Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* All you wanted to know about reflexive symmetric and transitive closures. *) | |
(* ========================================================================= *) | |
prioritize_num();; | |
let RULE_INDUCT_TAC = | |
MATCH_MP_TAC o DISCH_ALL o SPEC_ALL o UNDISCH o SPEC_ALL;; | |
(* ------------------------------------------------------------------------- *) | |
(* Little lemmas about equivalent forms of symmetry and transitivity. *) | |
(* ------------------------------------------------------------------------- *) | |
let SYM_ALT = prove | |
(`!R:A->A->bool. (!x y. R x y ==> R y x) <=> (!x y. R x y <=> R y x)`, | |
GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[EQ_TAC THEN DISCH_TAC THEN FIRST_ASSUM MATCH_MP_TAC; | |
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC I [th])] THEN | |
FIRST_ASSUM MATCH_ACCEPT_TAC);; | |
let TRANS_ALT = prove | |
(`!(R:A->A->bool) (S:A->A->bool) U. | |
(!x z. (?y. R x y /\ S y z) ==> U x z) <=> | |
(!x y z. R x y /\ S y z ==> U x z)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
EQ_TAC THEN DISCH_TAC THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reflexive closure *) | |
(* ------------------------------------------------------------------------- *) | |
let RC_RULES,RC_INDUCT,RC_CASES = new_inductive_definition | |
`(!x y. R x y ==> RC R x y) /\ | |
(!x:A. RC R x x)`;; | |
let RC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> RC R x y`, | |
REWRITE_TAC[RC_RULES]);; | |
let RC_REFL = prove | |
(`!(R:A->A->bool) x. RC R x x`, | |
REWRITE_TAC[RC_RULES]);; | |
let RC_EXPLICIT = prove | |
(`!(R:A->A->bool) x y. RC R x y <=> R x y \/ (x = y)`, | |
REWRITE_TAC[RC_CASES; EQ_SYM_EQ]);; | |
let RC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. RC R x y ==> RC S x y)`, | |
MESON_TAC[RC_CASES]);; | |
let RC_CLOSED = prove | |
(`!R:A->A->bool. (RC R = R) <=> !x. R x x`, | |
REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT] THEN MESON_TAC[]);; | |
let RC_IDEMP = prove | |
(`!R:A->A->bool. RC(RC R) = RC R`, | |
REWRITE_TAC[RC_CLOSED; RC_REFL]);; | |
let RC_SYM = prove | |
(`!R:A->A->bool. | |
(!x y. R x y ==> R y x) ==> (!x y. RC R x y ==> RC R y x)`, | |
MESON_TAC[RC_CASES]);; | |
let RC_TRANS = prove | |
(`!R:A->A->bool. | |
(!x y z. R x y /\ R y z ==> R x z) ==> | |
(!x y z. RC R x y /\ RC R y z ==> RC R x z)`, | |
REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Symmetric closure *) | |
(* ------------------------------------------------------------------------- *) | |
let SC_RULES,SC_INDUCT,SC_CASES = new_inductive_definition | |
`(!x y. R x y ==> SC R x y) /\ | |
(!x:A y. SC R x y ==> SC R y x)`;; | |
let SC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> SC R x y`, | |
REWRITE_TAC[SC_RULES]);; | |
let SC_SYM = prove | |
(`!(R:A->A->bool) x y. SC R x y ==> SC R y x`, | |
REWRITE_TAC[SC_RULES]);; | |
let SC_EXPLICIT = prove | |
(`!R:A->A->bool. SC(R) x y <=> R x y \/ R y x`, | |
GEN_TAC THEN EQ_TAC THENL | |
[RULE_INDUCT_TAC SC_INDUCT THEN MESON_TAC[]; MESON_TAC[SC_CASES]]);; | |
let SC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. SC R x y ==> SC S x y)`, | |
