Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Formalization of semantics and basic model theory of first order logic. *) | |
(* ========================================================================= *) | |
let EXPAND_TAC s = FIRST_ASSUM(SUBST1_TAC o SYM o | |
check((=) s o fst o dest_var o rhs o concl)) THEN BETA_TAC;; | |
let LIST_UNION = new_recursive_definition list_RECURSION | |
`(LIST_UNION [] = {}) /\ | |
(LIST_UNION (CONS h t) = h UNION (LIST_UNION t))`;; | |
let LIST_UNION_FINITE = prove | |
(`!l. ALL FINITE l ==> FINITE(LIST_UNION l)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; FINITE_RULES] THEN | |
REWRITE_TAC[FINITE_UNION; ALL] THEN ASM_MESON_TAC[]);; | |
let IN_LIST_UNION = prove | |
(`!x l. x IN (LIST_UNION l) <=> EX (\s. x IN s) l`, | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[LIST_UNION; EX; NOT_IN_EMPTY; IN_UNION]);; | |
let LIST_UNION_APPEND = prove | |
(`!l1 l2. LIST_UNION(APPEND l1 l2) = (LIST_UNION l1) UNION (LIST_UNION l2)`, | |
LIST_INDUCT_TAC THEN | |
ASM_REWRITE_TAC[LIST_UNION; APPEND; UNION_EMPTY; GSYM UNION_ASSOC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Nested type of terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let term_raw_INDUCT,term_raw_RECURSION = define_type | |
"term = V num | Fn num (term list)";; | |
(* ------------------------------------------------------------------------- *) | |
(* Manually extract "nested" version of induction and recursion. *) | |
(* One day, this will be automated; it's really pretty trivial. *) | |
(* ------------------------------------------------------------------------- *) | |
let term_INDUCT = prove | |
(`!P. (!v. P(V v)) /\ (!s l. ALL P l ==> P(Fn s l)) ==> !t. P t`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`P:term->bool`; `ALL(P:term->bool)`] term_raw_INDUCT) THEN | |
ASM_SIMP_TAC[ALL]);; | |
let term_RECURSION = prove | |
(`!f h. ?fn:term->Z. | |
(!v. fn(V v) = f v) /\ | |
(!s l. fn(Fn s l) = h s l (MAP fn l))`, | |
REPEAT GEN_TAC THEN | |
MP_TAC(ISPECL [`f:num->Z`; `h:num->(term)list->(Z)list->Z`; | |
`[]:(Z)list`; `\(x:term) (y:term list) (z:Z) (w:Z list). | |
CONS z w`] term_raw_RECURSION) THEN | |
REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `mf:(term)list->(Z)list` | |
(X_CHOOSE_THEN `fn:term ->Z` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `fn:term ->Z` THEN ASM_REWRITE_TAC[] THEN | |
GEN_TAC THEN X_GEN_TAC `l:term list` THEN AP_TERM_TAC THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MAP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* General Skolemizing hack to allow fixed initial parameters in nested *) | |
(* recursive defs. Note that (prima facie) variable ones aren't justified. *) | |
(* ------------------------------------------------------------------------- *) | |
let new_nested_recursive_definition ax tm = | |
let expat = lhand(snd(strip_forall(hd(conjuncts tm)))) in | |
let ev,allargs = strip_comb expat in | |
let pargs = butlast allargs in | |
let tm' = mk_exists(ev,list_mk_forall(pargs,tm)) in | |
let rawprover = prove_recursive_functions_exist ax in | |
let eth = prove(tm', | |
REWRITE_TAC[GSYM SKOLEM_THM] THEN | |
REPEAT GEN_TAC THEN | |
W(ACCEPT_TAC o rawprover o snd o dest_exists o snd)) in | |
SPECL pargs (new_specification [fst(dest_var ev)] eth);; | |
(* ------------------------------------------------------------------------- *) | |
(* Standard consequences. *) | |
(* ------------------------------------------------------------------------- *) | |
let term_INJ = prove_constructors_injective term_RECURSION;; | |
let term_DISTINCT = prove_constructors_distinct term_RECURSION;; | |
let term_CASES = prove_cases_thm term_INDUCT;; | |
(* ------------------------------------------------------------------------- *) | |
(* Definition of formulas. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("-->",(13,"right"));; | |
let form_INDUCTION,form_RECURSION = | |
define_type "form = False | |
| Atom num (term list) | |
| --> form form | |
| !! num form";; | |
let form_INJ = prove_constructors_injective form_RECURSION;; | |
let form_DISTINCT = prove_constructors_distinct form_RECURSION;; | |
let form_CASES = prove_cases_thm form_INDUCTION;; | |
(* ------------------------------------------------------------------------- *) | |
(* Definitions of other connectives. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("&&",(16,"right"));; | |
parse_as_infix("||",(14,"right"));; | |
parse_as_infix("<->",(12,"right"));; | |
let Not_DEF = new_definition | |
`Not p = p --> False`;; | |
let True_DEF = new_definition | |
`True = Not False`;; | |
let Or_DEF = new_definition | |
`p || q = (p --> q) --> q`;; | |
let And_DEF = new_definition | |
`p && q = Not (Not p || Not q)`;; | |
let Iff_DEF = new_definition | |
`(p <-> q) = (p --> q) && (q --> p)`;; | |
let Exists_DEF = new_definition | |
`?? x p = Not(!!x (Not p))`;; | |
(* ------------------------------------------------------------------------- *) | |
(* The language of a term, formula and set of formulas. *) | |
(* ------------------------------------------------------------------------- *) | |
let functions_term = new_recursive_definition term_RECURSION | |
`(!v. functions_term (V v) = {}) /\ | |
(!f l. functions_term (Fn f l) = | |
(f,LENGTH l) INSERT (LIST_UNION (MAP functions_term l)))`;; | |
let functions_form = new_recursive_definition form_RECURSION | |
`(functions_form False = {}) /\ | |
(functions_form (Atom a l) = LIST_UNION (MAP functions_term l)) /\ | |
