Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Library /permutations.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
55.8 kB
(* ========================================================================= *)
(* Permutations, both general and specifically on finite sets. *)
(* ========================================================================= *)
parse_as_infix("permutes",(12,"right"));;
let permutes = new_definition
`p permutes s <=> (!x. ~(x IN s) ==> p(x) = x) /\ (!y. ?!x. p x = y)`;;
(* ------------------------------------------------------------------------- *)
(* Inverse function (on whole universe). *)
(* ------------------------------------------------------------------------- *)
let inverse = new_definition
`inverse(f) = \y. @x. f x = y`;;
let SURJECTIVE_INVERSE = prove
(`!f. (!y. ?x. f x = y) <=> !y. f(inverse f y) = y`,
REWRITE_TAC[SURJECTIVE_RIGHT_INVERSE; inverse] THEN MESON_TAC[]);;
let SURJECTIVE_INVERSE_o = prove
(`!f. (!y. ?x. f x = y) <=> (f o inverse f = I)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; SURJECTIVE_INVERSE]);;
let INJECTIVE_INVERSE = prove
(`!f. (!x x'. f x = f x' ==> x = x') <=> !x. inverse f (f x) = x`,
MESON_TAC[inverse]);;
let INJECTIVE_INVERSE_o = prove
(`!f. (!x x'. f x = f x' ==> x = x') <=> (inverse f o f = I)`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; INJECTIVE_INVERSE]);;
let INVERSE_UNIQUE_o = prove
(`!f g. f o g = I /\ g o f = I ==> inverse f = g`,
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM] THEN
MESON_TAC[INJECTIVE_INVERSE; SURJECTIVE_INVERSE]);;
let INVERSE_I = prove
(`inverse I = I`,
MATCH_MP_TAC INVERSE_UNIQUE_o THEN REWRITE_TAC[I_O_ID]);;
(* ------------------------------------------------------------------------- *)
(* Transpositions. *)
(* ------------------------------------------------------------------------- *)
let swap = new_definition
`swap(i,j) k = if k = i then j else if k = j then i else k`;;
let SWAP_REFL = prove
(`!a. swap(a,a) = I`,
REWRITE_TAC[FUN_EQ_THM; swap; I_THM] THEN MESON_TAC[]);;
let SWAP_SYM = prove
(`!a b. swap(a,b) = swap(b,a)`,
REWRITE_TAC[FUN_EQ_THM; swap; I_THM] THEN MESON_TAC[]);;
let SWAP_IDEMPOTENT = prove
(`!a b. swap(a,b) o swap(a,b) = I`,
REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN MESON_TAC[]);;
let INVERSE_SWAP = prove
(`!a b. inverse(swap(a,b)) = swap(a,b)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC INVERSE_UNIQUE_o THEN
REWRITE_TAC[SWAP_SYM; SWAP_IDEMPOTENT]);;
let SWAP_GALOIS = prove
(`!a b x y. x = swap(a,b) y <=> y = swap(a,b) x`,
REWRITE_TAC[swap] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Basic consequences of the definition. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_IN_IMAGE = prove
(`!p s x. p permutes s ==> (p(x) IN s <=> x IN s)`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_IMAGE = prove
(`!p s. p permutes s ==> IMAGE p s = s`,
REWRITE_TAC[permutes; EXTENSION; IN_IMAGE] THEN MESON_TAC[]);;
let PERMUTES_INJECTIVE = prove
(`!p s. p permutes s ==> !x y. p(x) = p(y) <=> x = y`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_SURJECTIVE = prove
(`!p s. p permutes s ==> !y. ?x. p(x) = y`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSES_o = prove
(`!p s. p permutes s ==> p o inverse(p) = I /\ inverse(p) o p = I`,
REWRITE_TAC[GSYM INJECTIVE_INVERSE_o; GSYM SURJECTIVE_INVERSE_o] THEN
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSES = prove
(`!p s. p permutes s
==> (!x. p(inverse p x) = x) /\ (!x. inverse p (p x) = x)`,
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM]);;
let PERMUTES_SUBSET = prove
(`!p s t. p permutes s /\ s SUBSET t ==> p permutes t`,
REWRITE_TAC[permutes; SUBSET] THEN MESON_TAC[]);;
let PERMUTES_EMPTY = prove
(`!p. p permutes {} <=> p = I`,
REWRITE_TAC[FUN_EQ_THM; I_THM; permutes; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let PERMUTES_SING = prove
(`!p a. p permutes {a} <=> p = I`,
REWRITE_TAC[FUN_EQ_THM; I_THM; permutes; IN_SING] THEN MESON_TAC[]);;
let PERMUTES_UNIV = prove
(`!p. p permutes UNIV <=> !y:A. ?!x. p x = y`,
REWRITE_TAC[permutes; IN_UNIV] THEN MESON_TAC[]);;
let PERMUTES_INVERSE_EQ = prove
(`!p s. p permutes s ==> !x y. inverse p y = x <=> p x = y`,
REWRITE_TAC[permutes; inverse] THEN MESON_TAC[]);;
let PERMUTES_SWAP = prove
(`!a b s. a IN s /\ b IN s ==> swap(a,b) permutes s`,
REWRITE_TAC[permutes; swap] THEN MESON_TAC[]);;
let PERMUTES_SUPERSET = prove
(`!p s t. p permutes s /\ (!x. x IN (s DIFF t) ==> p(x) = x)
==> p permutes t`,
REWRITE_TAC[permutes; IN_DIFF] THEN MESON_TAC[]);;
let PERMUTES_BIJECTIONS = prove
(`!p q. (!x. x IN s ==> p x IN s) /\ (!x. ~(x IN s) ==> p x = x) /\
(!x. x IN s ==> q x IN s) /\ (!x. ~(x IN s) ==> q x = x) /\
(!x. p(q x) = x) /\ (!x. q(p x) = x)
==> p permutes s`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSE_FUNCTION = prove
(`!s p:A->A.
p permutes s <=>
?q. (!x. ~(x IN s) ==> p x = x) /\
(!x. x IN s ==> p x IN s) /\
(!x. x IN s ==> p(q x) = x /\ q(p x) = x)`,
REPEAT GEN_TAC THEN EQ_TAC THENL
[DISCH_TAC THEN EXISTS_TAC `inverse p:A->A` THEN
ASM_MESON_TAC[permutes; PERMUTES_INVERSES];
STRIP_TAC THEN ASM_SIMP_TAC[permutes; SUBSET; FORALL_IN_IMAGE] THEN
X_GEN_TAC `x:A` THEN REWRITE_TAC[EXISTS_UNIQUE] THEN
ASM_CASES_TAC `(x:A) IN s` THENL
[EXISTS_TAC `(q:A->A) x`; EXISTS_TAC `x:A`] THEN
ASM_MESON_TAC[]]);;
let PERMUTES_ALT = prove
(`!(p:A->A) s.
p permutes s <=>
(!x. x IN s ==> p x IN s) /\
(!x. ~(x IN s) ==> p x = x) /\
(!y. y IN s ==> ?!x. x IN s /\ p x = y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[permutes] THEN
EQ_TAC THEN SIMP_TAC[] THENL [MESON_TAC[]; DISCH_TAC] THEN
MATCH_MP_TAC(MESON[]
`!s. (!y. ~(y IN s) ==> P y) /\ (!y. y IN s ==> P y) ==> !y. P y`) THEN
EXISTS_TAC `IMAGE (p:A->A) s` THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN
ASM SET_TAC[]);;
let PERMUTES_RESTRICT_SET = prove
(`!Q p s:A->bool.
p permutes s /\ (!x. x IN s ==> (Q(p x) <=> Q x))
==> (\i. if Q i then p i else i) permutes {x | x IN s /\ Q x}`,
REWRITE_TAC[PERMUTES_ALT] THEN SET_TAC[]);;
let PERMUTES_RESTRICT = prove
(`!Q p s:A->bool.
p permutes s /\ (!x. x IN s ==> (Q(p x) <=> Q x))
==> (\i. if Q i then p i else i) permutes s`,
REWRITE_TAC[PERMUTES_ALT] THEN SET_TAC[]);;
let PERMUTES_CARTESIAN_PRODUCT = prove
(`!(p:A->A) (q:B->B) s t.
p permutes s /\ q permutes t
==> (\(i,j). if i IN s /\ j IN t then p i,q j else i,j)
permutes (s CROSS t)`,
REWRITE_TAC[permutes; EXISTS_UNIQUE_THM] THEN
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_PAIR_THM; PAIR_EQ; IN_CROSS] THEN
REWRITE_TAC[COND_RAND] THEN REWRITE_TAC[COND_RATOR] THEN
REWRITE_TAC[PAIR_EQ] THEN MESON_TAC[]);;
let PERMUTES_TRANSFER_BIJECTIONS = prove
(`!(f:A->B) f' p s t.