MESON_TAC[SC_EXPLICIT]);; | |
let SC_CLOSED = prove | |
(`!R:A->A->bool. (SC R = R) <=> !x y. R x y ==> R y x`, | |
REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT] THEN MESON_TAC[]);; | |
let SC_IDEMP = prove | |
(`!R:A->A->bool. SC(SC R) = SC R`, | |
REWRITE_TAC[SC_CLOSED; SC_SYM]);; | |
let SC_REFL = prove | |
(`!R:A->A->bool. (!x. R x x) ==> (!x. SC R x x)`, | |
MESON_TAC[SC_EXPLICIT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Transitive closure *) | |
(* ------------------------------------------------------------------------- *) | |
let TC_RULES,TC_INDUCT,TC_CASES = new_inductive_definition | |
`(!x y. R x y ==> TC R x y) /\ | |
(!(x:A) y z. TC R x y /\ TC R y z ==> TC R x z)`;; | |
let TC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> TC R x y`, | |
REWRITE_TAC[TC_RULES]);; | |
let TC_TRANS = prove | |
(`!(R:A->A->bool) x y z. TC R x y /\ TC R y z ==> TC R x z`, | |
REWRITE_TAC[TC_RULES]);; | |
let TC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. TC R x y ==> TC S x y)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[TC_RULES]);; | |
let TC_CLOSED = prove | |
(`!R:A->A->bool. (TC R = R) <=> !x y z. R x y /\ R y z ==> R x z`, | |
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN EQ_TAC THENL | |
[MESON_TAC[TC_RULES]; REPEAT STRIP_TAC] THEN | |
EQ_TAC THENL | |
[RULE_INDUCT_TAC TC_INDUCT THEN ASM_MESON_TAC[]; | |
MESON_TAC[TC_RULES]]);; | |
let TC_IDEMP = prove | |
(`!R:A->A->bool. TC(TC R) = TC R`, | |
REWRITE_TAC[TC_CLOSED; TC_TRANS]);; | |
let TC_REFL = prove | |
(`!R:A->A->bool. (!x. R x x) ==> (!x. TC R x x)`, | |
MESON_TAC[TC_INC]);; | |
let TC_SYM = prove | |
(`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. TC R x y ==> TC R y x)`, | |
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC TC_INDUCT THEN | |
ASM_MESON_TAC[TC_RULES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Commutativity properties of the three basic closure operations *) | |
(* ------------------------------------------------------------------------- *) | |
let RC_SC = prove | |
(`!R:A->A->bool. RC(SC R) = SC(RC R)`, | |
REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);; | |
let SC_RC = prove | |
(`!R:A->A->bool. SC(RC R) = RC(SC R)`, | |
REWRITE_TAC[RC_SC]);; | |
let RC_TC = prove | |
(`!R:A->A->bool. RC(TC R) = TC(RC R)`, | |
REWRITE_TAC[FUN_EQ_THM] THEN REPEAT GEN_TAC THEN EQ_TAC THENL | |
[RULE_INDUCT_TAC RC_INDUCT THEN MESON_TAC[TC_RULES; RC_RULES; TC_MONO]; | |
RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[RC_TRANS; TC_RULES; RC_MONO]]);; | |
let TC_RC = prove | |
(`!R:A->A->bool. TC(RC R) = RC(TC R)`, | |
REWRITE_TAC[RC_TC]);; | |
let TC_SC = prove | |
(`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`, | |
GEN_TAC THEN MATCH_MP_TAC SC_INDUCT THEN | |
MESON_TAC[TC_MONO; TC_SYM; SC_RULES]);; | |
let SC_TC = prove | |
(`!(R:A->A->bool) x y. SC(TC R) x y ==> TC(SC R) x y`, | |
REWRITE_TAC[TC_SC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Left and right variants of TC. *) | |
(* ------------------------------------------------------------------------- *) | |
