Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Mizar Light II *) | |
(* *) | |
(* Freek Wiedijk, University of Nijmegen *) | |
(* ========================================================================= *) | |
type mterm = string;; | |
let parse_context_term s env = | |
let ptm,l = (parse_preterm o lex o explode) s in | |
if l = [] then | |
(term_of_preterm o retypecheck | |
(map ((fun (s,ty) -> s,pretype_of_type ty) o dest_var) env)) ptm | |
else failwith "Unexpected junk after term";; | |
let goal_frees (asl,w as g) = | |
frees (itlist (curry mk_imp) (map (concl o snd) asl) w);; | |
let (parse_mterm: mterm -> goal -> term) = | |
let ttm = mk_var("thesis",bool_ty) in | |
let atm = mk_var("antecedent",bool_ty) in | |
let otm = mk_var("opposite",bool_ty) in | |
fun s (asl,w as g) -> | |
let ant = try fst (dest_imp w) with Failure _ -> atm in | |
let opp = try dest_neg w with Failure _ -> mk_neg w in | |
let t = | |
(subst [w,ttm; ant,atm; opp,otm] | |
(parse_context_term s ((goal_frees g) @ [ttm; atm; otm]))) in | |
try | |
let lhs = lhand (concl (snd (hd asl))) in | |
let itm = mk_var("...",type_of lhs) in | |
subst [lhs,itm] t | |
with Failure _ -> t;; | |
type stepinfo = | |
(goal -> term) option * int option * | |
(goal -> thm list) * (thm list -> tactic);; | |
type step = (stepinfo -> tactic) * stepinfo;; | |
let TRY' tac thl = TRY (tac thl);; | |
let (then'_) = fun tac1 tac2 thl -> tac1 thl THEN tac2 thl;; | |
let standard_prover = TRY' (REWRITE_TAC THEN' MESON_TAC);; | |
let sketch_prover = K CHEAT_TAC;; | |
let current_prover = ref standard_prover;; | |
let (default_stepinfo: (goal -> term) option -> stepinfo) = | |
fun t -> t,None, | |
(map snd o filter ((=) "=" o fst) o fst), | |
(fun thl -> !current_prover thl);; | |
let ((st'): step -> (goal -> term) -> step) = | |
fun (tac,(t,l,thl,just)) t' -> (tac,(Some t',l,thl,just));; | |
let (st) = fun stp -> (st') stp o parse_mterm;; | |
let (((at)): step -> int -> step) = | |
fun (tac,(t,l,thl,just)) l' -> (tac,(t,Some l',thl,just));; | |
let (((from)): step -> int list -> step) = | |
fun (tac,(t,l,thl,just)) ll -> (tac,(t,l, | |
(fun (asl,_ as g) -> thl g @ | |
let n = length asl in | |
map | |
(fun l -> | |
if l < 0 then snd (el ((n - l - 1) mod n) asl) | |
else assoc (string_of_int l) asl) | |
ll), | |
just));; | |
let so x = fun y -> x y from [-1];; | |
let (((by)): step -> thm list -> step) = | |
fun (tac,(t,l,thl,just)) thl' -> (tac,(t,l,(fun g -> thl g @ thl'),just));; | |
let (((using)): step -> (thm list -> tactic) -> step) = | |
fun (tac,(t,l,thl,just)) just' -> (tac,(t,l,thl,just' THEN' just));; | |
let (step: step -> tactic) = fun (f,x) -> f x;; | |
let (steps: step list -> tactic) = | |
fun stpl -> | |
itlist (fun tac1 tac2 -> tac1 THENL [tac2]) (map step stpl) ALL_TAC;; | |
let (tactics: tactic list -> step) = | |
fun tacl -> ((K (itlist ((THEN)) tacl ALL_TAC)), | |
default_stepinfo None);; | |
let (theorem': (goal -> term) -> step list -> thm) = | |
let g = ([],`T`) in | |
fun t stpl -> prove(t g,steps stpl);; | |
let (((proof)): step -> step list -> step) = | |
fun (tac,(t,l,thl,just)) prf -> (tac,(t,l,thl,K (steps prf)));; | |
let (N_ASSUME_TAC: int option -> thm_tactic) = | |
fun l th (asl,_ as g) -> | |
match l with | |
None -> ASSUME_TAC th g | |
| Some n -> | |
warn (n >= 0 && length asl <> n) "*** out of sequence label ***"; | |
LABEL_TAC (if n < 0 then "=" else string_of_int n) th g;; | |
let (per: step -> step list list -> step) = | |
let F = `F` in | |
fun (_,(_,_,thl,just)) cases -> | |
(fun (_,_,thl',just') g -> | |
let tx (t',_,_,_) = | |
match t' with None -> failwith "per" | Some t -> t g in | |
let dj = itlist (curry mk_disj) | |
(map (tx o snd o hd) cases) F in | |
(SUBGOAL_THEN dj | |
(EVERY_TCL (map (fun case -> let _,l,_,_ = snd (hd case) in | |