(!x. f'(f x) = x) /\ (!y. f(f' y) = y) /\
(!x. x IN s ==> f x IN t) /\
(!y. y IN t ==> f' y IN s)
==> ((f' o p o f) permutes s <=> p permutes t)`,
REWRITE_TAC[permutes; o_THM] THEN MESON_TAC[]);;
let PERMUTES_TRANSFER = prove
(`!(f:A->B) p q s.
p permutes s /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\
(!x. x IN s ==> q(f x) = f(p x)) /\
(!y. ~(y IN IMAGE f s) ==> q y = y)
==> q permutes (IMAGE f s)`,
SIMP_TAC[PERMUTES_ALT] THEN SET_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Group properties. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_ID = prove
(`!s:A->bool. (\x. x) permutes s`,
REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_I = prove
(`!s. I permutes s`,
REWRITE_TAC[permutes; I_THM] THEN MESON_TAC[]);;
let PERMUTES_COMPOSE = prove
(`!p q s. p permutes s /\ q permutes s ==> (q o p) permutes s`,
REWRITE_TAC[permutes; o_THM] THEN METIS_TAC[]);;
let PERMUTES_INVERSE = prove
(`!p s. p permutes s ==> inverse(p) permutes s`,
REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o MATCH_MP PERMUTES_INVERSE_EQ) THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[permutes] THEN MESON_TAC[]);;
let PERMUTES_INVERSE_INVERSE = prove
(`!p. p permutes s ==> inverse(inverse p) = p`,
SIMP_TAC[FUN_EQ_THM] THEN MESON_TAC[PERMUTES_INVERSE_EQ; PERMUTES_INVERSE]);;
(* ------------------------------------------------------------------------- *)
(* The number of permutations on a finite set. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_INSERT_LEMMA = prove
(`!p a:A s. p permutes (a INSERT s) ==> (swap(a,p(a)) o p) permutes s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PERMUTES_SUPERSET THEN
EXISTS_TAC `(a:A) INSERT s` THEN CONJ_TAC THENL
[ASM_MESON_TAC[PERMUTES_SWAP; PERMUTES_IN_IMAGE;
IN_INSERT; PERMUTES_COMPOSE];
REWRITE_TAC[o_THM; swap; IN_INSERT; IN_DIFF] THEN ASM_MESON_TAC[]]);;
let PERMUTES_INSERT = prove
(`{p:A->A | p permutes (a INSERT s)} =
IMAGE (\(b,p). swap(a,b) o p)
{(b,p) | b IN a INSERT s /\ p IN {p | p permutes s}}`,
REWRITE_TAC[EXTENSION; IN_ELIM_PAIR_THM; IN_IMAGE; EXISTS_PAIR_THM] THEN
X_GEN_TAC `p:A->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN EQ_TAC THENL
[DISCH_TAC THEN MAP_EVERY EXISTS_TAC
[`(p:A->A) a`; `swap(a,p a) o (p:A->A)`] THEN
ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID; PERMUTES_INSERT_LEMMA] THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`b:A`; `q:A->A`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC PERMUTES_COMPOSE THEN
CONJ_TAC THENL
[ASM_MESON_TAC[PERMUTES_SUBSET; SUBSET; IN_INSERT];
MATCH_MP_TAC PERMUTES_SWAP THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT]]]);;
let HAS_SIZE_PERMUTATIONS = prove
(`!s:A->bool n. s HAS_SIZE n ==> {p | p permutes s} HAS_SIZE (FACT n)`,
REWRITE_TAC[HAS_SIZE; IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
SIMP_TAC[PERMUTES_EMPTY; CARD_CLAUSES; SET_RULE `{x | x = a} = {a}`] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN CONJ_TAC THENL
[GEN_TAC THEN DISCH_THEN(SUBST1_TAC o SYM) THEN CONV_TAC NUM_REDUCE_CONV;
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN REWRITE_TAC[GSYM HAS_SIZE] THEN
STRIP_TAC THEN X_GEN_TAC `k:num` THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
REWRITE_TAC[FACT; PERMUTES_INSERT] THEN MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN
ASM_SIMP_TAC[HAS_SIZE_PRODUCT; HAS_SIZE; FINITE_INSERT; CARD_CLAUSES] THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM; IN_ELIM_THM; PAIR_EQ] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
MAP_EVERY X_GEN_TAC [`b:A`; `q:A->A`; `c:A`; `r:A->A`] THEN
STRIP_TAC THEN SUBGOAL_THEN `c:A = b` SUBST_ALL_TAC THENL
[FIRST_X_ASSUM(MP_TAC o C AP_THM `a:A`) THEN REWRITE_TAC[o_THM; swap] THEN
SUBGOAL_THEN `(q:A->A) a = a /\ (r:A->A) a = a` (fun t -> SIMP_TAC[t]) THEN
ASM_MESON_TAC[permutes];
FIRST_X_ASSUM(MP_TAC o AP_TERM `(\q:A->A. swap(a:A,b) o q)`) THEN
ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID]]);;
let FINITE_PERMUTATIONS = prove
(`!s. FINITE s ==> FINITE {p | p permutes s}`,
MESON_TAC[HAS_SIZE_PERMUTATIONS; HAS_SIZE]);;
let CARD_PERMUTATIONS = prove
(`!s. FINITE s ==> CARD {p | p permutes s} = FACT(CARD s)`,
MESON_TAC[HAS_SIZE; HAS_SIZE_PERMUTATIONS]);;
(* ------------------------------------------------------------------------- *)
(* Alternative characterizations of permutation of finite set. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_FINITE_INJECTIVE = prove
(`!s:A->bool p.
FINITE s
==> (p permutes s <=>
(!x. ~(x IN s) ==> p x = x) /\
(!x. x IN s ==> p x IN s) /\
(!x y. x IN s /\ y IN s /\ p x = p y ==> x = y))`,
REWRITE_TAC[permutes] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN
DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `p:A->A` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] SURJECTIVE_IFF_INJECTIVE)) THEN
ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_IMP; GSYM CONJ_ASSOC] THEN
STRIP_TAC THEN X_GEN_TAC `y:A` THEN
ASM_CASES_TAC `(y:A) IN s` THEN ASM_MESON_TAC[]);;
let PERMUTES_FINITE_SURJECTIVE = prove
(`!s:A->bool p.