let TC_TRANS_L = prove | |
(`!(R:A->A->bool) x y z. TC R x y /\ R y z ==> TC R x z`, | |
MESON_TAC[TC_RULES]);; | |
let TC_TRANS_R = prove | |
(`!(R:A->A->bool) x y z. R x y /\ TC R y z ==> TC R x z`, | |
MESON_TAC[TC_RULES]);; | |
let TC_CASES_L = prove | |
(`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. TC R x y /\ R y z)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);; | |
let TC_CASES_R = prove | |
(`!(R:A->A->bool) x z. TC R x z <=> R x z \/ (?y. R x y /\ TC R y z)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[TC_RULES]; MESON_TAC[TC_RULES]]);; | |
let TC_INDUCT_L = prove | |
(`!(R:A->A->bool) P. | |
(!x y. R x y ==> P x y) /\ | |
(!x y z. P x y /\ R y z ==> P x z) ==> | |
(!x y. TC R x y ==> P x y)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!y:A z. TC(R) y z ==> !x:A. P x y ==> P x z` MP_TAC THENL | |
[MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_R]]);; | |
let TC_INDUCT_R = prove | |
(`!(R:A->A->bool) P. | |
(!x y. R x y ==> P x y) /\ | |
(!x z. (?y. R x y /\ P y z) ==> P x z) ==> | |
(!x y. TC R x y ==> P x y)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
SUBGOAL_THEN `!x:A y. TC(R) x y ==> !z:A. P y z ==> P x z` MP_TAC THENL | |
[MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[]; ASM_MESON_TAC[TC_CASES_L]]);; | |
let WF_TC = prove | |
(`!R:A->A->bool. WF(TC R) <=> WF(R)`, | |
GEN_TAC THEN EQ_TAC THENL | |
[MESON_TAC[WF_SUBSET; TC_INC]; | |
REWRITE_TAC[WF] THEN DISCH_TAC THEN X_GEN_TAC `P:A->bool` THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\y:A. ?z. P z /\ TC(R) z y`) THEN | |
REWRITE_TAC[] THEN MESON_TAC[TC_CASES_L]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reflexive symmetric closure *) | |
(* ------------------------------------------------------------------------- *) | |
let RSC = new_definition | |
`RSC(R:A->A->bool) = RC(SC R)`;; | |
let RSC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> RSC R x y`, | |
REWRITE_TAC[RSC] THEN MESON_TAC[RC_INC; SC_INC]);; | |
let RSC_REFL = prove | |
(`!(R:A->A->bool) x. RSC R x x`, | |
REWRITE_TAC[RSC; RC_REFL]);; | |
let RSC_SYM = prove | |
(`!(R:A->A->bool) x y. RSC R x y ==> RSC R y x`, | |
REWRITE_TAC[RSC; RC_SC; SC_SYM]);; | |
let RSC_CASES = prove | |
(`!(R:A->A->bool) x y. RSC R x y <=> (x = y) \/ R x y \/ R y x`, | |
REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT; DISJ_ACI]);; | |
let RSC_INDUCT = prove | |
(`!(R:A->A->bool) P. | |
(!x y. R x y ==> P x y) /\ | |
(!x. P x x) /\ | |
(!x y. P x y ==> P y x) | |
==> !x y. RSC R x y ==> P x y`, | |
REWRITE_TAC[RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);; | |
let RSC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. RSC R x y ==> RSC S x y)`, | |
REWRITE_TAC[RSC] THEN MESON_TAC[SC_MONO; RC_MONO]);; | |
let RSC_CLOSED = prove | |
(`!R:A->A->bool. (RSC R = R) <=> (!x. R x x) /\ (!x y. R x y ==> R y x)`, | |
REWRITE_TAC[FUN_EQ_THM; RSC; RC_EXPLICIT; SC_EXPLICIT] THEN MESON_TAC[]);; | |
let RSC_IDEMP = prove | |
(`!R:A->A->bool. RSC(RSC R) = RSC R`, | |
REWRITE_TAC[RSC_CLOSED; RSC_REFL; RSC_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reflexive transitive closure *) | |
