Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Library /modmul_group.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
11 kB
(* ========================================================================= *)
(* The multiplicative group of integers modulo n. *)
(* ========================================================================= *)
needs "Library/grouptheory.ml";;
needs "Library/primitive.ml";;
(* ------------------------------------------------------------------------- *)
(* A trivial general lemma used to dispose of degnerate cases. *)
(* ------------------------------------------------------------------------- *)
let MULT_EQ_2 = prove
(`!m n. m * n = 2 <=> m = 1 /\ n = 2 \/ m = 2 /\ n = 1`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
ASM_CASES_TAC `m = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[MULT_CLAUSES; ARITH] THEN
MATCH_MP_TAC(ARITH_RULE `2 * 2 <= p ==> ~(p = 2)`) THEN
MATCH_MP_TAC LE_MULT2 THEN ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Multiplicative group of integers mod n, with degenerate {1} for n <= 1. *)
(* ------------------------------------------------------------------------- *)
let modmul_group = new_definition
`modmul_group n =
if n <= 1 then singleton_group 1
else group({m | m < n /\ coprime(m,n)},
1,inverse_mod n,(\a b. (a * b) MOD n))`;;
let MODMUL_GROUP = prove
(`(!n. group_carrier(modmul_group n) =
if n <= 1 then {1} else {m | m < n /\ coprime(m,n)}) /\
(!n. group_id(modmul_group n) = 1) /\
(!n. group_inv(modmul_group n) = inverse_mod n) /\
(!n. group_mul(modmul_group n) =
if n <= 1 then (\a b. 1) else (\a b. (a * b) MOD n))`,
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `n:num` THEN
REWRITE_TAC[modmul_group] THEN
ASM_CASES_TAC `n <= 1` THEN ASM_REWRITE_TAC[] THENL
[REWRITE_TAC[SINGLETON_GROUP] THEN ASM_REWRITE_TAC[FUN_EQ_THM; inverse_mod];
RULE_ASSUM_TAC(REWRITE_RULE[ARITH_RULE `~(n <= 1) <=> 2 <= n`])] THEN
REWRITE_TAC[group_carrier; group_id; group_inv; group_mul] THEN
REWRITE_TAC[GSYM PAIR_EQ; GSYM(CONJUNCT2 group_tybij)] THEN
ASM_REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `1 < n <=> 2 <= n`] THEN
REWRITE_TAC[NUMBER_RULE `coprime(1,n)`; PAIR_EQ] THEN
REPEAT CONJ_TAC THENL
[X_GEN_TAC `m:num` THEN STRIP_TAC THEN
ASM_REWRITE_TAC[INVERSE_MOD_BOUND] THEN
MATCH_MP_TAC(NUMBER_RULE `!m. (a * m == 1) (mod n) ==> coprime(a,n)`) THEN
EXISTS_TAC `m:num` THEN REWRITE_TAC[INVERSE_MOD_LMUL_EQ] THEN
ASM_MESON_TAC[COPRIME_SYM];
REWRITE_TAC[COPRIME_LMOD; COPRIME_LMUL] THEN
ASM_SIMP_TAC[MOD_LT_EQ; ARITH_RULE `2 <= n ==> ~(n = 0)`];
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM MOD_MULT_MOD2] THEN
REWRITE_TAC[MOD_MOD_REFL] THEN REWRITE_TAC[MOD_MULT_MOD2] THEN
REWRITE_TAC[MULT_ASSOC];
SIMP_TAC[MULT_CLAUSES; MOD_LT];
REWRITE_TAC[MOD_UNIQUE; INVERSE_MOD_RMUL_EQ; INVERSE_MOD_LMUL_EQ] THEN
ASM_SIMP_TAC[ARITH_RULE `2 <= n ==> 1 < n`] THEN
MESON_TAC[COPRIME_SYM]]);;
let FINITE_MODMUL_GROUP = prove
(`!n. FINITE(group_carrier(modmul_group n))`,
GEN_TAC THEN REWRITE_TAC[MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[FINITE_SING] THEN
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `0..n` THEN
REWRITE_TAC[FINITE_NUMSEG; SUBSET; IN_ELIM_THM; IN_NUMSEG] THEN
ARITH_TAC);;
let ORDER_MODMUL_GROUP = prove
(`!n. CARD(group_carrier(modmul_group n)) =
if n = 0 then 1 else phi n`,