FINITE s
==> (p permutes s <=>
(!x. ~(x IN s) ==> p x = x) /\ (!x. x IN s ==> p x IN s) /\
(!y. y IN s ==> ?x. x IN s /\ p x = y))`,
REWRITE_TAC[permutes] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC(TAUT `(p ==> (q <=> r)) ==> (p /\ q <=> p /\ r)`) THEN
DISCH_TAC THEN EQ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `p:A->A` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] SURJECTIVE_IFF_INJECTIVE)) THEN
ASM_REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IMP_IMP; GSYM CONJ_ASSOC] THEN
STRIP_TAC THEN X_GEN_TAC `y:A` THEN
ASM_CASES_TAC `(y:A) IN s` THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Permutations of index set for iterated operations. *)
(* ------------------------------------------------------------------------- *)
let ITERATE_PERMUTE = prove
(`!op. monoidal op
==> !f p s. p permutes s ==> iterate op s f = iterate op s (f o p)`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP ITERATE_BIJECTION) THEN
ASM_MESON_TAC[permutes]);;
let NSUM_PERMUTE = prove
(`!f p s. p permutes s ==> nsum s f = nsum s (f o p)`,
REWRITE_TAC[nsum] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN
REWRITE_TAC[MONOIDAL_ADD]);;
let NSUM_PERMUTE_NUMSEG = prove
(`!f p m n. p permutes m..n ==> nsum(m..n) f = nsum(m..n) (f o p)`,
MESON_TAC[NSUM_PERMUTE; FINITE_NUMSEG]);;
let SUM_PERMUTE = prove
(`!f p s. p permutes s ==> sum s f = sum s (f o p)`,
REWRITE_TAC[sum] THEN MATCH_MP_TAC ITERATE_PERMUTE THEN
REWRITE_TAC[MONOIDAL_REAL_ADD]);;
let SUM_PERMUTE_NUMSEG = prove
(`!f p m n. p permutes m..n ==> sum(m..n) f = sum(m..n) (f o p)`,
MESON_TAC[SUM_PERMUTE; FINITE_NUMSEG]);;
(* ------------------------------------------------------------------------- *)
(* Various combinations of transpositions with 2, 1 and 0 common elements. *)
(* ------------------------------------------------------------------------- *)
let SWAP_COMMON = prove
(`!a b c:A. ~(a = c) /\ ~(b = c)
==> swap(a,b) o swap(a,c) = swap(b,c) o swap(a,b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN
DISCH_TAC THEN X_GEN_TAC `x:A` THEN
MAP_EVERY ASM_CASES_TAC [`x:A = a`; `x:A = b`; `x:A = c`] THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]);;
let SWAP_COMMON' = prove
(`!a b c:A. ~(a = b) /\ ~(a = c)
==> swap(a,c) o swap(b,c) = swap(b,c) o swap(a,b)`,
REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SWAP_SYM] THEN
ASM_SIMP_TAC[GSYM SWAP_COMMON] THEN REWRITE_TAC[SWAP_SYM]);;
let SWAP_INDEPENDENT = prove
(`!a b c d:A. ~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d)
==> swap(a,b) o swap(c,d) = swap(c,d) o swap(a,b)`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; swap; o_THM; I_THM] THEN
DISCH_TAC THEN X_GEN_TAC `x:A` THEN
MAP_EVERY ASM_CASES_TAC [`x:A = a`; `x:A = b`; `x:A = c`] THEN
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Permutations as transposition sequences. *)
(* ------------------------------------------------------------------------- *)
let swapseq_RULES,swapseq_INDUCT,swapseq_CASES = new_inductive_definition
`(swapseq 0 I) /\
(!a b p n. swapseq n p /\ ~(a = b) ==> swapseq (SUC n) (swap(a,b) o p))`;;
let permutation = new_definition
`permutation p <=> ?n. swapseq n p`;;
(* ------------------------------------------------------------------------- *)
(* Some closure properties of the set of permutations, with lengths. *)
(* ------------------------------------------------------------------------- *)
let SWAPSEQ_I = CONJUNCT1 swapseq_RULES;;
let PERMUTATION_I = prove
(`permutation I`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_I]);;
let SWAPSEQ_SWAP = prove
(`!a b. swapseq (if a = b then 0 else 1) (swap(a,b))`,
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[num_CONV `1`] THEN
ASM_MESON_TAC[swapseq_RULES; I_O_ID; SWAPSEQ_I; SWAP_REFL]);;
let PERMUTATION_SWAP = prove
(`!a b. permutation(swap(a,b))`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_SWAP]);;
let SWAPSEQ_COMPOSE = prove
(`!n p m q. swapseq n p /\ swapseq m q ==> swapseq (n + m) (p o q)`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN
MATCH_MP_TAC swapseq_INDUCT THEN
REWRITE_TAC[ADD_CLAUSES; I_O_ID; GSYM o_ASSOC] THEN
MESON_TAC[swapseq_RULES]);;
let PERMUTATION_COMPOSE = prove
(`!p q. permutation p /\ permutation q ==> permutation(p o q)`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_COMPOSE]);;
let SWAPSEQ_ENDSWAP = prove
(`!n p a b:A. swapseq n p /\ ~(a = b) ==> swapseq (SUC n) (p o swap(a,b))`,
REWRITE_TAC[RIGHT_FORALL_IMP_THM; IMP_CONJ] THEN
MATCH_MP_TAC swapseq_INDUCT THEN REWRITE_TAC[I_O_ID; GSYM o_ASSOC] THEN
MESON_TAC[o_ASSOC; swapseq_RULES; I_O_ID]);;
let SWAPSEQ_INVERSE_EXISTS = prove
(`!n p:A->A. swapseq n p ==> ?q. swapseq n q /\ p o q = I /\ q o p = I`,
MATCH_MP_TAC swapseq_INDUCT THEN CONJ_TAC THENL
[MESON_TAC[I_O_ID; swapseq_RULES]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`n:num`; `q:A->A`; `a:A`; `b:A`] SWAPSEQ_ENDSWAP) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
EXISTS_TAC `(q:A->A) o swap (a,b)` THEN
ASM_REWRITE_TAC[GSYM o_ASSOC] THEN
GEN_REWRITE_TAC (BINOP_CONV o LAND_CONV o RAND_CONV) [o_ASSOC] THEN
ASM_REWRITE_TAC[SWAP_IDEMPOTENT; I_O_ID]);;
let SWAPSEQ_INVERSE = prove
(`!n p. swapseq n p ==> swapseq n (inverse p)`,
MESON_TAC[SWAPSEQ_INVERSE_EXISTS; INVERSE_UNIQUE_o]);;
let PERMUTATION_INVERSE = prove
(`!p. permutation p ==> permutation(inverse p)`,
REWRITE_TAC[permutation] THEN MESON_TAC[SWAPSEQ_INVERSE]);;
(* ------------------------------------------------------------------------- *)
(* The identity map only has even transposition sequences. *)
(* ------------------------------------------------------------------------- *)
let SYMMETRY_LEMMA = prove
(`(!a b c d. P a b c d ==> P a b d c) /\
(!a b c d. ~(a = b) /\ ~(c = d) /\
(a = c /\ b = d \/ a = c /\ ~(b = d) \/ ~(a = c) /\ b = d \/
~(a = c) /\ ~(a = d) /\ ~(b = c) /\ ~(b = d))
==> P a b c d)
==> (!a b c d:A. ~(a = b) /\ ~(c = d) ==> P a b c d)`,
REPEAT STRIP_TAC THEN MAP_EVERY ASM_CASES_TAC
[`a:A = c`; `a:A = d`; `b:A = c`; `b:A = d`] THEN
ASM_MESON_TAC[]);;
let SWAP_GENERAL = prove
(`!a b c d:A.
~(a = b) /\ ~(c = d)
==> swap(a,b) o swap(c,d) = I \/
?x y z. ~(x = a) /\ ~(y = a) /\ ~(z = a) /\ ~(x = y) /\
swap(a,b) o swap(c,d) = swap(x,y) o swap(a,z)`,
MATCH_MP_TAC SYMMETRY_LEMMA THEN CONJ_TAC THENL
[REWRITE_TAC[SWAP_SYM] THEN SIMP_TAC[]; ALL_TAC] THEN
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THENL
[MESON_TAC[SWAP_IDEMPOTENT];
DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`b:A`; `d:A`; `b:A`] THEN
ASM_MESON_TAC[SWAP_COMMON];
DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`c:A`; `d:A`; `c:A`] THEN
ASM_MESON_TAC[SWAP_COMMON'];
DISJ2_TAC THEN MAP_EVERY EXISTS_TAC [`c:A`; `d:A`; `b:A`] THEN
ASM_MESON_TAC[SWAP_INDEPENDENT]]);;
let FIXING_SWAPSEQ_DECREASE = prove
(`!n p a b:A.