(functions_form (p --> q) = (functions_form p) UNION (functions_form q)) /\ | |
(functions_form (!! x p) = functions_form p)`;; | |
let predicates_form = new_recursive_definition form_RECURSION | |
`(predicates_form False = {}) /\ | |
(predicates_form (Atom a l) = {(a,LENGTH l)}) /\ | |
(predicates_form (p --> q) = | |
(predicates_form p) UNION (predicates_form q)) /\ | |
(predicates_form (!! x p) = predicates_form p)`;; | |
let functions = new_definition | |
`functions fms = UNIONS {functions_form f | f IN fms}`;; | |
let predicates = new_definition | |
`predicates fms = UNIONS {predicates_form f | f IN fms}`;; | |
let language = new_definition | |
`language fms = functions fms, predicates fms`;; | |
let FUNCTIONS_SING = prove | |
(`functions {p} = functions_form p`, | |
REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; | |
functions; IN_ELIM_THM; IN_UNIONS] THEN | |
MESON_TAC[]);; | |
let LANGUAGE_1 = prove | |
(`language {p} = functions_form p,predicates_form p`, | |
REWRITE_TAC[language; functions; predicates; PAIR_EQ] THEN | |
CONJ_TAC THEN ONCE_REWRITE_TAC[EXTENSION] THEN | |
REWRITE_TAC[IN_UNIONS; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Selecting the bits of an interpretation: domain, functions and relations. *) | |
(* ------------------------------------------------------------------------- *) | |
let Dom_DEF = new_definition | |
`Dom (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = D`;; | |
let Fun_DEF = new_definition | |
`Fun (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Funs`;; | |
let Pred_DEF = new_definition | |
`Pred (D:A->bool,Funs:num->(A list)->A,Preds:num->(A list)->bool) = Preds`;; | |
let MODEL_EQ = prove | |
(`(M = M') <=> (Dom M = Dom M') /\ (Fun M = Fun M') /\ (Pred M = Pred M')`, | |
let detrip = prove(`p = FST(p),FST(SND p),SND(SND p)`,REWRITE_TAC[]) in | |
ONCE_REWRITE_TAC[detrip] THEN PURE_REWRITE_TAC[PAIR_EQ; Dom_DEF; Fun_DEF; Pred_DEF] THEN | |
REWRITE_TAC[]);; | |
let MODEL_DECOMP = prove | |
(`M = Dom M,Fun M,Pred M`, | |
REWRITE_TAC[MODEL_EQ] THEN REWRITE_TAC[Dom_DEF; Fun_DEF; Pred_DEF]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Free variables and bound variables. *) | |
(* ------------------------------------------------------------------------- *) | |
let FVT = new_recursive_definition term_RECURSION | |
`(!x. FVT (V x) = {x}) /\ | |
(!f l. FVT (Fn f l) = LIST_UNION (MAP FVT l))`;; | |
let FV = new_recursive_definition form_RECURSION | |
`(FV False = {}) /\ | |
(!a l. FV (Atom a l) = LIST_UNION (MAP FVT l)) /\ | |
(!p q. FV (p --> q) = FV p UNION FV q) /\ | |
(!x p. FV (!! x p) = FV p DELETE x)`;; | |
let BV = new_recursive_definition form_RECURSION | |
`(BV False = {}) /\ | |
(!a l. BV (Atom a l) = {}) /\ | |
(!p q. BV (p --> q) = BV p UNION BV q) /\ | |
(!x p. BV (!! x p) = x INSERT BV p)`;; | |
let FVT_FINITE = prove | |
(`!t. FINITE(FVT t)`, | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[FVT; FINITE_RULES; FINITE_INSERT] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN | |
ASM_REWRITE_TAC[ALL_MAP; o_DEF]);; | |
let FV_FINITE = prove | |
(`!p. FINITE(FV p)`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
ASM_REWRITE_TAC[FV; FINITE_RULES; FINITE_UNION; FINITE_DELETE] THEN | |
GEN_TAC THEN MATCH_MP_TAC LIST_UNION_FINITE THEN | |
REWRITE_TAC[ALL_MAP; FVT_FINITE; o_DEF; ALL_T]);; | |
let BV_FINITE = prove | |
(`!p. FINITE(BV p)`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
ASM_REWRITE_TAC[BV; FINITE_RULES; FINITE_UNION; FINITE_INSERT]);; | |
let FV_EXISTS = prove | |
(`FV(??x p) = FV(p) DELETE x`, | |
REWRITE_TAC[Exists_DEF; Not_DEF; FV] THEN SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Modifier for a valuation. *) | |
(* ------------------------------------------------------------------------- *) | |
let valmod = new_definition | |
`valmod (x,a) v = \y. if y = x then a else v y`;; | |
let VALMOD_CLAUSES = prove | |
(`(!v a k. valmod (k,a) v k = a) /\ | |
(!v a k x. ~(x = k) ==> (valmod (k,a) v x = v x))`, | |
REWRITE_TAC[valmod] THEN REPEAT GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_MESON_TAC[]);; | |
let VALMOD_TRIV = prove | |
(`!v x. valmod (x,v x) v = v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN | |
REPEAT GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let VALMOD_VALMOD = prove | |
(`!v a x b. valmod (x,a) (valmod (x,b) v) = valmod (x,a) v`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[valmod] THEN | |
REPEAT COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]));; | |
(* ------------------------------------------------------------------------- *) | |
(* Acceptability of a valuation. *) | |
(* ------------------------------------------------------------------------- *) | |
let valuation = new_definition | |
`valuation(M) v <=> !x:num. v(x) IN Dom(M)`;; | |
let VALUATION_VALMOD = prove | |
(`!M a v. valuation(M) v /\ a IN Dom(M) ==> valuation(M) (valmod (x,a) v)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[valuation; valmod] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
let VALUATION_IS_VALMOD = prove | |
(`!v x. valmod(x,v x) v = v`, | |
REWRITE_TAC[valmod; FUN_EQ_THM] THEN REPEAT GEN_TAC THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Interpretation of terms and formulas w.r.t. interpretation and valuation. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("satisfies",(10,"right"));; | |
let termval = new_nested_recursive_definition term_RECURSION | |
`(!x. termval M v (V x) = v(x)) /\ | |
(!f l. termval M v (Fn f l) = Fun(M) f (MAP (termval M v) l))`;; | |