(* ------------------------------------------------------------------------- *) | |
let RTC = new_definition | |
`RTC(R:A->A->bool) = RC(TC R)`;; | |
let RTC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> RTC R x y`, | |
REWRITE_TAC[RTC] THEN MESON_TAC[RC_INC; TC_INC]);; | |
let RTC_REFL = prove | |
(`!(R:A->A->bool) x. RTC R x x`, | |
REWRITE_TAC[RTC; RC_REFL]);; | |
let RTC_TRANS = prove | |
(`!(R:A->A->bool) x y z. RTC R x y /\ RTC R y z ==> RTC R x z`, | |
REWRITE_TAC[RTC; RC_TC; TC_TRANS]);; | |
let RTC_RULES = prove | |
(`!(R:A->A->bool). | |
(!x y. R x y ==> RTC R x y) /\ | |
(!x. RTC R x x) /\ | |
(!x y z. RTC R x y /\ RTC R y z ==> RTC R x z)`, | |
REWRITE_TAC[RTC_INC; RTC_REFL; RTC_TRANS]);; | |
let RTC_TRANS_L = prove | |
(`!(R:A->A->bool) x y z. RTC R x y /\ R y z ==> RTC R x z`, | |
REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC]);; | |
let RTC_TRANS_R = prove | |
(`!(R:A->A->bool) x y z. R x y /\ RTC R y z ==> RTC R x z`, | |
REWRITE_TAC[RTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC]);; | |
let RTC_CASES = prove | |
(`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ RTC R y z`, | |
REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_TRANS]);; | |
let RTC_CASES_L = prove | |
(`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. RTC R x y /\ R y z`, | |
REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_L; TC_TRANS_L]);; | |
let RTC_CASES_R = prove | |
(`!(R:A->A->bool) x z. RTC R x z <=> (x = z) \/ ?y. R x y /\ RTC R y z`, | |
REWRITE_TAC[RTC; RC_EXPLICIT] THEN MESON_TAC[TC_CASES_R; TC_TRANS_R]);; | |
let RTC_INDUCT = prove | |
(`!(R:A->A->bool) P. | |
(!x y. R x y ==> P x y) /\ | |
(!x. P x x) /\ | |
(!x y z. P x y /\ P y z ==> P x z) | |
==> !x y. RTC R x y ==> P x y`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN | |
MATCH_MP_TAC TC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);; | |
let RTC_INDUCT_L = prove | |
(`!(R:A->A->bool) P. | |
(!x. P x x) /\ | |
(!x y z. P x y /\ R y z ==> P x z) | |
==> !x y. RTC R x y ==> P x y`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN | |
MATCH_MP_TAC TC_INDUCT_L THEN REWRITE_TAC[RC_EXPLICIT] THEN | |
ASM_MESON_TAC[]);; | |
let RTC_INDUCT_R = prove | |
(`!(R:A->A->bool) P. | |
(!x. P x x) /\ | |
(!x y z. R x y /\ P y z ==> P x z) | |
==> !x y. RTC R x y ==> P x y`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[RTC; RC_TC] THEN | |
MATCH_MP_TAC TC_INDUCT_R THEN REWRITE_TAC[RC_EXPLICIT] THEN | |
ASM_MESON_TAC[]);; | |
let RTC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. RTC R x y ==> RTC S x y)`, | |
REWRITE_TAC[RTC] THEN MESON_TAC[RC_MONO; TC_MONO]);; | |
let RTC_CLOSED = prove | |
(`!R:A->A->bool. (RTC R = R) <=> (!x. R x x) /\ | |
(!x y z. R x y /\ R y z ==> R x z)`, | |
REWRITE_TAC[FUN_EQ_THM; RTC; RC_EXPLICIT] THEN | |
MESON_TAC[TC_CLOSED; TC_RULES]);; | |
let RTC_IDEMP = prove | |
(`!R:A->A->bool. RTC(RTC R) = RTC R`, | |
REWRITE_TAC[RTC_CLOSED; RTC_REFL; RTC_TRANS]);; | |
let RTC_SYM = prove | |
(`!R:A->A->bool. (!x y. R x y ==> R y x) ==> (!x y. RTC R x y ==> RTC R y x)`, | |
REWRITE_TAC[RTC] THEN MESON_TAC[RC_SYM; TC_SYM]);; | |
