Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.93 kB
(* ========================================================================= *)
(* Mizar Light II *)
(* *)
(* Freek Wiedijk, University of Nijmegen *)
(* ========================================================================= *)
type mterm = string;;
let parse_context_term s env =
let ptm,l = (parse_preterm o lex o explode) s in
if l = [] then
(term_of_preterm o retypecheck
(map ((fun (s,ty) -> s,pretype_of_type ty) o dest_var) env)) ptm
else failwith "Unexpected junk after term";;
let goal_frees (asl,w as g) =
frees (itlist (curry mk_imp) (map (concl o snd) asl) w);;
let (parse_mterm: mterm -> goal -> term) =
let ttm = mk_var("thesis",bool_ty) in
let atm = mk_var("antecedent",bool_ty) in
let otm = mk_var("opposite",bool_ty) in
fun s (asl,w as g) ->
let ant = try fst (dest_imp w) with Failure _ -> atm in
let opp = try dest_neg w with Failure _ -> mk_neg w in
let t =
(subst [w,ttm; ant,atm; opp,otm]
(parse_context_term s ((goal_frees g) @ [ttm; atm; otm]))) in
try
let lhs = lhand (concl (snd (hd asl))) in
let itm = mk_var("...",type_of lhs) in
subst [lhs,itm] t
with Failure _ -> t;;
type stepinfo =
(goal -> term) option * int option *
(goal -> thm list) * (thm list -> tactic);;
type step = (stepinfo -> tactic) * stepinfo;;
let TRY' tac thl = TRY (tac thl);;
let (then'_) = fun tac1 tac2 thl -> tac1 thl THEN tac2 thl;;
let standard_prover = TRY' (REWRITE_TAC THEN' MESON_TAC);;
let sketch_prover = K CHEAT_TAC;;
let current_prover = ref standard_prover;;
let (default_stepinfo: (goal -> term) option -> stepinfo) =
fun t -> t,None,
(map snd o filter ((=) "=" o fst) o fst),
(fun thl -> !current_prover thl);;
let ((st'): step -> (goal -> term) -> step) =
fun (tac,(t,l,thl,just)) t' -> (tac,(Some t',l,thl,just));;
let (st) = fun stp -> (st') stp o parse_mterm;;
let (((at)): step -> int -> step) =
fun (tac,(t,l,thl,just)) l' -> (tac,(t,Some l',thl,just));;
let (((from)): step -> int list -> step) =
fun (tac,(t,l,thl,just)) ll -> (tac,(t,l,
(fun (asl,_ as g) -> thl g @
let n = length asl in
map
(fun l ->
if l < 0 then snd (el ((n - l - 1) mod n) asl)
else assoc (string_of_int l) asl)
ll),
just));;
let so x = fun y -> x y from [-1];;
let (((by)): step -> thm list -> step) =
fun (tac,(t,l,thl,just)) thl' -> (tac,(t,l,(fun g -> thl g @ thl'),just));;
let (((using)): step -> (thm list -> tactic) -> step) =
fun (tac,(t,l,thl,just)) just' -> (tac,(t,l,thl,just' THEN' just));;
let (step: step -> tactic) = fun (f,x) -> f x;;
let (steps: step list -> tactic) =
fun stpl ->
itlist (fun tac1 tac2 -> tac1 THENL [tac2]) (map step stpl) ALL_TAC;;
let (tactics: tactic list -> step) =
fun tacl -> ((K (itlist ((THEN)) tacl ALL_TAC)),
default_stepinfo None);;
let (theorem': (goal -> term) -> step list -> thm) =
let g = ([],`T`) in
fun t stpl -> prove(t g,steps stpl);;
let (((proof)): step -> step list -> step) =
fun (tac,(t,l,thl,just)) prf -> (tac,(t,l,thl,K (steps prf)));;
let (N_ASSUME_TAC: int option -> thm_tactic) =
fun l th (asl,_ as g) ->
match l with
None -> ASSUME_TAC th g
| Some n ->
warn (n >= 0 && length asl <> n) "*** out of sequence label ***";
LABEL_TAC (if n < 0 then "=" else string_of_int n) th g;;
let (per: step -> step list list -> step) =
let F = `F` in
fun (_,(_,_,thl,just)) cases ->
(fun (_,_,thl',just') g ->
let tx (t',_,_,_) =
match t' with None -> failwith "per" | Some t -> t g in
let dj = itlist (curry mk_disj)
(map (tx o snd o hd) cases) F in