let holds = new_recursive_definition form_RECURSION | |
`(holds M v False <=> F) /\ | |
(!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\ | |
(!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\ | |
(!x p. holds M v (!! x p) <=> | |
!a. a IN Dom(M) ==> holds M (valmod (x,a) v) p)`;; | |
let hold = new_definition | |
`hold M v fms <=> !p. p IN fms ==> holds M v p`;; | |
let satisfies = new_definition | |
`M satisfies fms <=> !v p. valuation(M) v /\ p IN fms ==> holds M v p`;; | |
let SATISFIES_1 = prove | |
(`M satisfies {p} <=> !v. valuation(M) v ==> holds M v p`, | |
REWRITE_TAC[satisfies; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Clauses for derived constructs. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOLDS = prove | |
(`(holds M v False <=> F) /\ | |
(holds M v True <=> T) /\ | |
(!a l. holds M v (Atom a l) <=> Pred(M) a (MAP (termval M v) l)) /\ | |
(!p. holds M v (Not p) <=> ~(holds M v p)) /\ | |
(!p q. holds M v (p || q) <=> holds M v p \/ holds M v q) /\ | |
(!p q. holds M v (p && q) <=> holds M v p /\ holds M v q) /\ | |
(!p q. holds M v (p --> q) <=> holds M v p ==> holds M v q) /\ | |
(!p q. holds M v (p <-> q) <=> (holds M v p = holds M v q)) /\ | |
(!x p. holds M v (!! x p) <=> | |
!a. a IN Dom(M) ==> holds M (valmod (x,a) v) p) /\ | |
(!x p. holds M v (?? x p) <=> | |
?a. a IN Dom(M) /\ holds M (valmod (x,a) v) p)`, | |
REWRITE_TAC[Not_DEF; True_DEF; Or_DEF; And_DEF; Iff_DEF; Exists_DEF; holds] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Prove that only values given to free variables by the valuation matter. *) | |
(* ------------------------------------------------------------------------- *) | |
let TERMVAL_VALUATION = prove | |
(`!M t (v:num->A) v'. | |
(!x. x IN (FVT t) ==> (v'(x) = v(x))) | |
==> (termval M v' t = termval M v t)`, | |
let lemma = prove | |
(`!l t x. x IN FVT t /\ MEM t l | |
==> x IN LIST_UNION (MAP FVT l)`, | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION; MEM] THEN | |
ASM_MESON_TAC[]) in | |
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[FVT; termval] THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]; | |
GEN_TAC THEN LIST_INDUCT_TAC THEN | |
REWRITE_TAC[ALL; LIST_UNION; MAP; IN_UNION] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[CONS_11] THEN | |
CONJ_TAC THENL | |
[FIRST_ASSUM MATCH_MP_TAC THEN REPEAT STRIP_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC MAP_EQ THEN MATCH_MP_TAC ALL_IMP THEN | |
EXISTS_TAC `\t. !(v:num->A) v'. | |
(!x. x IN FVT t ==> (v' x = v x)) | |
==> (termval M v' t :A = termval M v t)` THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[lemma]]]);; | |
let HOLDS_VALUATION = prove | |
(`!M p (v:num->A) v'. | |
(!x. x IN (FV p) ==> (v'(x) = v(x))) | |
==> (holds M v' p <=> holds M v p)`, | |
GEN_TAC THEN MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[FV; HOLDS; IN_UNION; IN_DELETE] THEN | |
REPEAT CONJ_TAC THENL | |
[GEN_TAC THEN X_GEN_TAC `l:term list` THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN | |
ASM_MESON_TAC[TERMVAL_VALUATION]; | |
MESON_TAC[]; | |
X_GEN_TAC `p:num` THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
X_GEN_TAC `x:num` THEN ASM_CASES_TAC `x:num = p` THEN | |
ASM_REWRITE_TAC[valmod] THEN ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Note that these are delicate given the fixed type of interpretations. *) | |
(* ------------------------------------------------------------------------- *) | |
let satisfiable = new_definition | |
`satisfiable (U:A->bool) fms <=> | |
?M:(A->bool)#(num->A list->A)#(num->A list->bool). | |
~(Dom M = {}) /\ M satisfies fms`;; | |
let valid = new_definition | |
`valid (U:A->bool) fms <=> | |
!M:(A->bool)#(num->A list->A)#(num->A list->bool). | |
M satisfies fms`;; | |
let entails = new_definition | |
`entails (U:A->bool) A p <=> | |
!(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v. | |
hold M v A ==> holds M v p`;; | |
let equivalent = new_definition | |
`equivalent (U:A->bool) p q <=> | |
!(M:(A->bool)#(num->A list->A)#(num->A list->bool)) v. | |
holds M v p <=> holds M v q`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Quality of being an interpretation for a language. *) | |
(* ------------------------------------------------------------------------- *) | |
let interpretation = new_definition | |
`interpretation (fns:(num#num)->bool,preds:(num#num)->bool) M <=> | |
!f l. (f,LENGTH l) IN fns /\ ALL (\x. x IN Dom(M)) l | |
==> (Fun(M) f l) IN Dom(M)`;; | |
let INTERPRETATION_TERMVAL = prove | |
(`!any:num#num->bool M v t. | |
interpretation (functions_term t,any) M /\ | |
valuation(M) v | |
==> termval M v t IN Dom(M)`, | |
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[interpretation] THEN | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval] THEN CONJ_TAC THENL | |
[REWRITE_TAC[valuation] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]; | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[LENGTH_MAP; functions_term; IN_INSERT] THEN | |
REWRITE_TAC[ALL_MAP] THEN REWRITE_TAC[o_DEF] THEN | |
MATCH_MP_TAC ALL_IMP THEN | |
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN | |
ASM_REWRITE_TAC[] THEN GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MATCH_MP_TAC) THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[] THEN REWRITE_TAC[functions_term] THEN | |
REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN | |
UNDISCH_TAC `MEM (x:term) l` THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN | |
REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[]]);; | |