let RTC_STUTTER = prove | |
(`RTC R = RTC (\x y. R x y /\ ~(x = y))`, | |
REWRITE_TAC[RC_TC; RTC] THEN | |
AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN | |
REWRITE_TAC[RC_CASES] THEN MESON_TAC[]);; | |
let TC_RTC_CASES_L = prove | |
(`TC R x z <=> ?y. RTC R x y /\ R y z`, | |
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_L; TC_INC]);; | |
let TC_RTC_CASES_R = prove | |
(`!R x z. TC R x z <=> ?y. R x y /\ RTC R y z`, | |
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_CASES_R; TC_INC]);; | |
let TC_TC_RTC_CASES = prove | |
(`!R x z. TC R x z <=> ?y. TC R x y /\ RTC R y z`, | |
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);; | |
let TC_RTC_TC_CASES = prove | |
(`!R x z. TC R x z <=> ?y. RTC R x y /\ TC R y z`, | |
REWRITE_TAC[RTC; RC_CASES] THEN MESON_TAC[TC_TRANS]);; | |
let RTC_NE_IMP_TC = prove | |
(`!R x y. RTC R x y /\ ~(x = y) ==> TC R x y`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[GSYM IMP_IMP] THEN | |
MATCH_MP_TAC RTC_INDUCT THEN REWRITE_TAC[] THEN | |
MESON_TAC[TC_INC; TC_CASES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Symmetric transitive closure *) | |
(* ------------------------------------------------------------------------- *) | |
let STC = new_definition | |
`STC(R:A->A->bool) = TC(SC R)`;; | |
let STC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> STC R x y`, | |
REWRITE_TAC[STC] THEN MESON_TAC[SC_INC; TC_INC]);; | |
let STC_SYM = prove | |
(`!(R:A->A->bool) x y. STC R x y ==> STC R y x`, | |
REWRITE_TAC[STC] THEN MESON_TAC[TC_SYM; SC_SYM]);; | |
let STC_TRANS = prove | |
(`!(R:A->A->bool) x y z. STC R x y /\ STC R y z ==> STC R x z`, | |
REWRITE_TAC[STC; TC_TRANS]);; | |
let STC_TRANS_L = prove | |
(`!(R:A->A->bool) x y z. STC R x y /\ R y z ==> STC R x z`, | |
REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_L; SC_INC]);; | |
let STC_TRANS_R = prove | |
(`!(R:A->A->bool) x y z. R x y /\ STC R y z ==> STC R x z`, | |
REWRITE_TAC[STC] THEN MESON_TAC[TC_TRANS_R; SC_INC]);; | |
let STC_CASES = prove | |
(`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/ | |
?y. STC R x y /\ STC R y z`, | |
REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);; | |
let STC_CASES_L = prove | |
(`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/ | |
?y. STC R x y /\ R y z`, | |
REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);; | |
let STC_CASES_R = prove | |
(`!(R:A->A->bool) x z. STC R x z <=> R x z \/ STC R z x \/ | |
?y. R x y /\ STC R y z`, | |
REWRITE_TAC[STC] THEN MESON_TAC[SC_SYM; TC_SYM; TC_INC; TC_TRANS; SC_INC]);; | |
let STC_INDUCT = prove | |
(`!(R:A->A->bool) P. | |
(!x y. R x y ==> P x y) /\ | |
(!x y. P x y ==> P y x) /\ | |
(!x y z. P x y /\ P y z ==> P x z) ==> | |
!x y. STC R x y ==> P x y`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[STC] THEN | |
MATCH_MP_TAC TC_INDUCT THEN ASM_MESON_TAC[SC_EXPLICIT]);; | |
let STC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. STC R x y ==> STC S x y)`, | |
REWRITE_TAC[STC] THEN MESON_TAC[SC_MONO; TC_MONO]);; | |
let STC_CLOSED = prove | |
(`!R:A->A->bool. (STC R = R) <=> (!x y. R x y ==> R y x) /\ | |