(SUBGOAL_THEN dj
(EVERY_TCL (map (fun case -> let _,l,_,_ = snd (hd case) in
(DISJ_CASES_THEN2 (N_ASSUME_TAC l))) cases) CONTR_TAC) THENL
([(just' THEN' just) ((thl' g) @ (thl g))] @
map (steps o tl) cases)) g),
(None,None,(K []),(K ALL_TAC));;
let (cases: step) =
(fun _ -> failwith "cases"),default_stepinfo None;;
let (suppose': (goal -> term) -> step) =
fun t -> (fun _ -> failwith "suppose"),default_stepinfo (Some t);;
let (consider': (goal -> term) list -> step) =
let T = `T` in
fun tl' ->
(fun (t',l,thl,just) (asl,w as g) ->
let tl = map (fun t' -> t' g) tl' in
let g' = ((asl @ (map (fun t -> ("",REFL t)) tl)),w) in
let ex = itlist (curry mk_exists) tl
(match t' with
None -> failwith "consider"
| Some t -> t g') in
(SUBGOAL_THEN ex
((EVERY_TCL (map X_CHOOSE_THEN tl)) (N_ASSUME_TAC l)) THENL
[just (thl g); ALL_TAC]) g),
default_stepinfo (Some
(fun g -> end_itlist (curry mk_conj)
(map (fun t' -> let t = t' g in mk_eq(t,t)) tl')));;
let (take': (goal -> term) list -> step) =
fun tl ->
(fun _ g -> (MAP_EVERY EXISTS_TAC o map (fun t -> t g)) tl g),
default_stepinfo None;;
let (assume': (goal -> term) -> step) =
fun t ->
(fun (t',l,thl,just) g ->
match t' with
None -> failwith "assume"
| Some t ->
(DISJ_CASES_THEN2
(fun th -> REWRITE_TAC[th] THEN
N_ASSUME_TAC l th)
(fun th -> just ((REWRITE_RULE[] th)::(thl g)))
(SPEC (t g) EXCLUDED_MIDDLE)) g),
default_stepinfo (Some t);;
let (have': (goal -> term) -> step) =
fun t ->
(fun (t',l,thl,just) g ->
match t' with
None -> failwith "have"
| Some t ->
(SUBGOAL_THEN (t g) (N_ASSUME_TAC l) THENL
[just (thl g); ALL_TAC]) g),
default_stepinfo (Some t);;
let (thus': (goal -> term) -> step) =
fun t ->
(fun (t',l,thl,just) g ->
match t' with
None -> failwith "thus"
| Some t ->
(SUBGOAL_THEN (t g) ASSUME_TAC THENL
[just (thl g);
POP_ASSUM (fun th ->
N_ASSUME_TAC l th THEN
EVERY (map (fun th -> REWRITE_TAC[EQT_INTRO th])
(CONJUNCTS th)))])
g),
default_stepinfo (Some t);;
let (fix': (goal -> term) list -> step) =
fun tl ->
(fun _ g -> (MAP_EVERY X_GEN_TAC o (map (fun t -> t g))) tl g),
default_stepinfo None;;
let (set': (goal -> term) -> step) =
fun t ->
let stp =
(fun (t',l,_,_) g ->
match t' with
None -> failwith "set"
| Some t ->
let eq = t g in
let lhs,rhs = dest_eq eq in
let lv,largs = strip_comb lhs in
let rtm = list_mk_abs(largs,rhs) in
let ex = mk_exists(lv,mk_eq(lv,rtm)) in
(SUBGOAL_THEN ex (X_CHOOSE_THEN lv
(fun th -> (N_ASSUME_TAC l) (prove(eq,REWRITE_TAC[th])))) THENL
[REWRITE_TAC[EXISTS_REFL];
ALL_TAC]) g),
default_stepinfo (Some t) in
stp at -1;;
let theorem = theorem' o parse_mterm;;
let suppose = suppose' o parse_mterm;;
let consider = consider' o map parse_mterm;;
let take = take' o map parse_mterm;;
let assume = assume' o parse_mterm;;
let have = have' o parse_mterm;;
let thus = thus' o parse_mterm;;
let fix = fix' o map parse_mterm;;
let set = set' o parse_mterm;;
let iff prfs = tactics [EQ_TAC THENL map steps prfs];;
let (otherwise: ('a -> step) -> ('a -> step)) =
fun stp x ->
let tac,si = stp x in
((fun (t,l,thl,just) g ->
REFUTE_THEN (fun th ->
tac (t,l,K ([REWRITE_RULE[] th] @ thl g),just)) g),
si);;
let (thesis:mterm) = "thesis";;
let (antecedent:mterm) = "antecedent";;
let (opposite:mterm) = "opposite";;
let (contradiction:mterm) = "F";;
let hence = so thus;;
let qed = hence thesis;;
let h = g o parse_term;;
let f = e o step;;
let ff = e o steps;;
let ee = e o EVERY;;
let fp = f o (fun x -> x proof []);;
let GOAL_HERE = tactics [GOAL_TAC];;