swapseq n p /\ ~(a = b) /\ (swap(a,b) o p) a = a
==> ~(n = 0) /\ swapseq (n - 1) (swap(a,b) o p)`,
INDUCT_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [swapseq_CASES] THEN
REWRITE_TAC[NOT_SUC] THENL
[DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
ASM_REWRITE_TAC[I_THM; o_THM; swap] THEN MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`c:A`; `d:A`; `q:A->A`; `m:num`] THEN
REWRITE_TAC[SUC_INJ; GSYM CONJ_ASSOC] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[o_ASSOC] THEN STRIP_TAC THEN
MP_TAC(SPECL [`a:A`; `b:A`; `c:A`; `d:A`] SWAP_GENERAL) THEN
ASM_REWRITE_TAC[] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THEN
ASM_REWRITE_TAC[I_O_ID; SUC_SUB1; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`; `z:A`] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
DISCH_THEN SUBST_ALL_TAC THEN FIRST_X_ASSUM(MP_TAC o SPECL
[`q:A->A`; `a:A`; `z:A`]) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o check(is_eq o concl)) THEN
REWRITE_TAC[GSYM o_ASSOC] THEN
ABBREV_TAC `r:A->A = swap(a:A,z) o q` THEN
ASM_REWRITE_TAC[FUN_EQ_THM; o_THM; swap] THEN ASM_MESON_TAC[];
SPEC_TAC(`n:num`,`n:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[NOT_SUC; SUC_SUB1; GSYM o_ASSOC] THEN
ASM_MESON_TAC[swapseq_RULES]]);;
let SWAPSEQ_IDENTITY_EVEN = prove
(`!n. swapseq n (I:A->A) ==> EVEN n`,
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
GEN_REWRITE_TAC LAND_CONV [swapseq_CASES] THEN
DISCH_THEN(DISJ_CASES_THEN2 (SUBST_ALL_TAC o CONJUNCT1) MP_TAC) THEN
REWRITE_TAC[EVEN; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`; `m:num`] THEN
DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
MP_TAC(SPECL [`m:num`; `p:A->A`; `a:A`; `b:A`] FIXING_SWAPSEQ_DECREASE) THEN
ASM_REWRITE_TAC[I_THM] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `m - 1`) THEN
UNDISCH_THEN `SUC m = n` (SUBST_ALL_TAC o SYM) THEN
ASM_REWRITE_TAC[ARITH_RULE `m - 1 < SUC m`] THEN UNDISCH_TAC `~(m = 0)` THEN
SPEC_TAC(`m:num`,`m:num`) THEN INDUCT_TAC THEN
REWRITE_TAC[SUC_SUB1; EVEN]);;
(* ------------------------------------------------------------------------- *)
(* Therefore we have a welldefined notion of parity. *)
(* ------------------------------------------------------------------------- *)
let evenperm = new_definition `evenperm(p) = EVEN(@n. swapseq n p)`;;
let SWAPSEQ_EVEN_EVEN = prove
(`!m n p:A->A. swapseq m p /\ swapseq n p ==> (EVEN m <=> EVEN n)`,
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP SWAPSEQ_INVERSE_EXISTS) THEN
STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `swapseq (n + m) :(A->A)->bool`) THEN
ASM_SIMP_TAC[SWAPSEQ_COMPOSE] THEN
DISCH_THEN(MP_TAC o MATCH_MP SWAPSEQ_IDENTITY_EVEN) THEN
SIMP_TAC[EVEN_ADD]);;
let EVENPERM_UNIQUE = prove
(`!n p b. swapseq n p /\ EVEN n = b ==> evenperm p = b`,
REWRITE_TAC[evenperm] THEN MESON_TAC[SWAPSEQ_EVEN_EVEN]);;
(* ------------------------------------------------------------------------- *)
(* And it has the expected composition properties. *)
(* ------------------------------------------------------------------------- *)
let EVENPERM_I = prove
(`evenperm I = T`,
MATCH_MP_TAC EVENPERM_UNIQUE THEN MESON_TAC[swapseq_RULES; EVEN]);;
let EVENPERM_ID = prove
(`evenperm(\x:A. x)`,
REWRITE_TAC[GSYM I_DEF; EVENPERM_I]);;
let EVENPERM_SWAP = prove
(`!a b:A. evenperm(swap(a,b)) = (a = b)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC EVENPERM_UNIQUE THEN
MESON_TAC[SWAPSEQ_SWAP; NUM_RED_CONV `EVEN 0`; NUM_RED_CONV `EVEN 1`]);;
let EVENPERM_COMPOSE = prove
(`!p q. permutation p /\ permutation q
==> evenperm (p o q) = (evenperm p = evenperm q)`,
REWRITE_TAC[permutation; LEFT_AND_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(fun th -> ASSUME_TAC th THEN
ASSUME_TAC(MATCH_MP SWAPSEQ_COMPOSE th)) THEN
ASM_MESON_TAC[EVENPERM_UNIQUE; SWAPSEQ_COMPOSE; EVEN_ADD]);;
let EVENPERM_INVERSE = prove
(`!p. permutation p ==> evenperm(inverse p) = evenperm p`,
REWRITE_TAC[permutation] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC EVENPERM_UNIQUE THEN
ASM_MESON_TAC[SWAPSEQ_INVERSE; EVENPERM_UNIQUE]);;
(* ------------------------------------------------------------------------- *)
(* A more abstract characterization of permutations. *)
(* ------------------------------------------------------------------------- *)
let PERMUTATION_BIJECTIVE = prove
(`!p. permutation p ==> !y. ?!x. p(x) = y`,
REWRITE_TAC[permutation] THEN REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o MATCH_MP SWAPSEQ_INVERSE_EXISTS) THEN
REWRITE_TAC[FUN_EQ_THM; I_THM; o_THM; LEFT_IMP_EXISTS_THM] THEN
MESON_TAC[]);;
let PERMUTATION_FINITE_SUPPORT = prove
(`!p. permutation p ==> FINITE {x:A | ~(p x = x)}`,
REWRITE_TAC[permutation; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN MATCH_MP_TAC swapseq_INDUCT THEN
REWRITE_TAC[I_THM; FINITE_RULES; SET_RULE `{x | F} = {}`] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`] THEN
STRIP_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC `(a:A) INSERT b INSERT {x | ~(p x = x)}` THEN
ASM_REWRITE_TAC[FINITE_INSERT; SUBSET; IN_INSERT; IN_ELIM_THM] THEN
REWRITE_TAC[o_THM; swap] THEN MESON_TAC[]);;
let PERMUTATION_LEMMA = prove
(`!s p:A->A.
FINITE s /\
(!y. ?!x. p(x) = y) /\ (!x. ~(x IN s) ==> p x = x)
==> permutation p`,
ONCE_REWRITE_TAC[IMP_CONJ] THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[REWRITE_TAC[NOT_IN_EMPTY] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `p:A->A = I` (fun th -> REWRITE_TAC[th; PERMUTATION_I]) THEN
ASM_REWRITE_TAC[FUN_EQ_THM; I_THM];
ALL_TAC] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `s:A->bool`] THEN STRIP_TAC THEN
REWRITE_TAC[IN_INSERT] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `permutation((swap(a,p(a)) o swap(a,p(a))) o (p:A->A))`
MP_TAC THENL [ALL_TAC; REWRITE_TAC[SWAP_IDEMPOTENT; I_O_ID]] THEN
REWRITE_TAC[GSYM o_ASSOC] THEN MATCH_MP_TAC PERMUTATION_COMPOSE THEN
REWRITE_TAC[PERMUTATION_SWAP] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
CONJ_TAC THENL
[UNDISCH_TAC `!y. ?!x. (p:A->A) x = y` THEN
REWRITE_TAC[EXISTS_UNIQUE_THM; swap; o_THM] THEN
ASM_CASES_TAC `(p:A->A) a = a` THEN ASM_REWRITE_TAC[] THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
REWRITE_TAC[TAUT
`(if p then x else y) = a <=> if p then x = a else y = a`] THEN
REWRITE_TAC[TAUT `(if p then x else y) <=> p /\ x \/ ~p /\ y`] THEN
ASM_MESON_TAC[];
REWRITE_TAC[swap; o_THM] THEN
ASM_CASES_TAC `(p:A->A) a = a` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[]]);;
let PERMUTATION = prove
(`!p. permutation p <=> (!y. ?!x. p(x) = y) /\ FINITE {x:A | ~(p(x) = x)}`,
GEN_TAC THEN EQ_TAC THEN
SIMP_TAC[PERMUTATION_BIJECTIVE; PERMUTATION_FINITE_SUPPORT] THEN
STRIP_TAC THEN MATCH_MP_TAC PERMUTATION_LEMMA THEN
EXISTS_TAC `{x:A | ~(p x = x)}` THEN
ASM_SIMP_TAC[IN_ELIM_THM]);;
let PERMUTATION_INVERSE_WORKS = prove
(`!p. permutation p ==> inverse p o p = I /\ p o inverse p = I`,
MESON_TAC[PERMUTATION_BIJECTIVE; SURJECTIVE_INVERSE_o;
INJECTIVE_INVERSE_o]);;
let PERMUTATION_INVERSE_COMPOSE = prove
(`!p q. permutation p /\ permutation q
==> inverse(p o q) = inverse q o inverse p`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INVERSE_UNIQUE_o THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP PERMUTATION_INVERSE_WORKS)) THEN
REWRITE_TAC[GSYM o_ASSOC] THEN REPEAT STRIP_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [o_ASSOC] THEN
ASM_REWRITE_TAC[I_O_ID]);;
let PERMUTATION_COMPOSE_EQ = prove
(`(!p q:A->A. permutation(p) ==> (permutation(p o q) <=> permutation q)) /\
(!p q:A->A. permutation(q) ==> (permutation(p o q) <=> permutation p))`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP PERMUTATION_INVERSE) THEN
EQ_TAC THEN ASM_SIMP_TAC[PERMUTATION_COMPOSE] THENL
[DISCH_THEN(MP_TAC o SPEC `inverse(p:A->A)` o MATCH_MP
(REWRITE_RULE[IMP_CONJ_ALT] PERMUTATION_COMPOSE));
DISCH_THEN(MP_TAC o SPEC `inverse(q:A->A)` o MATCH_MP
(REWRITE_RULE[IMP_CONJ] PERMUTATION_COMPOSE))] THEN
ASM_SIMP_TAC[GSYM o_ASSOC; PERMUTATION_INVERSE_WORKS] THEN
ASM_SIMP_TAC[o_ASSOC; PERMUTATION_INVERSE_WORKS] THEN
REWRITE_TAC[I_O_ID]);;
let PERMUTATION_COMPOSE_SWAP = prove
(`(!p a b:A. permutation(swap(a,b) o p) <=> permutation p) /\
(!p a b:A. permutation(p o swap(a,b)) <=> permutation p)`,
SIMP_TAC[PERMUTATION_COMPOSE_EQ; PERMUTATION_SWAP]);;
(* ------------------------------------------------------------------------- *)
(* Relation to "permutes". *)
(* ------------------------------------------------------------------------- *)
let PERMUTATION_PERMUTES = prove
(`!p:A->A. permutation p <=> ?s. FINITE s /\ p permutes s`,
GEN_TAC THEN REWRITE_TAC[PERMUTATION; permutes] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
[EXISTS_TAC `{x:A | ~(p x = x)}` THEN ASM_SIMP_TAC[IN_ELIM_THM];
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool` THEN
ASM_SIMP_TAC[IN_ELIM_THM; SUBSET] THEN ASM_MESON_TAC[]]);;
let PERMUTATION_RESTRICT = prove
(`!Q (p:A->A).
