empty theorem:
. *)
interactive_goal `;∀p q. p * p = 2 * q * q ⇒ q = 0
`;;
interactive_proof `;
MATCH_MP_TAC num_WF num_WF ;
intro_TAC ∀p, A, ∀q, B;
EVEN(p * p) ⇔ EVEN(2 * q * q) [] proof qed;
`;;
(* Exception:
thm_tactic MATCH_MP_TAC not followed by a theorem, but instead
num_WF num_WF . *)
let EXP_2 = theorem `;
∀n:num. n EXP 2 = n * n
by REWRITE BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES`;;
(* Exception:
Not a proof:
REWRITE BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES.
The problem is that REWRITE should be rewrite.*)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
prooof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
`;;
(* Exception:
Missing initial "proof", "by", or final "qed;" in
!m n. ~(n = 0) ==> ((m MOD n) MOD n = m MOD n)
prooof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
. *)
let MOD_MOD_REFL = theorem `;
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n)
proof
intro_TAC !m n, H1;
MP_TAC ISPECL [m; n; 1] MOD_MOD;
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC;
qed;
What me worry?
`;;
(* Exception: Trailing garbage after the proof...qed:
What me worry?
.
Two examples from the ocaml reference manual sec 1.4 to show the
handling of exceptions other than Readable_fail. *)
exception Empty_list;;
let head l =
match l with
[] -> raise Empty_list
| hd :: tl -> hd;;
head [1;2];;
head [];;
exception Unbound_variable of string;;
type expression =
Const of float
| Var of string
| Sum of expression * expression
| Diff of expression * expression
| Prod of expression * expression
| Quot of expression * expression;;
let rec eval env exp =
match exp with
Const c -> c
| Var v ->
(try List.assoc v env with Not_found -> raise(Unbound_variable v))
| Sum(f, g) -> eval env f +. eval env g
| Diff(f, g) -> eval env f -. eval env g
| Prod(f, g) -> eval env f *. eval env g
| Quot(f, g) -> eval env f /. eval env g;;
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));;
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "z", Const 2.0), Var "y"));;
(* The only difference caused by printReadExn is that
Exception: Unbound_variable "z".
is now
Exception: Unbound_variable("z"). *)
let binom = define
`(!n. binom(n,0) = 1) /\
(!k. binom(0,SUC(k)) = 0) /\
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;;
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [n < k ==> n < SUC(k)] ARITH;
qed;
`;;
let BINOM_REFL = theorem `;
∀n. binom(n,n) = 1
proof
INDUCT_TAC;
ASM_SIMP_TAC binom BINOM_LT LT ARITH;
qed;
`;;
let BINOMIAL_THEOREM = theorem `;
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC ∀n, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] [1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
(* val binom : thm =
|- (!n. binom (n,0) = 1) /\
(!k. binom (0,SUC k) = 0) /\
(!n k. binom (SUC n,SUC k) = binom (n,SUC k) + binom (n,k))
val BINOM_LT : thm = |- !n k. n < k ==> binom (n,k) = 0
val BINOM_REFL : thm = |- !n. binom (n,n) = 1
0..0..1..2..solved at 6
val BINOMIAL_THEOREM : thm =
|- !n. (x + y) EXP n =
nsum (0..n) (\k. binom (n,k) * x EXP k * y EXP (n - k)) *)
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE n < k ==> n < SUC(k)] ARITH;
qed;
`;;
(* Exception:
term->thm ARITH_RULE not followed by term list, but instead
n < k ==> n < SUC(k)] ARITH. *)
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [n < k; n < SUC(k)] ARITH;
qed;
`;;
(* Exception:
term->thm ARITH_RULE not followed by length 1 term list, but instead the list
[n < k; n < SUC(k)]. *)
let BINOM_LT = theorem `;
∀n k. n < k ⇒ binom(n,k) = 0
proof
INDUCT_TAC; INDUCT_TAC;
rewrite binom ARITH LT_SUC LT;
ASM_SIMP_TAC ARITH_RULE [ ] ARITH;
qed;
`;;
(* Exception:
term->thm ARITH_RULE not followed by length 1 term list, but instead the list
[]. *)
let BINOMIAL_THEOREM = theorem `;
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC ∀n, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON binom] [1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
(* Exception:
thmlist->term->thm MESON not followed by thm list in
binom] [1 = binom(n, 0)] GSYM Nsum0SUC. *)
let BINOMIAL_THEOREM = theorem `;
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k))
proof
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET;
MATCH_MP_TAC num_INDUCTION;
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES;
intro_TAC ∀n, nThm;
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC;
rewriteR ADD_SYM;
rewriteRLDepth SUB_SUC EXP;
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] 1 = binom(n, 0)] GSYM Nsum0SUC;
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1;
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC;
qed;
`;;
(* Exception:
thmlist->term->thm MESON followed by list of theorems [binom]
not followed by term in
1 = binom(n, 0)] GSYM Nsum0SUC. *)