(!x y z. R x y /\ R y z ==> R x z)`, | |
GEN_TAC THEN REWRITE_TAC[STC; SC_EXPLICIT] THEN EQ_TAC THENL | |
[DISCH_THEN(SUBST1_TAC o SYM) THEN MESON_TAC[TC_TRANS; TC_SYM; SC_SYM]; | |
REWRITE_TAC[GSYM SC_CLOSED; GSYM TC_CLOSED] THEN MESON_TAC[]]);; | |
let STC_IDEMP = prove | |
(`!R:A->A->bool. STC(STC R) = STC R`, | |
REWRITE_TAC[STC_CLOSED; STC_SYM; STC_TRANS]);; | |
let STC_REFL = prove | |
(`!R:A->A->bool. (!x. R x x) ==> !x. STC R x x`, | |
MESON_TAC[STC_INC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reflexive symmetric transitive closure (smallest equivalence relation) *) | |
(* ------------------------------------------------------------------------- *) | |
let RSTC = new_definition | |
`RSTC(R:A->A->bool) = RC(TC(SC R))`;; | |
let RSTC_INC = prove | |
(`!(R:A->A->bool) x y. R x y ==> RSTC R x y`, | |
REWRITE_TAC[RSTC] THEN MESON_TAC[RC_INC; TC_INC; SC_INC]);; | |
let RSTC_REFL = prove | |
(`!(R:A->A->bool) x. RSTC R x x`, | |
REWRITE_TAC[RSTC; RC_REFL]);; | |
let RSTC_SYM = prove | |
(`!(R:A->A->bool) x y. RSTC R x y ==> RSTC R y x`, | |
REWRITE_TAC[RSTC] THEN MESON_TAC[SC_SYM; TC_SYM; RC_SYM]);; | |
let RSTC_TRANS = prove | |
(`!(R:A->A->bool) x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z`, | |
REWRITE_TAC[RSTC; RC_TC; TC_TRANS]);; | |
let RSTC_RULES = prove | |
(`!(R:A->A->bool). | |
(!x y. R x y ==> RSTC R x y) /\ | |
(!x. RSTC R x x) /\ | |
(!x y. RSTC R x y ==> RSTC R y x) /\ | |
(!x y z. RSTC R x y /\ RSTC R y z ==> RSTC R x z)`, | |
REWRITE_TAC[RSTC_INC; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);; | |
let RSTC_TRANS_L = prove | |
(`!(R:A->A->bool) x y z. RSTC R x y /\ R y z ==> RSTC R x z`, | |
REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_L; RC_INC; SC_INC]);; | |
let RSTC_TRANS_R = prove | |
(`!(R:A->A->bool) x y z. R x y /\ RSTC R y z ==> RSTC R x z`, | |
REWRITE_TAC[RSTC; RC_TC] THEN MESON_TAC[TC_TRANS_R; RC_INC; SC_INC]);; | |
let RSTC_CASES = prove | |
(`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/ | |
?y. RSTC R x y /\ RSTC R y z`, | |
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN | |
MESON_TAC[STC_CASES; RC_CASES]);; | |
let RSTC_CASES_L = prove | |
(`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/ | |
?y. RSTC R x y /\ R y z`, | |
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN | |
MESON_TAC[STC_CASES_L; RC_CASES]);; | |
let RSTC_CASES_R = prove | |
(`!(R:A->A->bool) x z. RSTC R x z <=> (x = z) \/ R x z \/ RSTC R z x \/ | |
?y. R x y /\ RSTC R y z`, | |
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN | |
MESON_TAC[STC_CASES_R; RC_CASES]);; | |
let RSTC_INDUCT = prove | |
(`!(R:A->A->bool) P. | |
(!x y. R x y ==> P x y) /\ | |
(!x. P x x) /\ | |
(!x y. P x y ==> P y x) /\ | |
(!x y z. P x y /\ P y z ==> P x z) | |
==> !x y. RSTC R x y ==> P x y`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[RSTC; RC_TC; RC_SC] THEN REWRITE_TAC[GSYM STC] THEN | |
MATCH_MP_TAC STC_INDUCT THEN REWRITE_TAC[RC_EXPLICIT] THEN ASM_MESON_TAC[]);; | |
let RSTC_MONO = prove | |
(`!(R:A->A->bool) S. | |
(!x y. R x y ==> S x y) ==> | |
(!x y. RSTC R x y ==> RSTC S x y)`, | |
