Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* (c) Copyright, Bill Richter 2013 *) | |
(* Distributed under the same license as HOL Light *) | |
(* *) | |
(* Examples showing error messages displayed by readable.ml when raising the *) | |
(* exception Readable_fail, with some working examples interspersed. *) | |
needs "RichterHilbertAxiomGeometry/readable.ml";; | |
let s = "abc]edf" in Str.string_before s (FindMatch "\[" "\]" s);; | |
let s = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!!]xyz" in | |
Str.string_before s (FindMatch "\[" "\]" s);; | |
(* val it : string = "abc]" | |
val it : string = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!!]" *) | |
let s = "123456[abc]lmn[op[abc]pq]rs!!!!!!!!!![]xyz" in Str.string_before s | |
(FindMatch "\[" "\]" s);; | |
(* Exception: | |
No matching right bracket operator \] to left bracket operator \[ in xyz. *) | |
let s = "123456[abc]lmn[op[a; b; c]pq]rs[];xyz" in | |
Str.string_before s (FindSemicolon s);; | |
let s = "123456[abc]lmn[op[a; b; c]pq]rs![]xyz" in | |
Str.string_before s (FindSemicolon s);; | |
(* val it : string = "123456[abc]lmn[op[a; b; c]pq]rs[]" | |
Exception: No final semicolon in 123456[abc]lmn[op[a; b; c]pq]rs![]xyz. *) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
proof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL [m; n; 1] MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
`;; | |
(* 0..0..3..6..solved at 21 | |
0..0..3..6..31..114..731..5973..solved at 6087 | |
val MOD_MOD_REFL : thm = |- !m n. ~(n = 0) ==> m MOD n MOD n = m MOD n *) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
proof | |
INTRO_TAC !m n, H1; | |
MP_TAC ISPECL [m; n; 1] MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
`;; | |
(* Exception: Can't parse as a Proof: | |
INTRO_TAC !m n, H1. *) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
proof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL [m; n; 1] mod_mod; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
`;; | |
(* Exception: Not a theorem: | |
mod_mod. *) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
proof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
`;; | |
(* Exception: termlist->thm->thm ISPECL | |
not followed by term list in | |
MOD_MOD. *) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
proof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL m n 1] MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
`;; | |
(* Exception: | |
termlist->thm->thm ISPECL | |
not followed by term list in | |
m n 1] MOD_MOD. *) | |
interactive_goal `;∀p q. p * p = 2 * q * q ⇒ q = 0 | |
`;; | |
interactive_proof `; | |
MATCH_MP_TAC ; | |
intro_TAC ∀p, A, ∀q, B; | |
EVEN(p * p) ⇔ EVEN(2 * q * q) [] proof qed; | |
`;; | |
(* Exception: Empty theorem: | |
. *) | |
interactive_goal `;∀p q. p * p = 2 * q * q ⇒ q = 0 | |
`;; | |
interactive_proof `; | |
MATCH_MP_TAC num_WF num_WF ; | |
intro_TAC ∀p, A, ∀q, B; | |
EVEN(p * p) ⇔ EVEN(2 * q * q) [] proof qed; | |
`;; | |
(* Exception: | |
thm_tactic MATCH_MP_TAC not followed by a theorem, but instead | |
num_WF num_WF . *) | |
let EXP_2 = theorem `; | |
∀n:num. n EXP 2 = n * n | |