GEN_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[MODMUL_GROUP; LE_0; CARD_SING] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[LE_REFL; PHI_1; CARD_SING] THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN
ONCE_REWRITE_TAC[CONJ_SYM] THEN REWRITE_TAC[PHI_ALT]);;
let HAS_SIZE_MODMUL_GROUP = prove
(`!n. ~(n = 0) ==> group_carrier(modmul_group n) HAS_SIZE phi n`,
SIMP_TAC[HAS_SIZE; FINITE_MODMUL_GROUP] THEN
SIMP_TAC[ORDER_MODMUL_GROUP]);;
let ABELIAN_MODMUL_GROUP = prove
(`!n. abelian_group(modmul_group n)`,
GEN_TAC THEN REWRITE_TAC[abelian_group; MODMUL_GROUP] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MULT_SYM]);;
let TRIVIAL_MODMUL_GROUP = prove
(`!n. trivial_group(modmul_group n) <=> n <= 2`,
GEN_TAC THEN REWRITE_TAC[TRIVIAL_GROUP_HAS_SIZE_1; HAS_SIZE] THEN
REWRITE_TAC[FINITE_MODMUL_GROUP] THEN
REWRITE_TAC[ORDER_MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[ARITH] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[PHI_1; ARITH] THEN
ASM_CASES_TAC `n = 2` THEN ASM_REWRITE_TAC[PHI_2; ARITH] THEN
MATCH_MP_TAC(ARITH_RULE `~(n <= 2) /\ 2 <= p ==> (p = 1 <=> n <= 2)`) THEN
CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC PHI_LOWERBOUND_2] THEN
ASM_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Chinese remainder theorem in group-theoretic language. *)
(* ------------------------------------------------------------------------- *)
let GROUP_HOMOMORPHISM_PROD_MODMUL_GROUP = prove
(`!m n. 2 <= m /\ 2 <= n
==> group_homomorphism (modmul_group(m * n),
prod_group (modmul_group m)
(modmul_group n))
(\a. (a MOD m),(a MOD n))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[GROUP_HOMOMORPHISM; PROD_GROUP; SUBSET] THEN
REWRITE_TAC[FORALL_IN_IMAGE; FORALL_PAIR_THM; IN_CROSS] THEN
REWRITE_TAC[MODMUL_GROUP] THEN
REWRITE_TAC[ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`] THEN
ASM_SIMP_TAC[MULT_EQ_0; MULT_EQ_1; IN_ELIM_THM; MOD_LT_EQ; COPRIME_LMOD;
PAIR_EQ; ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
SIMP_TAC[COPRIME_RMUL; MOD_MOD; ONCE_REWRITE_RULE[MULT_SYM] MOD_MOD] THEN
REWRITE_TAC[MOD_MULT_MOD2]);;
let GROUP_ISOMORPHISM_PROD_MODMUL_GROUP = prove
(`!m n. 2 <= m /\ 2 <= n /\ coprime(m,n)
==> group_isomorphism (modmul_group(m * n),
prod_group (modmul_group m)
(modmul_group n))
(\a. (a MOD m),(a MOD n))`,
REPEAT STRIP_TAC THEN
W(MP_TAC o PART_MATCH (lhand o rand)
GROUP_ISOMORPHISM_EQ_MONOMORPHISM_FINITE o snd) THEN
ASM_SIMP_TAC[ORDER_MODMUL_GROUP; FINITE_PROD_GROUP;
FINITE_MODMUL_GROUP; MULT_EQ_0;
CONJUNCT1 PROD_GROUP; CARD_CROSS; PHI_MULTIPLICATIVE;
ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[group_monomorphism] THEN
ASM_SIMP_TAC[GROUP_HOMOMORPHISM_PROD_MODMUL_GROUP] THEN
ASM_SIMP_TAC[MODMUL_GROUP; MULT_EQ_0; MULT_EQ_1;
ARITH_RULE `n <= 1 <=> n = 0 \/ n = 1`;
ARITH_RULE `2 <= n ==> ~(n = 0) /\ ~(n = 1)`] THEN
REWRITE_TAC[PAIR_EQ; IN_ELIM_THM; GSYM CONG] THEN
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN
EXISTS_TAC `m * n:num` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[NUMBER_RULE
`coprime(m:num,n) /\ (x == y) (mod m) /\ (x == y) (mod n)
==> (x == y) (mod(m * n))`]);;
let ISOMORPHIC_GROUP_MODMUL_GROUP = prove
(`!m n. coprime(m,n)
==> prod_group (modmul_group m)
(modmul_group n)
isomorphic_group (modmul_group (m * n))`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC(MESON[ISOMORPHIC_TRIVIAL_GROUPS]
`(trivial_group G <=> trivial_group H) /\
(~trivial_group G /\ ~trivial_group H ==> G isomorphic_group H)