REWRITE_TAC[RSTC] THEN MESON_TAC[RC_MONO; SC_MONO; TC_MONO]);; | |
let RSTC_CLOSED = prove | |
(`!R:A->A->bool. (RSTC R = R) <=> (!x. R x x) /\ | |
(!x y. R x y ==> R y x) /\ | |
(!x y z. R x y /\ R y z ==> R x z)`, | |
REWRITE_TAC[RSTC] THEN REWRITE_TAC[GSYM STC; GSYM STC_CLOSED] THEN | |
REWRITE_TAC[RC_EXPLICIT; FUN_EQ_THM] THEN MESON_TAC[STC_INC]);; | |
let RSTC_IDEMP = prove | |
(`!R:A->A->bool. RSTC(RSTC R) = RSTC R`, | |
REWRITE_TAC[RSTC_CLOSED; RSTC_REFL; RSTC_SYM; RSTC_TRANS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finally, we prove the inclusion properties for composite closures *) | |
(* ------------------------------------------------------------------------- *) | |
let RSC_INC_RC = prove | |
(`!R:A->A->bool. !x y. RC R x y ==> RSC R x y`, | |
REWRITE_TAC[RSC; RC_SC; SC_INC]);; | |
let RSC_INC_SC = prove | |
(`!R:A->A->bool. !x y. SC R x y ==> RSC R x y`, | |
REWRITE_TAC[RSC; RC_INC]);; | |
let RTC_INC_RC = prove | |
(`!R:A->A->bool. !x y. RC R x y ==> RTC R x y`, | |
REWRITE_TAC[RTC; RC_TC; TC_INC]);; | |
let RTC_INC_TC = prove | |
(`!R:A->A->bool. !x y. TC R x y ==> RTC R x y`, | |
REWRITE_TAC[RTC; RC_INC]);; | |
let STC_INC_SC = prove | |
(`!R:A->A->bool. !x y. SC R x y ==> STC R x y`, | |
REWRITE_TAC[STC; TC_INC]);; | |
let STC_INC_TC = prove | |
(`!R:A->A->bool. !x y. TC R x y ==> STC R x y`, | |
REWRITE_TAC[STC] THEN MESON_TAC[TC_MONO; SC_INC]);; | |
let RSTC_INC_RC = prove | |
(`!R:A->A->bool. !x y. RC R x y ==> RSTC R x y`, | |
REWRITE_TAC[RSTC; RC_TC; RC_SC; GSYM STC; STC_INC]);; | |
let RSTC_INC_SC = prove | |
(`!R:A->A->bool. !x y. SC R x y ==> RSTC R x y`, | |
REWRITE_TAC[RSTC; GSYM RTC; RTC_INC]);; | |
let RSTC_INC_TC = prove | |
(`!R:A->A->bool. !x y. TC R x y ==> RSTC R x y`, | |
REWRITE_TAC[RSTC; RC_TC; GSYM RSC] THEN MESON_TAC[TC_MONO; RSC_INC]);; | |
let RSTC_INC_RSC = prove | |
(`!R:A->A->bool. !x y. RSC R x y ==> RSTC R x y`, | |
REWRITE_TAC[RSC; RSTC; RC_TC; TC_INC]);; | |
let RSTC_INC_RTC = prove | |
(`!R:A->A->bool. !x y. RTC R x y ==> RSTC R x y`, | |
REWRITE_TAC[GSYM RTC; RSTC] THEN MESON_TAC[RTC_MONO; SC_INC]);; | |
let RSTC_INC_STC = prove | |
(`!R:A->A->bool. !x y. STC R x y ==> RSTC R x y`, | |
REWRITE_TAC[GSYM STC; RSTC; RC_INC]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Handy things about reverse relations. *) | |
(* ------------------------------------------------------------------------- *) | |
let INV = new_definition | |
`INV R (x:A) (y:B) <=> R y x`;; | |
let RC_INV = prove | |
(`RC(INV R) = INV(RC R)`, | |
REWRITE_TAC[FUN_EQ_THM; RC_EXPLICIT; INV; EQ_SYM_EQ]);; | |
let SC_INV = prove | |
(`SC(INV R) = INV(SC R)`, | |
REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);; | |
let SC_INV_STRONG = prove | |
(`SC(INV R) = SC R`, | |
REWRITE_TAC[FUN_EQ_THM; SC_EXPLICIT; INV; DISJ_SYM]);; | |
let TC_INV = prove | |
(`TC(INV R) = INV(TC R)`, | |
REWRITE_TAC[FUN_EQ_THM; INV] THEN REPEAT GEN_TAC THEN EQ_TAC THEN | |
RULE_INDUCT_TAC TC_INDUCT THEN MESON_TAC[INV; TC_RULES]);; | |
let RSC_INV = prove | |
(`RSC(INV R) = INV(RSC R)`, | |
REWRITE_TAC[RSC; RC_INV; SC_INV]);; | |
let RTC_INV = prove | |