permutation p /\ (!x. Q(p x) <=> Q x)
==> permutation (\i. if Q i then p i else i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[IMP_CONJ_ALT] THEN DISCH_TAC THEN
REWRITE_TAC[PERMUTATION_PERMUTES] THEN MATCH_MP_TAC MONO_EXISTS THEN
ASM_MESON_TAC[PERMUTES_RESTRICT]);;
(* ------------------------------------------------------------------------- *)
(* Hence a sort of induction principle composing by swaps. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_INDUCT = prove
(`!P s. FINITE s /\
P I /\
(!a b:A p. a IN s /\ b IN s /\ P p /\ permutation p
==> P (swap(a,b) o p))
==> (!p. p permutes s ==> P p)`,
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c ==> d <=> b ==> a ==> c ==> d`] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
ASM_REWRITE_TAC[PERMUTES_EMPTY; IN_INSERT] THEN REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `p = swap(x,p x) o swap(x,p x) o (p:A->A)` SUBST1_TAC THENL
[REWRITE_TAC[o_ASSOC; SWAP_IDEMPOTENT; I_O_ID]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o check (is_imp o concl)) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(fun th -> FIRST_X_ASSUM MATCH_MP_TAC THEN ASSUME_TAC th) THEN
ASM_MESON_TAC[PERMUTES_IN_IMAGE; IN_INSERT; PERMUTES_INSERT_LEMMA;
PERMUTATION_PERMUTES; FINITE_INSERT; PERMUTATION_COMPOSE;
PERMUTATION_SWAP]);;
let PERMUTES_INDUCT_STRONG = prove
(`!P s:A->bool.
FINITE s /\
P I /\
(!a b p. a IN s /\ b IN s /\ ~(a = b) /\ P p /\ p permutes s
==> P (swap(a,b) o p))
==> !p. p permutes s ==> P p`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
ONCE_REWRITE_TAC[TAUT `p ==> q <=> p ==> p /\ q`] THEN
MATCH_MP_TAC PERMUTES_INDUCT THEN
ASM_SIMP_TAC[PERMUTES_I; PERMUTES_COMPOSE; PERMUTES_SWAP] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN
ASM_CASES_TAC `a:A = b` THEN ASM_SIMP_TAC[SWAP_REFL; I_O_ID]);;
(* ------------------------------------------------------------------------- *)
(* Sign of a permutation as a real number. *)
(* ------------------------------------------------------------------------- *)
let sign = new_definition
`(sign p):real = if evenperm p then &1 else -- &1`;;
let SIGN_NZ = prove
(`!p. ~(sign p = &0)`,
REWRITE_TAC[sign] THEN REAL_ARITH_TAC);;
let SIGN_I = prove
(`sign I = &1`,
REWRITE_TAC[sign; EVENPERM_I]);;
let SIGN_ID = prove
(`sign(\x:A. x) = &1`,
REWRITE_TAC[sign; EVENPERM_ID]);;
let SIGN_INVERSE = prove
(`!p. permutation p ==> sign(inverse p) = sign p`,
SIMP_TAC[sign; EVENPERM_INVERSE] THEN REAL_ARITH_TAC);;
let SIGN_COMPOSE = prove
(`!p q. permutation p /\ permutation q ==> sign(p o q) = sign(p) * sign(q)`,
SIMP_TAC[sign; EVENPERM_COMPOSE] THEN REAL_ARITH_TAC);;
let SIGN_SWAP = prove
(`!a b. sign(swap(a,b)) = if a = b then &1 else -- &1`,
REWRITE_TAC[sign; EVENPERM_SWAP]);;
let SIGN_IDEMPOTENT = prove
(`!p. sign(p) * sign(p) = &1`,
GEN_TAC THEN REWRITE_TAC[sign] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
let REAL_ABS_SIGN = prove
(`!p. abs(sign p) = &1`,
REWRITE_TAC[sign] THEN REAL_ARITH_TAC);;
let REAL_SGN_SIGN = prove
(`!p:A->A. real_sgn(sign p) = sign p`,
GEN_TAC THEN REWRITE_TAC[sign] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_SGN_EQ] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
let EVENPERM_TRANSFER = prove
(`!(f:A->B) s p q.
FINITE s /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\
p permutes s /\
(!x. x IN s ==> q(f x) = f(p x)) /\
(!y. ~(y IN IMAGE f s) ==> q y = y)
==> (evenperm q <=> evenperm p)`,
GEN_TAC THEN GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN
DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN
SUBGOAL_THEN
`!p q. (!x. x IN s ==> q (f x) = f (p x)) /\
(!y. ~(y IN IMAGE f s) ==> q y = y) <=>
q = \x. if x IN IMAGE f s then (f:A->B) (p(g x)) else x`
(fun th -> REWRITE_TAC[th])
THENL
[REWRITE_TAC[FUN_EQ_THM] THEN ASM SET_TAC[];
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_UNWIND_THM2]] THEN
MATCH_MP_TAC PERMUTES_INDUCT_STRONG THEN
ASM_REWRITE_TAC[I_THM; o_THM] THEN
SUBGOAL_THEN
`(\x. if x IN IMAGE (f:A->B) s then f (g x) else x) = I`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; I_THM] THEN ASM SET_TAC[];
REWRITE_TAC[EVENPERM_I]] THEN
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`; `p:A->A`] THEN STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand) EVENPERM_COMPOSE o rand o snd) THEN
REWRITE_TAC[PERMUTATION_SWAP] THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; DISCH_THEN SUBST1_TAC] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN
SUBGOAL_THEN `evenperm(swap(a,b)) = evenperm(swap((f:A->B) a,f b))`
SUBST1_TAC THENL
[REWRITE_TAC[EVENPERM_SWAP] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
W(MP_TAC o PART_MATCH (rand o rand) EVENPERM_COMPOSE o rand o snd) THEN
REWRITE_TAC[PERMUTATION_SWAP] THEN ANTS_TAC THENL
[REWRITE_TAC[PERMUTATION_PERMUTES] THEN
EXISTS_TAC `IMAGE (f:A->B) s` THEN ASM_SIMP_TAC[FINITE_IMAGE] THEN
MATCH_MP_TAC PERMUTES_TRANSFER THEN EXISTS_TAC `p:A->A` THEN
ASM SET_TAC[];
DISCH_THEN(SUBST1_TAC o SYM) THEN AP_TERM_TAC] THEN
REWRITE_TAC[FUN_EQ_THM; o_DEF; swap] THEN
RULE_ASSUM_TAC(REWRITE_RULE[PERMUTES_ALT]) THEN
X_GEN_TAC `y:B` THEN REWRITE_TAC[IN_IMAGE] THEN
ASM_CASES_TAC `?x. y = (f:A->B) x /\ x IN s` THEN
ASM_REWRITE_TAC[] THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `x:A`
(CONJUNCTS_THEN2 SUBST_ALL_TAC ASSUME_TAC)) THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]);;
let SIGN_TRANSFER = prove
(`!(f:A->B) s p q.
FINITE s /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) /\
p permutes s /\
(!x. x IN s ==> q(f x) = f(p x)) /\
(!y. ~(y IN IMAGE f s) ==> q y = y)
==> sign q = sign p`,
REPEAT GEN_TAC THEN REWRITE_TAC[sign] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP EVENPERM_TRANSFER) THEN
REWRITE_TAC[]);;
let SIGN_CARTESIAN_PRODUCT = prove
(`!(p:A->A) (q:B->B) s t.