let INTERPRETATION_SUBLANGUAGE = prove | |
(`!M funs1 funs2 preds1 preds2. | |
funs2 SUBSET funs1 | |
==> interpretation (funs1,preds1) M | |
==> interpretation (funs2,preds2) M`, | |
GEN_TAC THEN REWRITE_TAC[interpretation; SUBSET] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Substitution in terms. *) | |
(* ------------------------------------------------------------------------- *) | |
let termsubst = new_nested_recursive_definition term_RECURSION | |
`(!x. termsubst v (V x) = v(x)) /\ | |
(!f l. termsubst v (Fn f l) = Fn f (MAP (termsubst v) l))`;; | |
let TERMSUBST_TERMVAL = prove | |
(`!M. (Fun(M) = Fn) ==> !v t. termsubst v t = termval M v t`, | |
GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
ASM_REWRITE_TAC[termsubst; termval] THEN REPEAT STRIP_TAC THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[]);; | |
let TERMVAL_TRIV = prove | |
(`!M. (Fun(M) = Fn) ==> !t. termval M V t = t`, | |
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
ASM_REWRITE_TAC[termval] THEN REPEAT STRIP_TAC THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; | |
let TERMVAL_TERMSUBST = prove | |
(`!M v i t. termval M v (termsubst i t) = termval M (termval M v o i) t`, | |
GEN_TAC THEN GEN_TAC THEN GEN_TAC THEN | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; termsubst; o_THM] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN | |
MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);; | |
let TERMSUBST_TERMSUBST = prove | |
(`!i j t. termsubst j (termsubst i t) = termsubst (termsubst j o i) t`, | |
GEN_TAC THEN GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termsubst; o_THM] THEN REWRITE_TAC[GSYM MAP_o] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC MAP_EQ THEN ASM_REWRITE_TAC[o_THM]);; | |
let TERMSUBST_TRIV = prove | |
(`!t. termsubst V t = t`, | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termsubst] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC MAP_EQ_DEGEN THEN ASM_REWRITE_TAC[]);; | |
let TERMSUBST_VALUATION = prove | |
(`!t v v'. (!x. x IN (FVT t) ==> (v'(x) = v(x))) | |
==> (termsubst v' t = termsubst v t)`, | |
MP_TAC(ISPEC `Dom(a,Fn,b),Fn,Pred(a,Fn,b)` TERMSUBST_TERMVAL) THEN | |
REWRITE_TAC[Fun_DEF] THEN DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN | |
REWRITE_TAC[TERMVAL_VALUATION]);; | |
let TERMSUBST_FVT = prove | |
(`!t i. FVT(termsubst i t) = {x | ?y. y IN FVT(t) /\ x IN FVT(i y)}`, | |
let lemma1 = prove | |
(`{x | ?y. y IN (s UNION t) /\ P x y} = | |
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, | |
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in | |
MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[FVT; termsubst] THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[IN_INSERT; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN | |
MESON_TAC[]; | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL | |
[REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; SUBSET; IN_ELIM_THM]; ALL_TAC] THEN | |
REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN | |
REWRITE_TAC[lemma1] THEN BINOP_TAC THEN ASM_REWRITE_TAC[] THEN | |
SPEC_TAC(`i:num->term`,`i:num->term`) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Choice of a new variable. *) | |
(* ------------------------------------------------------------------------- *) | |
let MAX_SYM = prove | |
(`!x y. MAX x y = MAX y x`, | |
ARITH_TAC);; | |
let MAX_ASSOC = prove | |
(`!x y z. MAX x (MAX y z) = MAX (MAX x y) z`, | |
ARITH_TAC);; | |
let SETMAX = new_definition | |
`SETMAX s = ITSET MAX s 0`;; | |
let VARIANT = new_definition | |
`VARIANT s = SETMAX s + 1`;; | |
let SETMAX_LEMMA = prove | |
(`(SETMAX {} = 0) /\ | |
(!x s. FINITE s ==> | |
(SETMAX (x INSERT s) = if x IN s then SETMAX s | |
else MAX x (SETMAX s)))`, | |
REWRITE_TAC[SETMAX] THEN MATCH_MP_TAC FINITE_RECURSION THEN | |
REWRITE_TAC[MAX] THEN REPEAT GEN_TAC THEN | |
MAP_EVERY ASM_CASES_TAC | |
[`x:num <= s`; `y:num <= s`; `x:num <= y`; `y <= x`] THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[LE_CASES; LE_TRANS; LE_ANTISYM]);; | |
let SETMAX_MEMBER = prove | |
(`!s. FINITE s ==> !x. x IN s ==> x <= SETMAX s`, | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[NOT_IN_EMPTY; IN_INSERT] THEN | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
ASM_SIMP_TAC [SETMAX_LEMMA] THEN | |
ASM_REWRITE_TAC[MAX] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[LE_REFL] THEN | |
ASM_MESON_TAC[LE_CASES; LE_TRANS]);; | |
let SETMAX_THM = prove | |
(`(SETMAX {} = 0) /\ | |
(!x s. FINITE s ==> | |
(SETMAX (x INSERT s) = MAX x (SETMAX s)))`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC [SETMAX_LEMMA] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[MAX] THEN | |
COND_CASES_TAC THEN ASM_MESON_TAC[SETMAX_MEMBER]);; | |
let SETMAX_UNION = prove | |
(`!s t. FINITE(s UNION t) | |
==> (SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))`, | |
let lemma = prove(`(x INSERT s) UNION t = x INSERT (s UNION t)`,SET_TAC[]) in | |
SUBGOAL_THEN `!t. FINITE(t) ==> !s. FINITE(s) ==> | |
(SETMAX(s UNION t) = MAX (SETMAX s) (SETMAX t))` | |
(fun th -> MESON_TAC[th; FINITE_UNION]) THEN | |
GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[UNION_EMPTY; SETMAX_THM] THEN CONJ_TAC THENL | |
[REWRITE_TAC[MAX; LE_0]; ALL_TAC] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[lemma] THEN | |
ASM_SIMP_TAC [SETMAX_THM; FINITE_UNION] THEN | |
REWRITE_TAC[MAX_ASSOC]);; | |
let VARIANT_FINITE = prove | |
(`!s:num->bool. FINITE(s) ==> ~(VARIANT(s) IN s)`, | |