(`RTC(INV R) = INV(RTC R)`, | |
REWRITE_TAC[RTC; RC_INV; TC_INV]);; | |
let STC_INV = prove | |
(`STC(INV R) = INV(STC R)`, | |
REWRITE_TAC[STC; SC_INV; TC_INV]);; | |
let RSTC_INV = prove | |
(`RSTC(INV R) = INV(RSTC R)`, | |
REWRITE_TAC[RSTC; RC_INV; SC_INV; TC_INV]);; | |
(* ------------------------------------------------------------------------- *) | |
(* An iterative version of (R)TC. *) | |
(* ------------------------------------------------------------------------- *) | |
let RELPOW = new_recursive_definition num_RECURSION | |
`(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\ | |
(RELPOW (SUC n) R x y <=> ?z. RELPOW n R x z /\ R z y)`;; | |
let RELPOW_R = prove | |
(`(RELPOW 0 (R:A->A->bool) x y <=> (x = y)) /\ | |
(RELPOW (SUC n) R x y <=> ?z. R x z /\ RELPOW n R z y)`, | |
CONJ_TAC THENL [REWRITE_TAC[RELPOW]; ALL_TAC] THEN | |
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`x:A`; `y:A`; `n:num`] THEN | |
INDUCT_TAC THEN ASM_MESON_TAC[RELPOW]);; | |
let RELPOW_M = prove | |
(`!m n x:A y. RELPOW (m + n) R x y <=> ?z. RELPOW m R x z /\ RELPOW n R z y`, | |
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_CLAUSES; RELPOW_R; UNWIND_THM1] THEN | |
MESON_TAC[]);; | |
let RTC_RELPOW = prove | |
(`!R (x:A) y. RTC R x y <=> ?n. RELPOW n R x y`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[RULE_INDUCT_TAC RTC_INDUCT_L THEN MESON_TAC[RELPOW]; | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN SPEC_TAC(`y:A`,`y:A`) THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN INDUCT_TAC THEN | |
REWRITE_TAC[RELPOW] THEN ASM_MESON_TAC[RTC_REFL; RTC_TRANS_L]]);; | |
let TC_RELPOW = prove | |
(`!R (x:A) y. TC R x y <=> ?n. RELPOW (SUC n) R x y`, | |
REWRITE_TAC[RELPOW] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[LEFT_EXISTS_AND_THM; GSYM RTC_RELPOW] THEN | |
ONCE_REWRITE_TAC[TC_CASES_L] THEN REWRITE_TAC[RTC; RC_EXPLICIT] THEN | |
MESON_TAC[]);; | |
let RELPOW_SEQUENCE = prove | |
(`!R n x y. RELPOW n R x y <=> ?f. (f(0) = x:A) /\ (f(n) = y) /\ | |
!i. i < n ==> R (f i) (f(SUC i))`, | |
GEN_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[LT; RELPOW] THENL | |
[REPEAT GEN_TAC THEN EQ_TAC THENL | |
[DISCH_THEN SUBST1_TAC THEN EXISTS_TAC `\n:num. y:A` THEN REWRITE_TAC[]; | |
MESON_TAC[]]; | |
REPEAT GEN_TAC THEN EQ_TAC THEN REPEAT STRIP_TAC THENL | |
[DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 0 < n`) THENL | |
[EXISTS_TAC `\i. if i = 0 then x else y:A` THEN | |
ASM_REWRITE_TAC[ARITH; LT] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[NOT_SUC] THEN | |
ASM_MESON_TAC[]; | |
EXISTS_TAC `\i. if i <= n then f(i) else (y:A)` THEN | |
ASM_REWRITE_TAC[LE_0; ARITH_RULE `~(SUC n <= n)`] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[LE_REFL; ARITH_RULE `~(SUC n <= n)`] THEN | |
ASM_REWRITE_TAC[LE_SUC_LT] THEN | |
ASM_REWRITE_TAC[LE_LT] THEN | |
FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[]]; | |
EXISTS_TAC `(f:num->A) n` THEN CONJ_TAC THENL | |
[EXISTS_TAC `f:num->A` THEN ASM_REWRITE_TAC[] THEN | |
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN | |
ASM_REWRITE_TAC[]; | |
ASM_MESON_TAC[]]]]);; | |