FINITE s /\ FINITE t /\ p permutes s /\ q permutes t
==> sign (\(i,j). if i IN s /\ j IN t then p i,q j else i,j) =
sign p pow CARD t * sign q pow CARD s`,
let lemma1 = prove
(`!p (s:A->bool) (t:B->bool).
p permutes s /\ FINITE s /\ FINITE t
==> sign (\(i,j). if i IN s /\ j IN t then p i,j else i,j) =
sign p pow CARD t`,
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[REWRITE_TAC[CARD_CLAUSES; NOT_IN_EMPTY] THEN
REWRITE_TAC[GSYM LAMBDA_PAIR_THM; SIGN_ID; real_pow];
MAP_EVERY X_GEN_TAC [`b:B`; `t:B->bool`] THEN STRIP_TAC] THEN
SUBGOAL_THEN
`(\(i:A,j:B). if i IN s /\ j IN b INSERT t then p i,j else i,j) =
(\(i,j). if i IN s /\ j IN {b} then p i,j else i,j) o
(\(i,j). if i IN s /\ j IN t then p i,j else i,j)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM] THEN
MAP_EVERY X_GEN_TAC [`i:A`; `j:B`] THEN
ASM_CASES_TAC `(i:A) IN s` THEN ASM_REWRITE_TAC[IN_INSERT] THEN
ASM_CASES_TAC `j:B = b` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
ASM_CASES_TAC `(j:B) IN t` THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
W(MP_TAC o PART_MATCH (lhand o rand) SIGN_COMPOSE o lhand o snd) THEN
ANTS_TAC THENL
[REWRITE_TAC[PERMUTATION_PERMUTES] THEN CONJ_TAC THENL
[EXISTS_TAC `(s:A->bool) CROSS {b:B}`;
EXISTS_TAC `(s:A->bool) CROSS (t:B->bool)`] THEN
ASM_REWRITE_TAC[FINITE_CROSS_EQ; FINITE_SING] THEN
MATCH_MP_TAC PERMUTES_CARTESIAN_PRODUCT THEN
ASM_REWRITE_TAC[PERMUTES_ID];
DISCH_THEN SUBST1_TAC] THEN
ASM_SIMP_TAC[CARD_CLAUSES; real_pow; IN_SING] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
MATCH_MP_TAC SIGN_TRANSFER THEN
EXISTS_TAC `\x:A. x,(b:B)` THEN EXISTS_TAC `s:A->bool` THEN
ASM_SIMP_TAC[PAIR_EQ; IN_IMAGE; FORALL_PAIR_THM] THEN
ASM_MESON_TAC[]) in
let lemma2 = prove
(`!p (s:A->bool) (t:B->bool).
FINITE s /\ p permutes t /\ FINITE t
==> sign (\(i:A,j:B). if i IN s /\ j IN t then i,p j else i,j) =
sign p pow CARD s`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`p:B->B`; `t:B->bool`; `s:A->bool`]
lemma1) THEN
ASM_REWRITE_TAC[] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
MATCH_MP_TAC SIGN_TRANSFER THEN
EXISTS_TAC `\(i:B,j:A). j,i` THEN
EXISTS_TAC `(t:B->bool) CROSS (s:A->bool)` THEN
ASM_REWRITE_TAC[FINITE_CROSS_EQ; FORALL_PAIR_THM; IN_CROSS] THEN
SIMP_TAC[PAIR_EQ; IN_IMAGE; IN_CROSS; EXISTS_PAIR_THM] THEN
CONJ_TAC THENL [ALL_TAC; ASM_MESON_TAC[]] THEN
MATCH_MP_TAC PERMUTES_CARTESIAN_PRODUCT THEN
ASM_REWRITE_TAC[PERMUTES_ID]) in
REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(\(i,j). if i IN s /\ j IN t then (p:A->A) i,(q:B->B) j else i,j) =
(\(i,j). if i IN s /\ j IN t then p i,j else i,j) o
(\(i,j). if i IN s /\ j IN t then i,q j else i,j)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM] THEN REPEAT GEN_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[PAIR_EQ]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[PERMUTES_ALT]) THEN ASM SET_TAC[];
W(MP_TAC o PART_MATCH (lhand o rand) SIGN_COMPOSE o lhand o snd)] THEN
ANTS_TAC THENL
[REWRITE_TAC[PERMUTATION_PERMUTES] THEN CONJ_TAC THEN
EXISTS_TAC `(s:A->bool) CROSS (t:B->bool)` THEN
ASM_SIMP_TAC[FINITE_CROSS_EQ; PERMUTES_CARTESIAN_PRODUCT; PERMUTES_ID];
DISCH_THEN SUBST1_TAC] THEN
ASM_SIMP_TAC[lemma1; lemma2]);;
(* ------------------------------------------------------------------------- *)
(* More lemmas about permutations. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_NUMSET_LE = prove
(`!p s:num->bool. p permutes s /\ (!i. i IN s ==> p(i) <= i) ==> p = I`,
REPEAT GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM; I_THM] THEN STRIP_TAC THEN
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `(n:num) IN s` THENL [ALL_TAC; ASM_MESON_TAC[permutes]] THEN
ASM_SIMP_TAC[GSYM LE_ANTISYM] THEN REWRITE_TAC[GSYM NOT_LT] THEN
ASM_MESON_TAC[PERMUTES_INJECTIVE; LT_REFL]);;
let PERMUTES_NUMSET_GE = prove
(`!p s:num->bool. p permutes s /\ (!i. i IN s ==> i <= p(i)) ==> p = I`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`inverse(p:num->num)`; `s:num->bool`] PERMUTES_NUMSET_LE) THEN
ANTS_TAC THENL
[ASM_MESON_TAC[PERMUTES_INVERSE; PERMUTES_INVERSES; PERMUTES_IN_IMAGE];
ASM_MESON_TAC[PERMUTES_INVERSE_INVERSE; INVERSE_I]]);;
let IMAGE_INVERSE_PERMUTATIONS = prove
(`!s:A->bool. {inverse p | p permutes s} = {p | p permutes s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN
MESON_TAC[PERMUTES_INVERSE_INVERSE; PERMUTES_INVERSE]);;
let IMAGE_COMPOSE_PERMUTATIONS_L = prove
(`!s q:A->A. q permutes s ==> {q o p | p permutes s} = {p | p permutes s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
X_GEN_TAC `p:A->A` THEN EQ_TAC THENL
[ASM_MESON_TAC[PERMUTES_COMPOSE];
DISCH_TAC THEN EXISTS_TAC `inverse(q:A->A) o (p:A->A)` THEN
ASM_SIMP_TAC[o_ASSOC; PERMUTES_INVERSE; PERMUTES_COMPOSE] THEN
ASM_MESON_TAC[PERMUTES_INVERSES_o; I_O_ID]]);;
let IMAGE_COMPOSE_PERMUTATIONS_R = prove
(`!s q:A->A. q permutes s ==> {p o q | p permutes s} = {p | p permutes s}`,
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
X_GEN_TAC `p:A->A` THEN EQ_TAC THENL
[ASM_MESON_TAC[PERMUTES_COMPOSE];
DISCH_TAC THEN EXISTS_TAC `(p:A->A) o inverse(q:A->A)` THEN
ASM_SIMP_TAC[GSYM o_ASSOC; PERMUTES_INVERSE; PERMUTES_COMPOSE] THEN
ASM_MESON_TAC[PERMUTES_INVERSES_o; I_O_ID]]);;
let PERMUTES_IN_NUMSEG = prove
(`!p n i. p permutes 1..n /\ i IN 1..n ==> 1 <= p(i) /\ p(i) <= n`,
REWRITE_TAC[permutes; IN_NUMSEG] THEN MESON_TAC[]);;
let SUM_PERMUTATIONS_INVERSE = prove
(`!f m n. sum {p | p permutes m..n} f =
sum {p | p permutes m..n} (\p. f(inverse p))`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV) [GSYM IMAGE_INVERSE_PERMUTATIONS] THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV)
[SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
MATCH_MP_TAC SUM_IMAGE THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN
MESON_TAC[PERMUTES_INVERSE_INVERSE]);;
let SUM_PERMUTATIONS_COMPOSE_L = prove
(`!f m n q.
q permutes m..n
==> sum {p | p permutes m..n} f =
sum {p | p permutes m..n} (\p. f(q o p))`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV)
[GSYM(MATCH_MP IMAGE_COMPOSE_PERMUTATIONS_L th)]) THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV)
[SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
MATCH_MP_TAC SUM_IMAGE THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `\p:num->num. inverse(q:num->num) o p`) THEN
REWRITE_TAC[o_ASSOC] THEN
EVERY_ASSUM(CONJUNCTS_THEN SUBST1_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
REWRITE_TAC[I_O_ID]);;
let SUM_PERMUTATIONS_COMPOSE_R = prove
(`!f m n q.