REWRITE_TAC[VARIANT] THEN | |
MESON_TAC[SETMAX_MEMBER; ARITH_RULE `~(x + 1 <= x)`]);; | |
let VARIANT_THM = prove | |
(`!p. ~(VARIANT(FV p) IN FV(p))`, | |
GEN_TAC THEN MATCH_MP_TAC VARIANT_FINITE THEN REWRITE_TAC[FV_FINITE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Substitution in formulas. *) | |
(* ------------------------------------------------------------------------- *) | |
let formsubst = new_recursive_definition form_RECURSION | |
`(formsubst v False = False) /\ | |
(formsubst v (Atom p l) = Atom p (MAP (termsubst v) l)) /\ | |
(formsubst v (q --> r) = (formsubst v q --> formsubst v r)) /\ | |
(formsubst v (!!x q) = | |
let v' = valmod (x,V x) v in | |
let z = if ?y. y IN FV(!!x q) /\ x IN FVT(v'(y)) | |
then VARIANT(FV(formsubst v' q)) else x in | |
!!z (formsubst (valmod (x,V(z)) v) q))`;; | |
let FORMSUBST_TRIV = prove | |
(`!p. formsubst V p = p`, | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[formsubst] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ_DEGEN THEN | |
REWRITE_TAC[TERMSUBST_TRIV; ALL_T]; | |
REWRITE_TAC[VALMOD_TRIV; LET_DEF; LET_END_DEF] THEN | |
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; FV; IN_DELETE] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; EQ_SYM_EQ; TAUT `~(~p /\ p)`] THEN | |
ASM_REWRITE_TAC[VALMOD_TRIV]]);; | |
let FORMSUBST_VALUATION = prove | |
(`!p v v'. (!x. x IN (FV p) ==> (v'(x) = v(x))) | |
==> (formsubst v' p = formsubst v p)`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[FV; formsubst; IN_UNION; IN_DELETE] THEN | |
REPEAT CONJ_TAC THENL | |
[GEN_TAC THEN X_GEN_TAC `l:term list` THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN POP_ASSUM MP_TAC THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION; IN_UNION] THEN | |
ASM_MESON_TAC[TERMSUBST_VALUATION]; | |
MESON_TAC[]; | |
X_GEN_TAC `p:num` THEN REPEAT STRIP_TAC THEN | |
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN | |
SUBGOAL_THEN | |
`(?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v' y)) <=> | |
(?y. (y IN FV a1 /\ ~(y = p)) /\ p IN FVT (valmod (p,V p) v y))` | |
SUBST1_TAC THENL | |
[AP_TERM_TAC THEN ABS_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_THEN(ANTE_RES_THEN ASSUME_TAC) THEN | |
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THENL | |
[BINOP_TAC THENL | |
[AP_TERM_TAC THEN AP_TERM_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
GEN_TAC THEN REWRITE_TAC[valmod] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
X_GEN_TAC `x:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[valmod] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
X_GEN_TAC `y:num` THEN REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]]; | |
AP_TERM_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
GEN_TAC THEN REWRITE_TAC[valmod] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]]]);; | |
let FORMSUBST_FV = prove | |
(`!p i. FV(formsubst i p) = {x | ?y. y IN FV(p) /\ x IN FVT(i y)}`, | |
let lemma1 = prove | |
(`{x | ?y. y IN (s UNION t) /\ P x y} = | |
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, | |
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; FV] THEN REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM]; | |
REWRITE_TAC[GSYM MAP_o; o_DEF; TERMSUBST_FVT] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN | |
MESON_TAC[]; | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; NOT_IN_EMPTY; IN_UNION] THEN | |
MESON_TAC[]; | |
REPEAT STRIP_TAC THEN REWRITE_TAC[LET_DEF; LET_END_DEF] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[FV; VALMOD_VALMOD] THENL | |
[MP_TAC(SPEC `formsubst (valmod (a0,V a0) i) a1` VARIANT_THM) THEN | |
ABBREV_TAC `a0' = VARIANT (FV (formsubst (valmod (a0,V a0) i) a1))`; | |
ALL_TAC] THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
REPEAT STRIP_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
DISCH_THEN(MP_TAC o SPEC `y:num`) THEN | |
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY; IN_DELETE] THEN | |
MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Important lemmas about substitution and renaming. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOLDS_FORMSUBST = prove | |
(`!p i v. holds M (v:num->A) (formsubst i p) <=> | |
holds M (termval M v o i) p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
ASM_REWRITE_TAC[formsubst; holds] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN MATCH_MP_TAC MAP_EQ THEN | |
REWRITE_TAC[o_THM; TERMVAL_TERMSUBST; ALL_T]; ALL_TAC] THEN | |
REWRITE_TAC[LET_DEF; LET_END_DEF; HOLDS] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a ==> b <=> a ==> c)`) THEN | |
DISCH_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[VALMOD_VALMOD] THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
X_GEN_TAC `x:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[o_THM; valmod] THEN | |
(COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[GSYM valmod] THENL | |
[REWRITE_TAC[termval; valmod]; ALL_TAC]) THEN | |
MATCH_MP_TAC TERMVAL_VALUATION THEN | |
X_GEN_TAC `y:num` THEN DISCH_TAC THEN | |
ONCE_REWRITE_TAC[valmod] THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THENL | |
[FIRST_X_ASSUM(ASSUME_TAC o SYM) THEN | |
SUBGOAL_THEN `~(y IN FV(formsubst (valmod (a0,V a0) i) a1))` | |
MP_TAC THENL [EXPAND_TAC "y" THEN REWRITE_TAC[VARIANT_THM]; ALL_TAC] THEN | |
REWRITE_TAC[FORMSUBST_FV] THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN | |
ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN ASM_MESON_TAC[]; | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [NOT_EXISTS_THM]) THEN | |