==> G isomorphic_group H`) THEN
REWRITE_TAC[TRIVIAL_PROD_GROUP; TRIVIAL_MODMUL_GROUP] THEN
POP_ASSUM MP_TAC THEN
ASM_CASES_TAC `m = 0` THEN ASM_SIMP_TAC[COPRIME_0; ARITH] THEN
ASM_CASES_TAC `n = 0` THEN ASM_SIMP_TAC[COPRIME_0; ARITH] THEN
DISCH_TAC THEN
ASM_CASES_TAC `m = 1` THEN
ASM_SIMP_TAC[MULT_CLAUSES; ISOMORPHIC_PROD_TRIVIAL_GROUP;
TRIVIAL_MODMUL_GROUP; ARITH] THEN
ASM_CASES_TAC `n = 1` THEN
ASM_SIMP_TAC[MULT_CLAUSES; ISOMORPHIC_PROD_TRIVIAL_GROUP;
TRIVIAL_MODMUL_GROUP; ARITH] THEN
ASM_REWRITE_TAC[ARITH_RULE `n <= 2 <=> n = 0 \/ n = 1 \/ n = 2`] THEN
ASM_REWRITE_TAC[MULT_EQ_0; MULT_EQ_1; MULT_EQ_2] THEN
CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_REFL]; DISCH_THEN(K ALL_TAC)] THEN
ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN
REWRITE_TAC[isomorphic_group] THEN
EXISTS_TAC `\a. (a MOD m),(a MOD n)` THEN
MATCH_MP_TAC GROUP_ISOMORPHISM_PROD_MODMUL_GROUP THEN
ASM_REWRITE_TAC[] THEN ASM_ARITH_TAC);;
let GROUP_POW_MODMUL_GROUP = prove
(`!n a k. group_pow (modmul_group n) a k =
if n <= 1 then 1 else (a EXP k) MOD n`,
GEN_TAC THEN GEN_TAC THEN INDUCT_TAC THEN
ASM_REWRITE_TAC[group_pow; MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[EXP] THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_LT THEN ASM_ARITH_TAC;
MESON_TAC[MOD_MULT_MOD2; MOD_MOD_REFL; MOD_EXP_MOD]]);;
let GROUP_ELEMENT_ORDER_MODMUL_GROUP = prove
(`!n a. a IN group_carrier(modmul_group n)
==> group_element_order (modmul_group n) a = order n a`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_UNIQUE] THEN
REWRITE_TAC[GSYM ORDER_DIVIDES] THEN
X_GEN_TAC `k:num` THEN POP_ASSUM MP_TAC THEN
REWRITE_TAC[GROUP_POW_MODMUL_GROUP] THEN
REWRITE_TAC[MODMUL_GROUP] THEN
COND_CASES_TAC THEN ASM_SIMP_TAC[IN_SING; EXP_ONE; CONG] THEN
DISCH_THEN(K ALL_TAC) THEN RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE]) THEN
ASM_SIMP_TAC[MOD_LT]);;
(* ------------------------------------------------------------------------- *)
(* Existence of primitive roots in group-theoretic language. *)
(* ------------------------------------------------------------------------- *)
let CYCLIC_MODMUL_GROUP = prove
(`!n. cyclic_group(modmul_group n) <=>
n = 0 \/ n = 1 \/ n = 2 \/ n = 4 \/
?p k. prime p /\ 3 <= p /\ (n = p EXP k \/ n = 2 * p EXP k)`,
GEN_TAC THEN ASM_CASES_TAC `n <= 2` THENL
[ASM_SIMP_TAC[TRIVIAL_MODMUL_GROUP;
TRIVIAL_IMP_CYCLIC_GROUP] THEN
ASM_ARITH_TAC;
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE])] THEN
SIMP_TAC[CYCLIC_GROUP_ELEMENT_ORDER; FINITE_MODMUL_GROUP] THEN
ONCE_REWRITE_TAC[TAUT `p /\ q <=> ~(p ==> ~q)`] THEN
SIMP_TAC[GROUP_ELEMENT_ORDER_MODMUL_GROUP] THEN
MP_TAC(SPEC `n:num` PRIMITIVE_ROOT_EXISTS) THEN
ASM_SIMP_TAC[ORDER_MODMUL_GROUP; FINITE_MODMUL_GROUP;
MODMUL_GROUP;
ARITH_RULE `2 < n ==> ~(n = 0) /\ ~(n = 1) /\ ~(n <= 1)`] THEN
REWRITE_TAC[IN_ELIM_THM; NOT_IMP] THEN DISCH_THEN(SUBST1_TAC o SYM) THEN
EQ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `k MOD n` THEN
ASM_SIMP_TAC[MOD_LT_EQ; ARITH_RULE `2 < n ==> ~(n = 0)`] THEN
MATCH_MP_TAC(TAUT `(~p ==> ~q) /\ q ==> p /\ q`) THEN
ONCE_REWRITE_TAC[COPRIME_SYM] THEN SIMP_TAC[GSYM ORDER_EQ_0] THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [EQ_SYM_EQ] THEN
ASM_SIMP_TAC[PHI_EQ_0; ARITH_RULE `2 < n ==> ~(n = 0)`] THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN MATCH_MP_TAC ORDER_CONG THEN
REWRITE_TAC[CONG_LMOD; CONG_REFL]);;