q permutes m..n
==> sum {p | p permutes m..n} f =
sum {p | p permutes m..n} (\p. f(p o q))`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV)
[GSYM(MATCH_MP IMAGE_COMPOSE_PERMUTATIONS_R th)]) THEN
GEN_REWRITE_TAC (funpow 2 LAND_CONV)
[SET_RULE `{f x | p x} = IMAGE f {x | p x}`] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
MATCH_MP_TAC SUM_IMAGE THEN
SIMP_TAC[FINITE_PERMUTATIONS; FINITE_NUMSEG; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `\p:num->num. p o inverse(q:num->num)`) THEN
REWRITE_TAC[GSYM o_ASSOC] THEN
EVERY_ASSUM(CONJUNCTS_THEN SUBST1_TAC o MATCH_MP PERMUTES_INVERSES_o) THEN
REWRITE_TAC[I_O_ID]);;
let CARD_EVEN_PERMUTATIONS = prove
(`!s:A->bool. FINITE s /\ 2 <= CARD s
==> 2 * CARD {p | p permutes s /\ evenperm p} = FACT(CARD s)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?a b:A. a IN s /\ b IN s /\ ~(a = b)` STRIP_ASSUME_TAC THENL
[MP_TAC(SPECL [`2`; `s:A->bool`] CHOOSE_SUBSET_STRONG) THEN
ASM_REWRITE_TAC[HAS_SIZE_CONV `s HAS_SIZE 2`] THEN SET_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `!p:A->A. p permutes s ==> permutation p` ASSUME_TAC THENL
[ASM_MESON_TAC[PERMUTATION_PERMUTES]; ALL_TAC] THEN
SUBGOAL_THEN `!Q. FINITE {p:A->A | p permutes s /\ Q p}` ASSUME_TAC THENL
[REWRITE_TAC[SET_RULE `{p | p permutes s /\ Q p} =
{p | p IN {p | p permutes s} /\ Q p}`] THEN
ASM_SIMP_TAC[FINITE_RESTRICT; FINITE_PERMUTATIONS];
ALL_TAC] THEN
SUBGOAL_THEN
`FACT(CARD s) = CARD ({p | p permutes s /\ evenperm p} UNION
IMAGE (\p. swap(a:A,b) o p)
{p | p permutes s /\ evenperm p})`
SUBST1_TAC THENL
[FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP CARD_PERMUTATIONS) THEN
AP_TERM_TAC THEN MATCH_MP_TAC(SET_RULE
`(!x. P x ==> P(f x)) /\ (!x. f(f x) = x) /\
(!x. P x ==> Q x \/ Q(f x))
==> {x | P x} = {x | P x /\ Q x} UNION IMAGE f {x | P x /\ Q x}`) THEN
ASM_SIMP_TAC[PERMUTES_COMPOSE; PERMUTES_SWAP; SWAP_IDEMPOTENT; o_ASSOC;
I_O_ID; EVENPERM_COMPOSE; PERMUTATION_SWAP; EVENPERM_SWAP] THEN
CONV_TAC TAUT;
W(MP_TAC o PART_MATCH (lhs o rand) CARD_UNION o rand o snd) THEN
ASM_SIMP_TAC[FINITE_IMAGE] THEN ANTS_TAC THENL
[MATCH_MP_TAC(SET_RULE
`(!x. P x ==> ~P(f x)) ==> {x | P x} INTER IMAGE f {x | P x} = {}`) THEN
ASM_SIMP_TAC[IN_ELIM_THM; EVENPERM_COMPOSE; PERMUTATION_SWAP] THEN
ASM_REWRITE_TAC[EVENPERM_SWAP];
DISCH_THEN SUBST1_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `b = a ==> 2 * a = a + b`) THEN
MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_SIMP_TAC[IN_ELIM_THM] THEN
MATCH_MP_TAC(MESON[]
`(!x. f(f x) = x) ==> (!x y. P x /\ P y /\ f x = f y ==> x = y)`) THEN
ASM_SIMP_TAC[SWAP_IDEMPOTENT; o_ASSOC; I_O_ID]]);;
(* ------------------------------------------------------------------------- *)
(* The special case of involutions. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_INVOLUTION = prove
(`!p s:A->bool. (!x. p(p x) = x) /\ (!x. ~(x IN s) ==> p x = x)
==> p permutes s`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC PERMUTES_BIJECTIONS THEN
EXISTS_TAC `p:A->A` THEN ASM_MESON_TAC[]);;
let SIGN_INVOLUTION = prove
(`!p:A->A s. FINITE s /\ (!x. p(p x) = x) /\ (!x. ~(x IN s) ==> p x = x)
==> sign p = --(&1) pow (CARD {x | ~(p x = x)} DIV 2)`,
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN GEN_TAC THEN
WF_INDUCT_TAC `CARD(s:A->bool)` THEN REPEAT STRIP_TAC THEN
ASM_CASES_TAC `p:A->A = I` THEN
ASM_SIMP_TAC[I_THM; EMPTY_GSPEC; CARD_CLAUSES; SIGN_I; DIV_0; real_pow;
ARITH_EQ] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [FUN_EQ_THM]) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; I_THM; NOT_FORALL_THM] THEN
X_GEN_TAC `a:A` THEN DISCH_TAC THEN
SUBGOAL_THEN `(a:A) IN s /\ p a IN s` STRIP_ASSUME_TAC THENL
[ASM_MESON_TAC[]; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o SPEC `s DELETE (a:A) DELETE (p a)`) THEN
ASM_SIMP_TAC[CARD_DELETE; FINITE_DELETE; IN_DELETE] THEN
ASM_SIMP_TAC[CARD_EQ_0; ARITH_RULE `n - 1 - 1 < n <=> ~(n = 0)`] THEN
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `permutation(p:A->A)` ASSUME_TAC THENL
[ASM_MESON_TAC[PERMUTATION_PERMUTES; PERMUTES_INVOLUTION]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC `p o swap(a:A,p a)`) THEN
ASM_SIMP_TAC[SIGN_COMPOSE; PERMUTATION_SWAP; SIGN_SWAP] THEN
REWRITE_TAC[o_THM; swap] THEN ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(REAL_RING `-- &1 * a:real = b ==> s * -- &1 = a ==> s = b`) THEN
SUBGOAL_THEN
`{x | ~(p (if x = a then p a else if x = p a then a else x) = x)} =
{x:A | ~(p x = x)} DELETE a DELETE (p a)`
SUBST1_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `FINITE {x:A | ~(p x = x)}` ASSUME_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `s:A->bool` THEN
ASM SET_TAC[];
ASM_SIMP_TAC[CARD_DELETE; IN_ELIM_THM; FINITE_DELETE; IN_DELETE]] THEN
REWRITE_TAC[GSYM(CONJUNCT2 real_pow)] THEN AP_TERM_TAC THEN
MATCH_MP_TAC(ARITH_RULE `m + 2 = n ==> SUC(m DIV 2) = n DIV 2`) THEN
MATCH_MP_TAC(ARITH_RULE `2 <= n ==> n - 1 - 1 + 2 = n`) THEN
TRANS_TAC LE_TRANS `CARD {a:A,p a}` THEN CONJ_TAC THENL
[ASM_SIMP_TAC[CARD_CLAUSES; FINITE_RULES; IN_SING; NOT_IN_EMPTY] THEN
CONV_TAC NUM_REDUCE_CONV;
MATCH_MP_TAC CARD_SUBSET THEN ASM SET_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Cyclic permutations realized via modular addition. *)
(* ------------------------------------------------------------------------- *)
let PERMUTES_CYCLIC = prove
(`!n. (\i. if i < n then (i + 1) MOD n else i) permutes {i | i < n}`,
GEN_TAC THEN SIMP_TAC[PERMUTES_FINITE_INJECTIVE; FINITE_NUMSEG_LT] THEN
REWRITE_TAC[IMP_CONJ; IN_ELIM_THM] THEN SIMP_TAC[] THEN
SIMP_TAC[MOD_CASES; ARITH_RULE `x < n ==> x + 1 < 2 * n`] THEN ARITH_TAC);;
let PERMUTES_CYCLIC_N = prove
(`!n k. (\i. if i < n then (i + k) MOD n else i) permutes {i | i < n}`,
GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[ADD_CLAUSES; MOD_LT; COND_ID; PERMUTES_ID] THEN
SUBGOAL_THEN
`(\i. if i < n then SUC(i + k) MOD n else i) =
(\i. if i < n then (i + 1) MOD n else i) o