by REWRITE BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES`;; | |
(* Exception: | |
Not a proof: | |
REWRITE BIT0_THM BIT1_THM EXP EXP_ADD MULT_CLAUSES ADD_CLAUSES. | |
The problem is that REWRITE should be rewrite.*) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
prooof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL [m; n; 1] MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
`;; | |
(* Exception: | |
Missing initial "proof", "by", or final "qed;" in | |
!m n. ~(n = 0) ==> ((m MOD n) MOD n = m MOD n) | |
prooof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL [m; n; 1] MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
. *) | |
let MOD_MOD_REFL = theorem `; | |
∀m n. ¬(n = 0) ⇒ ((m MOD n) MOD n = m MOD n) | |
proof | |
intro_TAC !m n, H1; | |
MP_TAC ISPECL [m; n; 1] MOD_MOD; | |
fol H1 MULT_CLAUSES MULT_EQ_0 ONE NOT_SUC; | |
qed; | |
What me worry? | |
`;; | |
(* Exception: Trailing garbage after the proof...qed: | |
What me worry? | |
. | |
Two examples from the ocaml reference manual sec 1.4 to show the | |
handling of exceptions other than Readable_fail. *) | |
exception Empty_list;; | |
let head l = | |
match l with | |
[] -> raise Empty_list | |
| hd :: tl -> hd;; | |
head [1;2];; | |
head [];; | |
exception Unbound_variable of string;; | |
type expression = | |
Const of float | |
| Var of string | |
| Sum of expression * expression | |
| Diff of expression * expression | |
| Prod of expression * expression | |
| Quot of expression * expression;; | |
let rec eval env exp = | |
match exp with | |
Const c -> c | |
| Var v -> | |
(try List.assoc v env with Not_found -> raise(Unbound_variable v)) | |
| Sum(f, g) -> eval env f +. eval env g | |
| Diff(f, g) -> eval env f -. eval env g | |
| Prod(f, g) -> eval env f *. eval env g | |
| Quot(f, g) -> eval env f /. eval env g;; | |
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "x", Const 2.0), Var "y"));; | |
eval [("x", 1.0); ("y", 3.14)] (Prod(Sum(Var "z", Const 2.0), Var "y"));; | |
(* The only difference caused by printReadExn is that | |
Exception: Unbound_variable "z". | |
is now | |
Exception: Unbound_variable("z"). *) | |
let binom = define | |
`(!n. binom(n,0) = 1) /\ | |
(!k. binom(0,SUC(k)) = 0) /\ | |
(!n k. binom(SUC(n),SUC(k)) = binom(n,SUC(k)) + binom(n,k))`;; | |
let BINOM_LT = theorem `; | |
∀n k. n < k ⇒ binom(n,k) = 0 | |
proof | |
INDUCT_TAC; INDUCT_TAC; | |
rewrite binom ARITH LT_SUC LT; | |
ASM_SIMP_TAC ARITH_RULE [n < k ==> n < SUC(k)] ARITH; | |
qed; | |
`;; | |
let BINOM_REFL = theorem `; | |
∀n. binom(n,n) = 1 | |
proof | |
INDUCT_TAC; | |
ASM_SIMP_TAC binom BINOM_LT LT ARITH; | |
qed; | |
`;; | |
let BINOMIAL_THEOREM = theorem `; | |
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k)) | |
proof | |
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET; | |
MATCH_MP_TAC num_INDUCTION; | |
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES; | |
intro_TAC ∀n, nThm; | |
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC; | |
rewriteR ADD_SYM; | |
rewriteRLDepth SUB_SUC EXP; | |
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] [1 = binom(n, 0)] GSYM Nsum0SUC; | |
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1; | |