DISCH_THEN(MP_TAC o SPEC `x:num`) THEN | |
ASM_REWRITE_TAC[FV; IN_DELETE] THEN | |
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[]]);; | |
let HOLDS_FORMSUBST1 = prove | |
(`!x t p v. holds M (v:num->A) (formsubst (valmod (x,t) V) p) <=> | |
holds M (valmod (x,termval M v t) v) p`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST] THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
X_GEN_TAC `y:num` THEN DISCH_TAC THEN | |
REWRITE_TAC[valmod; o_THM] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[termval]);; | |
let HOLDS_RENAME = prove | |
(`!x y p v. holds M (v:num->A) (formsubst (valmod (x,V y) V) p) <=> | |
holds M (valmod (x,v(y)) v) p`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[HOLDS_FORMSUBST1] THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN REWRITE_TAC[termval]);; | |
let HOLDS_ALPHA_FORALL = prove | |
(`!x y p v. ~(y IN FV(!!x p)) | |
==> (holds M v (!!y (formsubst (valmod (x,V y) V) p)) <=> | |
holds M (v:num->A) (!!x p))`, | |
REWRITE_TAC[FV; IN_DELETE] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC HOLDS_VALUATION THEN | |
GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);; | |
let HOLDS_ALPHA_EXISTS = prove | |
(`!x y p v. ~(y IN FV(??x p)) | |
==> (holds M v (??y (formsubst (valmod (x,V y) V) p)) <=> | |
holds M (v:num->A) (??x p))`, | |
REWRITE_TAC[FV; Exists_DEF; Not_DEF; IN_DELETE; UNION_EMPTY] THEN | |
REPEAT STRIP_TAC THEN REWRITE_TAC[HOLDS; HOLDS_FORMSUBST] THEN | |
AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC HOLDS_VALUATION THEN | |
GEN_TAC THEN REWRITE_TAC[valmod; termval; o_THM] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[valmod; termval] THEN | |
COND_CASES_TAC THEN REWRITE_TAC[] THEN ASM_MESON_TAC[]);; | |
let FORMSUBST_RENAME = prove | |
(`!p x y. FV(formsubst (valmod (x,V y) V) p) DELETE y = | |
(FV(p) DELETE x) DELETE y`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[FORMSUBST_FV] THEN | |
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM] THEN | |
GEN_TAC THEN REWRITE_TAC[valmod] THEN | |
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN | |
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Analogous theorems for the logical language. *) | |
(* ------------------------------------------------------------------------- *) | |
let TERMSUBST_FUNCTIONS_TERM = prove | |
(`!t i. functions_term(termsubst i t) = | |
functions_term t UNION | |
{x | ?y. y IN FVT(t) /\ x IN functions_term(i y)}`, | |
let lemma1 = prove | |
(`{x | ?y. y IN (s UNION t) /\ P x y} = | |
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, | |
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in | |
let lemma2 = prove | |
(`(s = a UNION c) /\ (t = b UNION d) | |
==> (s UNION t = (a UNION b) UNION (c UNION d))`, | |
SET_TAC[]) in | |
MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[functions_term; termsubst; FVT] THEN CONJ_TAC THENL | |
[REWRITE_TAC[IN_INSERT; IN_UNION; IN_ELIM_THM; NOT_IN_EMPTY; EXTENSION] THEN | |
MESON_TAC[]; ALL_TAC] THEN | |
GEN_TAC THEN SUBGOAL_THEN | |
`!l. | |
ALL | |
(\t. !i. functions_term (termsubst i t) = | |
functions_term t UNION | |
{x | ?y. y IN FVT t /\ x IN functions_term (i y)}) l | |
==> (!i. LIST_UNION (MAP functions_term (MAP (termsubst i) l)) = | |
LIST_UNION (MAP functions_term l) UNION | |
{x | ?y. y IN LIST_UNION (MAP FVT l) /\ | |
x IN functions_term (i y)})` | |
ASSUME_TAC THENL | |
[ALL_TAC; | |
GEN_TAC THEN DISCH_THEN(ANTE_RES_THEN(fun th -> REWRITE_TAC[th])) THEN | |
REWRITE_TAC[EXTENSION; IN_INSERT; IN_UNION; LENGTH_MAP; DISJ_ACI]] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL | |
[REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; IN_INSERT; SUBSET; | |
IN_ELIM_THM; IN_UNION]; | |
ALL_TAC] THEN | |
REWRITE_TAC[ALL] THEN STRIP_TAC THEN X_GEN_TAC `i:num->term` THEN | |
REWRITE_TAC[lemma1; LENGTH; LENGTH_MAP] THEN | |
MATCH_MP_TAC lemma2 THEN ASM_REWRITE_TAC[] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[LENGTH_MAP]) THEN | |
SPEC_TAC(`i:num->term`,`i:num->term`) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]);; | |
let FORMSUBST_FUNCTIONS_FORM = prove | |
(`!p i. functions_form(formsubst i p) = | |
functions_form p UNION | |
{x | ?y. y IN FV(p) /\ x IN functions_term(i y)}`, | |
let lemma1 = prove | |
(`{x | ?y. y IN (s UNION t) /\ P x y} = | |
{x | ?y. y IN s /\ P x y} UNION {x | ?y. y IN t /\ P x y}`, | |
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN MESON_TAC[]) in | |
let lemma2 = prove | |
(`(a UNION b) UNION (c UNION d) = (a UNION c) UNION (b UNION d)`, | |
REWRITE_TAC[EXTENSION; IN_UNION; DISJ_ACI]) in | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[formsubst; functions_form; FV] THEN REPEAT CONJ_TAC THENL | |
[REPEAT STRIP_TAC THEN | |
REWRITE_TAC[EXTENSION; IN_UNION; NOT_IN_EMPTY; IN_ELIM_THM]; | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; LIST_UNION] THENL | |
[REWRITE_TAC[NOT_IN_EMPTY; EXTENSION; IN_UNION; IN_ELIM_THM]; | |
ALL_TAC] THEN | |
X_GEN_TAC `i:num->term` THEN REWRITE_TAC[lemma1] THEN | |
ONCE_REWRITE_TAC[lemma2] THEN | |
BINOP_TAC THEN ASM_REWRITE_TAC[TERMSUBST_FUNCTIONS_TERM]; | |
REWRITE_TAC[lemma1] THEN REPEAT STRIP_TAC THEN | |
ONCE_REWRITE_TAC[lemma2] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
REWRITE_TAC[functions_form; LET_DEF; LET_END_DEF; VALMOD_VALMOD] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[valmod] THEN | |
CONV_TAC(DEPTH_CONV COND_ELIM_CONV) THEN | |
REWRITE_TAC[functions_term; NOT_IN_EMPTY; IN_INSERT; IN_DELETE] THEN | |
REWRITE_TAC[FVT; IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN | |
GEN_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC THEN | |
ASM_CASES_TAC `y:num = a0` THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[]);; | |
let FORMSUBST_FUNCTIONS_FORM_1 = prove | |
(`!x t p. x IN FV(p) | |
==> (functions_form(formsubst (valmod (x,t) V) p) = | |
functions_form p UNION functions_term t)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[FORMSUBST_FUNCTIONS_FORM] THEN | |
REWRITE_TAC[valmod] THEN | |
CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN | |
REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* And of course we never change the predicates. *) | |
(* ------------------------------------------------------------------------- *) | |
let FORMSUBST_PREDICATES = prove | |
(`!p i. predicates_form(formsubst i p) = predicates_form p`, | |
MATCH_MP_TAC form_INDUCTION THEN | |
REWRITE_TAC[predicates_form; formsubst; LET_DEF; LET_END_DEF] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Special case of renaming preserves language. *) | |
(* ------------------------------------------------------------------------- *) | |
let FORMSUBST_LANGUAGE_RENAME = prove | |
(`language {(formsubst (valmod (x,V y) V) p)} = language {p}`, | |
REWRITE_TAC[LANGUAGE_1; FORMSUBST_PREDICATES; FORMSUBST_FUNCTIONS_FORM] THEN | |
REWRITE_TAC[PAIR_EQ] THEN | |
REWRITE_TAC[EXTENSION; IN_UNION; IN_ELIM_THM] THEN | |
REWRITE_TAC[valmod] THEN CONV_TAC(ONCE_DEPTH_CONV COND_ELIM_CONV) THEN | |
REWRITE_TAC[functions_term; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[TAUT `~p /\ p <=> F`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Invariance under change of language. *) | |
(* ------------------------------------------------------------------------- *) | |
let TERMVAL_FUNCTIONS = prove | |
(`!M t. (!f zs. (f,LENGTH zs) IN functions_term t | |
==> (Fun(M) f zs = Fun(M') f zs)) | |
==> !v:num->A. termval M v t = termval M' v t`, | |
GEN_TAC THEN MATCH_MP_TAC term_INDUCT THEN | |
REWRITE_TAC[termval; functions_term] THEN | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `MAP (termval M (v:num->A)) l = | |
MAP (termval M' v) l` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC MAP_EQ THEN | |
MATCH_MP_TAC ALL_IMP THEN | |
FIRST_ASSUM(EXISTS_TAC o lhand o concl) THEN | |
ASM_REWRITE_TAC[] THEN | |
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(fun th -> SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
MATCH_MP_TAC th) THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[IN_INSERT] THEN DISJ2_TAC THEN | |
UNDISCH_TAC `MEM (x:term) l` THEN | |
SPEC_TAC(`l:term list`,`l:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MEM] THEN | |
REWRITE_TAC[LIST_UNION; MAP; IN_UNION] THEN ASM_MESON_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[IN_INSERT] THEN | |
REWRITE_TAC[LENGTH_MAP]]);; | |
let HOLDS_FUNCTIONS = prove | |
(`!M M' p. (Dom(M) = Dom(M')) /\ | |
(!P zs. Pred(M) P zs = Pred(M') P zs) /\ | |
(!f zs. (f,LENGTH zs) IN functions_form p | |
==> (Fun(M) f zs = Fun(M') f zs)) | |
==> !v:num->A. holds M v p <=> holds M' v p`, | |
GEN_TAC THEN GEN_TAC THEN | |
REWRITE_TAC[IMP_CONJ] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[AP_TERM_TAC THEN | |
UNDISCH_TAC `!f zs. | |
f,LENGTH zs IN functions_form (Atom a0 a1) | |
==> (Fun M f zs :A = Fun M' f zs)` THEN | |
REWRITE_TAC[functions_form] THEN | |
SPEC_TAC(`a1:term list`,`a1:term list`) THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[LIST_UNION; MAP; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_UNION; CONS_11] THEN REPEAT STRIP_TAC THENL | |
[SPEC_TAC(`v:num->A`,`v:num->A`) THEN MATCH_MP_TAC TERMVAL_FUNCTIONS THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]; | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; | |
BINOP_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[functions_form; IN_UNION]; | |
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[functions_form]]);; | |
let HOLDS_PREDICATES = prove | |
(`!M M' p. (Dom(M) = Dom(M')) /\ | |
(!f zs. Fun(M) f zs = Fun(M') f zs) /\ | |
(!P zs. (P,LENGTH zs) IN predicates_form p | |
==> (Pred(M) P zs = Pred(M') P zs)) | |
==> !v:num->A. holds M v p <=> holds M' v p`, | |
GEN_TAC THEN GEN_TAC THEN | |
REWRITE_TAC[IMP_CONJ] THEN | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN DISCH_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds] THEN | |
REWRITE_TAC[predicates_form; IN_INSERT; NOT_IN_EMPTY; IN_UNION] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THENL | |
[SUBGOAL_THEN | |
`MAP (termval M' (v:num->A)) a1 = MAP (termval M (v:num->A)) a1` | |
SUBST1_TAC THENL | |
[MATCH_MP_TAC MAP_EQ THEN | |
SUBGOAL_THEN `!x. termval M' (v:num->A) x = termval M (v:num->A) x` | |
(fun th -> REWRITE_TAC[th; ALL_T]) THEN | |
GEN_TAC THEN SPEC_TAC(`v:num->A`,`v:num->A`) THEN | |
MATCH_MP_TAC TERMVAL_FUNCTIONS THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN REWRITE_TAC[LENGTH_MAP]; | |
ASM_MESON_TAC[]; | |
AP_TERM_TAC THEN ABS_TAC THEN AP_TERM_TAC THEN | |
SPEC_TAC(`valmod (a0,a) (v:num->A)`,`v:num->A`) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Triviality of universal closure. *) | |
(* ------------------------------------------------------------------------- *) | |
let HOLDS_UCLOSE = prove | |
(`!M x p. (!v:num->A. valuation(M) v ==> holds M v (!!x p)) <=> | |
(Dom M = EMPTY) \/ !v. valuation(M) v ==> holds M v p`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[holds] THEN | |
ASM_CASES_TAC `Dom(M):A->bool = EMPTY` THEN | |
ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN | |
ASM_MESON_TAC[VALUATION_IS_VALMOD; VALUATION_VALMOD; valuation]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Sort of trivial upward LS theorem without equality. *) | |
(* ------------------------------------------------------------------------- *) | |
let MODEL_DUPLICATE = prove | |
(`!M fns preds D. | |
interpretation(fns,preds) M /\ | |
(Dom(M) SUBSET D) /\ | |
~(Dom(M):A->bool = {}) | |
==> ?M'. interpretation(fns,preds) M' /\ | |
(Dom(M') = D) /\ | |
!s. functions s SUBSET fns /\ | |
predicates s SUBSET preds | |
==> (M' satisfies s <=> M satisfies s)`, | |
REPEAT STRIP_TAC THEN | |
ABBREV_TAC `i = \x. if x IN Dom(M) then x else @z:A. z IN Dom(M)` THEN | |
ABBREV_TAC `M' = (D:A->bool, | |
(\f args. Fun(M) f (MAP (i:A->A) args)), | |
(\P args. Pred(M) P (MAP i args)))` THEN | |
W(EXISTS_TAC o fst o dest_exists o snd) THEN | |
SUBGOAL_THEN `!x. (i:A->A) x IN Dom(M)` ASSUME_TAC THENL | |
[X_GEN_TAC `x:A` THEN EXPAND_TAC "i" THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC SELECT_CONV THEN | |
UNDISCH_TAC `~(Dom(M) = ({}:A->bool))` THEN | |
REWRITE_TAC[EXTENSION; NOT_IN_EMPTY; NOT_FORALL_THM]; ALL_TAC] THEN | |
MATCH_MP_TAC(TAUT `b /\ (b ==> a /\ c) ==> a /\ b /\ c`) THEN | |
CONJ_TAC THENL [EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF]; ALL_TAC] THEN | |
DISCH_TAC THEN CONJ_TAC THENL | |
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN | |
ASM_REWRITE_TAC[interpretation] THEN | |
EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM(MATCH_MP_TAC o REWRITE_RULE[SUBSET]) THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[LENGTH_MAP] THEN | |
UNDISCH_TAC `ALL (\x:A. x IN D) l` THEN | |
REWRITE_TAC[ALL_MAP] THEN MATCH_MP_TAC MONO_ALL THEN | |
ASM_REWRITE_TAC[o_THM]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!t. functions_term t SUBSET fns | |
==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC term_INDUCT THEN REWRITE_TAC[termval; o_THM] THEN | |
EXPAND_TAC "M'" THEN REWRITE_TAC[Fun_DEF] THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[GSYM MAP_o] THEN | |
MAP_EVERY X_GEN_TAC [`P:num`; `args:term list`] THEN | |
REWRITE_TAC[functions_term; SUBSET; IN_LIST_UNION; IN_INSERT] THEN | |
REWRITE_TAC[GSYM EX_MEM; GSYM ALL_MEM] THEN DISCH_TAC THEN DISCH_TAC THEN | |
SUBGOAL_THEN `(P:num,LENGTH(args:term list)) IN fns` ASSUME_TAC THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN `!t. MEM t args ==> functions_term t SUBSET fns` | |
ASSUME_TAC THENL | |
[REWRITE_TAC[SUBSET] THEN ASM_MESON_TAC[MEM_MAP]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!t. MEM t args | |
==> !v:num->A. (i:A->A) (termval M' v t) = termval M (i o v) t` | |
ASSUME_TAC THENL | |
[ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN | |
X_GEN_TAC `v:num->A` THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args)` THEN | |
CONJ_TAC THENL | |
[FIRST_ASSUM(fun th -> | |
GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV) [SYM th]) THEN | |
SUBGOAL_THEN `Fun M P (MAP ((i:A->A) o termval M' (v:num->A)) args) IN | |
Dom(M)` | |
(fun th -> REWRITE_TAC[th]) THEN | |
FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [interpretation]) THEN | |
ASM_REWRITE_TAC[LENGTH_MAP] THEN REWRITE_TAC[GSYM ALL_MEM] THEN | |
REWRITE_TAC[MEM_MAP; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC MAP_EQ THEN | |
REWRITE_TAC[GSYM ALL_MEM; o_THM] THEN ASM_MESON_TAC[]; ALL_TAC] THEN | |
SUBGOAL_THEN | |
`!p. functions_form p SUBSET fns | |
==> !v:num->A. holds M' v p <=> holds M ((i:A->A) o v) p` | |
ASSUME_TAC THENL | |
[MATCH_MP_TAC form_INDUCTION THEN REWRITE_TAC[holds; functions_form] THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[SUBSET; IN_LIST_UNION; GSYM EX_MEM; MEM_MAP] THEN | |
REPEAT STRIP_TAC THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Pred_DEF] THEN | |
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM MAP_o] THEN | |
MATCH_MP_TAC MAP_EQ THEN REWRITE_TAC[GSYM ALL_MEM] THEN | |
REWRITE_TAC[o_THM] THEN ASM_MESON_TAC[SUBSET]; | |
REWRITE_TAC[SUBSET; IN_UNION] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN | |
DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN | |
X_GEN_TAC `v:num->A` THEN | |
SUBGOAL_THEN | |
`!a. i o valmod (x,a) (v:num->A) = valmod (x,i(a)) ((i:A->A) o v)` | |
(fun th -> REWRITE_TAC[th]) | |
THENL | |
[REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[valmod] THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[o_THM]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `!x:A. x IN Dom(M) ==> (i x = x)` MP_TAC THENL | |
[EXPAND_TAC "i" THEN SIMP_TAC[]; ALL_TAC] THEN | |
ASM_MESON_TAC[SUBSET]; ALL_TAC] THEN | |
X_GEN_TAC `s:form->bool` THEN STRIP_TAC THEN REWRITE_TAC[satisfies] THEN | |
REWRITE_TAC[valuation] THEN EXPAND_TAC "M'" THEN REWRITE_TAC[Dom_DEF] THEN | |
ASM_REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN AP_TERM_TAC THEN | |
GEN_REWRITE_TAC I [FUN_EQ_THM] THEN X_GEN_TAC `p:form` THEN | |
ASM_CASES_TAC `p:form IN s` THEN ASM_REWRITE_TAC[] THEN | |
SUBGOAL_THEN `functions_form p SUBSET fns` ASSUME_TAC THENL | |
[UNDISCH_TAC `functions s SUBSET fns` THEN | |
REWRITE_TAC[functions; SUBSET; IN_UNIONS; IN_ELIM_THM] THEN | |
ASM_MESON_TAC[]; ALL_TAC] THEN | |
ASM_SIMP_TAC[] THEN EQ_TAC THEN DISCH_TAC THEN X_GEN_TAC `v:num->A` THENL | |
[DISCH_TAC THEN SUBGOAL_THEN `v:num->A = i o v` SUBST1_TAC THENL | |
[EXPAND_TAC "i" THEN REWRITE_TAC[FUN_EQ_THM; o_THM] THEN | |
ASM_REWRITE_TAC[]; ALL_TAC] THEN ASM_MESON_TAC[SUBSET]; | |
DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[o_THM]]);; | |