(DISJ_CASES_THEN2 (N_ASSUME_TAC l))) cases) CONTR_TAC) THENL | |
([(just' THEN' just) ((thl' g) @ (thl g))] @ | |
map (steps o tl) cases)) g), | |
(None,None,(K []),(K ALL_TAC));; | |
let (cases: step) = | |
(fun _ -> failwith "cases"),default_stepinfo None;; | |
let (suppose': (goal -> term) -> step) = | |
fun t -> (fun _ -> failwith "suppose"),default_stepinfo (Some t);; | |
let (consider': (goal -> term) list -> step) = | |
let T = `T` in | |
fun tl' -> | |
(fun (t',l,thl,just) (asl,w as g) -> | |
let tl = map (fun t' -> t' g) tl' in | |
let g' = ((asl @ (map (fun t -> ("",REFL t)) tl)),w) in | |
let ex = itlist (curry mk_exists) tl | |
(match t' with | |
None -> failwith "consider" | |
| Some t -> t g') in | |
(SUBGOAL_THEN ex | |
((EVERY_TCL (map X_CHOOSE_THEN tl)) (N_ASSUME_TAC l)) THENL | |
[just (thl g); ALL_TAC]) g), | |
default_stepinfo (Some | |
(fun g -> end_itlist (curry mk_conj) | |
(map (fun t' -> let t = t' g in mk_eq(t,t)) tl')));; | |
let (take': (goal -> term) list -> step) = | |
fun tl -> | |
(fun _ g -> (MAP_EVERY EXISTS_TAC o map (fun t -> t g)) tl g), | |
default_stepinfo None;; | |
let (assume': (goal -> term) -> step) = | |
fun t -> | |
(fun (t',l,thl,just) g -> | |
match t' with | |
None -> failwith "assume" | |
| Some t -> | |
(DISJ_CASES_THEN2 | |
(fun th -> REWRITE_TAC[th] THEN | |
N_ASSUME_TAC l th) | |
(fun th -> just ((REWRITE_RULE[] th)::(thl g))) | |
(SPEC (t g) EXCLUDED_MIDDLE)) g), | |
default_stepinfo (Some t);; | |
let (have': (goal -> term) -> step) = | |
fun t -> | |
(fun (t',l,thl,just) g -> | |
match t' with | |
None -> failwith "have" | |
| Some t -> | |
(SUBGOAL_THEN (t g) (N_ASSUME_TAC l) THENL | |
[just (thl g); ALL_TAC]) g), | |
default_stepinfo (Some t);; | |
let (thus': (goal -> term) -> step) = | |
fun t -> | |
(fun (t',l,thl,just) g -> | |
match t' with | |
None -> failwith "thus" | |
| Some t -> | |
(SUBGOAL_THEN (t g) ASSUME_TAC THENL | |
[just (thl g); | |
POP_ASSUM (fun th -> | |
N_ASSUME_TAC l th THEN | |
EVERY (map (fun th -> REWRITE_TAC[EQT_INTRO th]) | |
(CONJUNCTS th)))]) | |
g), | |
default_stepinfo (Some t);; | |
let (fix': (goal -> term) list -> step) = | |
fun tl -> | |
(fun _ g -> (MAP_EVERY X_GEN_TAC o (map (fun t -> t g))) tl g), | |
default_stepinfo None;; | |
let (set': (goal -> term) -> step) = | |
fun t -> | |
let stp = | |
(fun (t',l,_,_) g -> | |
match t' with | |
None -> failwith "set" | |
| Some t -> | |
let eq = t g in | |
let lhs,rhs = dest_eq eq in | |
let lv,largs = strip_comb lhs in | |
let rtm = list_mk_abs(largs,rhs) in | |
let ex = mk_exists(lv,mk_eq(lv,rtm)) in | |
(SUBGOAL_THEN ex (X_CHOOSE_THEN lv | |
(fun th -> (N_ASSUME_TAC l) (prove(eq,REWRITE_TAC[th])))) THENL | |
[REWRITE_TAC[EXISTS_REFL]; | |
ALL_TAC]) g), | |
default_stepinfo (Some t) in | |
stp at -1;; | |
let theorem = theorem' o parse_mterm;; | |
let suppose = suppose' o parse_mterm;; | |
let consider = consider' o map parse_mterm;; | |
let take = take' o map parse_mterm;; | |
let assume = assume' o parse_mterm;; | |
let have = have' o parse_mterm;; | |
let thus = thus' o parse_mterm;; | |
let fix = fix' o map parse_mterm;; | |
let set = set' o parse_mterm;; | |
let iff prfs = tactics [EQ_TAC THENL map steps prfs];; | |
let (otherwise: ('a -> step) -> ('a -> step)) = | |
fun stp x -> | |
let tac,si = stp x in | |
((fun (t,l,thl,just) g -> | |
REFUTE_THEN (fun th -> | |
tac (t,l,K ([REWRITE_RULE[] th] @ thl g),just)) g), | |
si);; | |
let (thesis:mterm) = "thesis";; | |
let (antecedent:mterm) = "antecedent";; | |
let (opposite:mterm) = "opposite";; | |
let (contradiction:mterm) = "F";; | |
let hence = so thus;; | |
let qed = hence thesis;; | |
let h = g o parse_term;; | |
let f = e o step;; | |
let ff = e o steps;; | |
let ee = e o EVERY;; | |
let fp = f o (fun x -> x proof []);; | |
let GOAL_HERE = tactics [GOAL_TAC];; | |