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC; | |
qed; | |
`;; | |
(* val binom : thm = | |
|- (!n. binom (n,0) = 1) /\ | |
(!k. binom (0,SUC k) = 0) /\ | |
(!n k. binom (SUC n,SUC k) = binom (n,SUC k) + binom (n,k)) | |
val BINOM_LT : thm = |- !n k. n < k ==> binom (n,k) = 0 | |
val BINOM_REFL : thm = |- !n. binom (n,n) = 1 | |
0..0..1..2..solved at 6 | |
val BINOMIAL_THEOREM : thm = | |
|- !n. (x + y) EXP n = | |
nsum (0..n) (\k. binom (n,k) * x EXP k * y EXP (n - k)) *) | |
let BINOM_LT = theorem `; | |
∀n k. n < k ⇒ binom(n,k) = 0 | |
proof | |
INDUCT_TAC; INDUCT_TAC; | |
rewrite binom ARITH LT_SUC LT; | |
ASM_SIMP_TAC ARITH_RULE n < k ==> n < SUC(k)] ARITH; | |
qed; | |
`;; | |
(* Exception: | |
term->thm ARITH_RULE not followed by term list, but instead | |
n < k ==> n < SUC(k)] ARITH. *) | |
let BINOM_LT = theorem `; | |
∀n k. n < k ⇒ binom(n,k) = 0 | |
proof | |
INDUCT_TAC; INDUCT_TAC; | |
rewrite binom ARITH LT_SUC LT; | |
ASM_SIMP_TAC ARITH_RULE [n < k; n < SUC(k)] ARITH; | |
qed; | |
`;; | |
(* Exception: | |
term->thm ARITH_RULE not followed by length 1 term list, but instead the list | |
[n < k; n < SUC(k)]. *) | |
let BINOM_LT = theorem `; | |
∀n k. n < k ⇒ binom(n,k) = 0 | |
proof | |
INDUCT_TAC; INDUCT_TAC; | |
rewrite binom ARITH LT_SUC LT; | |
ASM_SIMP_TAC ARITH_RULE [ ] ARITH; | |
qed; | |
`;; | |
(* Exception: | |
term->thm ARITH_RULE not followed by length 1 term list, but instead the list | |
[]. *) | |
let BINOMIAL_THEOREM = theorem `; | |
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k)) | |
proof | |
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET; | |
MATCH_MP_TAC num_INDUCTION; | |
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES; | |
intro_TAC ∀n, nThm; | |
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC; | |
rewriteR ADD_SYM; | |
rewriteRLDepth SUB_SUC EXP; | |
rewrite MULT_AC EQ_ADD_LCANCEL MESON binom] [1 = binom(n, 0)] GSYM Nsum0SUC; | |
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1; | |
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC; | |
qed; | |
`;; | |
(* Exception: | |
thmlist->term->thm MESON not followed by thm list in | |
binom] [1 = binom(n, 0)] GSYM Nsum0SUC. *) | |
let BINOMIAL_THEOREM = theorem `; | |
∀n. (x + y) EXP n = nsum(0..n) (\k. binom(n,k) * x EXP k * y EXP (n - k)) | |
proof | |
∀f n. nsum (0.. SUC n) f = f(0) + nsum (0..n) (λi. f (SUC i)) [Nsum0SUC] by simplify LE_0 ADD1 NSUM_CLAUSES_LEFT NSUM_OFFSET; | |
MATCH_MP_TAC num_INDUCTION; | |
simplify EXP NSUM_SING_NUMSEG binom SUB_0 MULT_CLAUSES; | |
intro_TAC ∀n, nThm; | |
rewrite Nsum0SUC binom RIGHT_ADD_DISTRIB NSUM_ADD_NUMSEG GSYM NSUM_LMUL ADD_ASSOC; | |
rewriteR ADD_SYM; | |
rewriteRLDepth SUB_SUC EXP; | |
rewrite MULT_AC EQ_ADD_LCANCEL MESON [binom] 1 = binom(n, 0)] GSYM Nsum0SUC; | |
simplify NSUM_CLAUSES_RIGHT ARITH_RULE [0 < SUC n ∧ 0 <= SUC n] LT BINOM_LT MULT_CLAUSES ADD_CLAUSES SUC_SUB1; | |
simplify ARITH_RULE [k <= n ⇒ SUC n - k = SUC(n - k)] EXP MULT_AC; | |
qed; | |
`;; | |
(* Exception: | |
thmlist->term->thm MESON followed by list of theorems [binom] | |
not followed by term in | |
1 = binom(n, 0)] GSYM Nsum0SUC. *) | |