(\i. if i < n then (i + k) MOD n else i)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM] THEN X_GEN_TAC `m:num` THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[CONJUNCT1 LT] THEN
ASM_CASES_TAC `m:num < n` THEN ASM_REWRITE_TAC[MOD_LT_EQ] THEN
REWRITE_TAC[ADD1] THEN MESON_TAC[MOD_ADD_MOD; MOD_MOD_REFL];
MATCH_MP_TAC PERMUTES_COMPOSE THEN
ASM_REWRITE_TAC[PERMUTES_CYCLIC]]);;
let PERMUTATION_CYCLIC = prove
(`!n. permutation (\i. if i < n then (i + 1) MOD n else i)`,
GEN_TAC THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
EXISTS_TAC `{i:num | i < n}` THEN
ASM_REWRITE_TAC[PERMUTES_CYCLIC; FINITE_NUMSEG_LT]);;
let PERMUTATION_CYCLIC_N = prove
(`!n k. permutation (\i. if i < n then (i + k) MOD n else i)`,
REPEAT GEN_TAC THEN REWRITE_TAC[PERMUTATION_PERMUTES] THEN
EXISTS_TAC `{i:num | i < n}` THEN
ASM_REWRITE_TAC[PERMUTES_CYCLIC_N; FINITE_NUMSEG_LT]);;
let EVENPERM_CYCLIC = prove
(`!n. evenperm(\i. if i < n then (i + 1) MOD n else i) <=> n = 0 \/ ODD n`,
INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT; EVENPERM_ID; ODD] THEN
REWRITE_TAC[NOT_SUC] THEN
SUBGOAL_THEN
`(\i. if i < SUC n then (i + 1) MOD SUC n else i) =
(swap(0,n)) o (\i. if i < n then (i + 1) MOD n else i)`
SUBST1_TAC THENL
[SIMP_TAC[MOD_CASES; ARITH_RULE `x < n ==> x + 1 < 2 * n`] THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; swap] THEN
POP_ASSUM_LIST(K ALL_TAC) THEN
REWRITE_TAC[ARITH_RULE `m + 1 < SUC n <=> m < n`] THEN
X_GEN_TAC `m:num` THEN
ASM_CASES_TAC `m + 1 < n` THEN
ASM_SIMP_TAC[ARITH_RULE `m + 1 < n ==> m < n /\ m < SUC n`] THENL
[ASM_ARITH_TAC; ALL_TAC] THEN
ASM_CASES_TAC `m:num < n` THEN
ASM_SIMP_TAC[ARITH_RULE `m < n ==> m < SUC n`] THEN
ASM_ARITH_TAC;
ASM_SIMP_TAC[EVENPERM_COMPOSE; PERMUTATION_SWAP; PERMUTATION_CYCLIC] THEN
REWRITE_TAC[EVENPERM_SWAP] THEN
MESON_TAC[ODD]]);;
let EVENPERM_CYCLIC_N = prove
(`!n k. evenperm(\i. if i < n then (i + k) MOD n else i) <=>
n = 0 \/ ODD n \/ EVEN k`,
GEN_TAC THEN INDUCT_TAC THEN
SIMP_TAC[ADD_CLAUSES; MOD_LT; COND_ID; EVENPERM_ID; ARITH] THEN
SUBGOAL_THEN
`(\i. if i < n then SUC(i + k) MOD n else i) =
(\i. if i < n then (i + 1) MOD n else i) o
(\i. if i < n then (i + k) MOD n else i)`
SUBST1_TAC THENL
[REWRITE_TAC[FUN_EQ_THM; o_THM] THEN X_GEN_TAC `m:num` THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[CONJUNCT1 LT] THEN
ASM_CASES_TAC `m:num < n` THEN ASM_REWRITE_TAC[MOD_LT_EQ] THEN
REWRITE_TAC[ADD1] THEN MESON_TAC[MOD_ADD_MOD; MOD_MOD_REFL];
ALL_TAC] THEN
ASM_SIMP_TAC[EVENPERM_COMPOSE; PERMUTATION_CYCLIC_N] THEN
REWRITE_TAC[EVENPERM_CYCLIC; EVEN; NOT_EVEN] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[] THEN
MESON_TAC[NOT_EVEN]);;
let SIGN_CYCLIC = prove
(`!n. sign(\i. if i < n then (i + 1) MOD n else i) = --(&1) pow (n - 1)`,
GEN_TAC THEN REWRITE_TAC[sign; EVENPERM_CYCLIC] THEN
REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE; EVEN_SUB; ARITH; NOT_EVEN] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[LE_REFL; ARITH] THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 1 \/ n = 0`]);;
let SIGN_CYCLIC_N = prove
(`!n k. sign(\i. if i < n then (i + k) MOD n else i) =
--(&1) pow (k * (n - 1))`,
REPEAT GEN_TAC THEN REWRITE_TAC[sign; EVENPERM_CYCLIC_N] THEN
REWRITE_TAC[REAL_POW_NEG; REAL_POW_ONE; EVEN_MULT;
EVEN_SUB; ARITH; NOT_EVEN] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[LE_REFL; ARITH] THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 1 \/ n = 0`] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Conversion for `{p | p permutes s}` where s is a set enumeration. *)
(* ------------------------------------------------------------------------- *)
let PERMSET_CONV =
let pth_empty = prove
(`{p | p permutes {}} = {I}`,
REWRITE_TAC[PERMUTES_EMPTY] THEN SET_TAC[])
and pth_cross = SET_RULE
`IMAGE f {x,y | x IN {} /\ y IN t} = {} /\
IMAGE f {x,y | x IN (a INSERT s) /\ y IN t} =
(IMAGE (\y. f(a,y)) t) UNION (IMAGE f {x,y | x IN s /\ y IN t})`
and pth_union = SET_RULE
`{} UNION t = t /\
(x INSERT s) UNION t = x INSERT (s UNION t)` in
let rec PERMSET_CONV tm =
(GEN_REWRITE_CONV I [pth_empty] ORELSEC
(GEN_REWRITE_CONV I [PERMUTES_INSERT] THENC
ONCE_DEPTH_CONV PERMSET_CONV THENC
REWRITE_CONV[pth_cross] THENC
REWRITE_CONV[IMAGE_CLAUSES] THENC
REWRITE_CONV[pth_union] THENC
REWRITE_CONV[SWAP_REFL; I_O_ID])) tm in
PERMSET_CONV;;
(* ------------------------------------------------------------------------- *)
(* Sum over a set of permutations (could generalize to iteration). *)
(* ------------------------------------------------------------------------- *)
let SUM_OVER_PERMUTATIONS_INSERT = prove
(`!f a s. FINITE s /\ ~(a IN s)
==> sum {p:A->A | p permutes (a INSERT s)} f =
sum (a INSERT s)
(\b. sum {p | p permutes s} (\q. f(swap(a,b) o q)))`,
let lemma = prove
(`(\(b,p). f (swap (a,b) o p)) = f o (\(b,p). swap(a,b) o p)`,
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM; o_THM]) in
REPEAT STRIP_TAC THEN REWRITE_TAC[PERMUTES_INSERT] THEN
ASM_SIMP_TAC[FINITE_PERMUTATIONS; FINITE_INSERT; SUM_SUM_PRODUCT] THEN
REWRITE_TAC[lemma] THEN MATCH_MP_TAC SUM_IMAGE THEN
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN
REWRITE_TAC[IN_ELIM_THM] THEN
MAP_EVERY X_GEN_TAC [`b:A`; `p:A->A`; `c:A`; `q:A->A`] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[PAIR_EQ] THEN
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL
[FIRST_X_ASSUM(MP_TAC o C AP_THM `a:A`) THEN
REWRITE_TAC[o_THM; swap] THEN ASM_MESON_TAC[permutes];
DISCH_THEN SUBST_ALL_TAC THEN
FIRST_X_ASSUM(MP_TAC o AP_TERM `(\p:A->A. swap(a:A,c) o p)`) THEN
REWRITE_TAC[o_ASSOC; SWAP_IDEMPOTENT; I_O_ID]]);;
let SUM_OVER_PERMUTATIONS_NUMSEG = prove
(`!f m n. m <= n
==> sum {p | p permutes (m..n)} f =
sum(m..n) (\i. sum {p | p permutes (m+1..n)}
(\q. f(swap(m,i) o q)))`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[GSYM NUMSEG_LREC] THEN
MATCH_MP_TAC SUM_OVER_PERMUTATIONS_INSERT THEN
REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG] THEN ARITH_TAC);;