Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The integer/rational-valued reals, and the "floor" and "frac" functions. *) | |
(* ========================================================================= *) | |
prioritize_real();; | |
(* ------------------------------------------------------------------------- *) | |
(* Closure theorems and other lemmas for the integer-valued reals. *) | |
(* ------------------------------------------------------------------------- *) | |
let INTEGER_CASES = prove | |
(`integer x <=> (?n. x = &n) \/ (?n. x = -- &n)`, | |
REWRITE_TAC[is_int; OR_EXISTS_THM]);; | |
let REAL_ABS_INTEGER_LEMMA = prove | |
(`!x. integer(x) /\ ~(x = &0) ==> &1 <= abs(x)`, | |
GEN_TAC THEN REWRITE_TAC[integer] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `(x = &0) <=> (abs(x) = &0)`] THEN | |
POP_ASSUM(CHOOSE_THEN SUBST1_TAC) THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ; REAL_OF_NUM_LE] THEN ARITH_TAC);; | |
let INTEGER_CLOSED = prove | |
(`(!n. integer(&n)) /\ | |
(!x y. integer(x) /\ integer(y) ==> integer(x + y)) /\ | |
(!x y. integer(x) /\ integer(y) ==> integer(x - y)) /\ | |
(!x y. integer(x) /\ integer(y) ==> integer(x * y)) /\ | |
(!x r. integer(x) ==> integer(x pow r)) /\ | |
(!x. integer(x) ==> integer(--x)) /\ | |
(!x. integer(x) ==> integer(abs x)) /\ | |
(!x y. integer(x) /\ integer(y) ==> integer(max x y)) /\ | |
(!x y. integer(x) /\ integer(y) ==> integer(min x y))`, | |
REWRITE_TAC[integer] THEN | |
MATCH_MP_TAC(TAUT | |
`g /\ h /\ x /\ c /\ d /\ e /\ f /\ (a /\ e ==> b) /\ a | |
==> x /\ a /\ b /\ c /\ d /\ e /\ f /\ g /\ h`) THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[real_max] THEN MESON_TAC[]; | |
REWRITE_TAC[real_min] THEN MESON_TAC[]; | |
REWRITE_TAC[REAL_ABS_NUM] THEN MESON_TAC[]; | |
REWRITE_TAC[REAL_ABS_MUL] THEN MESON_TAC[REAL_OF_NUM_MUL]; | |
REWRITE_TAC[REAL_ABS_POW] THEN MESON_TAC[REAL_OF_NUM_POW]; | |
REWRITE_TAC[REAL_ABS_NEG]; REWRITE_TAC[REAL_ABS_ABS]; | |
REWRITE_TAC[real_sub] THEN MESON_TAC[]; ALL_TAC] THEN | |
SIMP_TAC[REAL_ARITH `&0 <= a ==> ((abs(x) = a) <=> (x = a) \/ (x = --a))`; | |
REAL_POS] THEN | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_OF_NUM_ADD] THENL | |
[MESON_TAC[]; ALL_TAC; ALL_TAC; MESON_TAC[]] THEN | |
REWRITE_TAC[REAL_ARITH `(--a + b = c) <=> (a + c = b)`; | |
REAL_ARITH `(a + --b = c) <=> (b + c = a)`] THEN | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN | |
MESON_TAC[LE_EXISTS; ADD_SYM; LE_CASES]);; | |
let INTEGER_ADD = prove | |
(`!x y. integer(x) /\ integer(y) ==> integer(x + y)`, | |
REWRITE_TAC[INTEGER_CLOSED]);; | |
let INTEGER_SUB = prove | |
(`!x y. integer(x) /\ integer(y) ==> integer(x - y)`, | |
REWRITE_TAC[INTEGER_CLOSED]);; | |
let INTEGER_MUL = prove | |
(`!x y. integer(x) /\ integer(y) ==> integer(x * y)`, | |
REWRITE_TAC[INTEGER_CLOSED]);; | |
let INTEGER_POW = prove | |
(`!x n. integer(x) ==> integer(x pow n)`, | |
REWRITE_TAC[INTEGER_CLOSED]);; | |
let REAL_LE_INTEGERS = prove | |
(`!x y. integer(x) /\ integer(y) ==> (x <= y <=> (x = y) \/ x + &1 <= y)`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `y - x` REAL_ABS_INTEGER_LEMMA) THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);; | |
let REAL_LE_CASES_INTEGERS = prove | |
(`!x y. integer(x) /\ integer(y) ==> x <= y \/ y + &1 <= x`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `y - x` REAL_ABS_INTEGER_LEMMA) THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);; | |
let REAL_LE_REVERSE_INTEGERS = prove | |
(`!x y. integer(x) /\ integer(y) /\ ~(y + &1 <= x) ==> x <= y`, | |
MESON_TAC[REAL_LE_CASES_INTEGERS]);; | |
let REAL_LT_INTEGERS = prove | |
(`!x y. integer(x) /\ integer(y) ==> (x < y <=> x + &1 <= y)`, | |
MESON_TAC[REAL_NOT_LT; REAL_LE_CASES_INTEGERS; | |
REAL_ARITH `x + &1 <= y ==> x < y`]);; | |
let REAL_EQ_INTEGERS = prove | |
(`!x y. integer x /\ integer y ==> (x = y <=> abs(x - y) < &1)`, | |
REWRITE_TAC[REAL_ARITH `x = y <=> ~(x < y \/ y < x)`] THEN | |
SIMP_TAC[REAL_LT_INTEGERS] THEN REAL_ARITH_TAC);; | |
let REAL_EQ_INTEGERS_IMP = prove | |
(`!x y. integer x /\ integer y /\ abs(x - y) < &1 ==> x = y`, | |
SIMP_TAC[REAL_EQ_INTEGERS]);; | |
let INTEGER_NEG = prove | |
(`!x. integer(--x) <=> integer(x)`, | |
MESON_TAC[INTEGER_CLOSED; REAL_NEG_NEG]);; | |
let INTEGER_ABS = prove | |
(`!x. integer(abs x) <=> integer(x)`, | |
GEN_TAC THEN REWRITE_TAC[real_abs] THEN COND_CASES_TAC THEN | |
REWRITE_TAC[INTEGER_NEG]);; | |
let INTEGER_POS = prove | |
(`!x. &0 <= x ==> (integer(x) <=> ?n. x = &n)`, | |
SIMP_TAC[integer; real_abs]);; | |
let NONNEGATIVE_INTEGER = prove | |
(`!x. integer x /\ &0 <= x <=> ?n. x = &n`, | |
MESON_TAC[INTEGER_POS; INTEGER_CLOSED; REAL_POS]);; | |
let NONPOSITIVE_INTEGER = prove | |
(`!x. integer x /\ x <= &0 <=> ?n. x = -- &n`, | |
GEN_TAC THEN REWRITE_TAC[is_int] THEN | |
REWRITE_TAC[LEFT_AND_EXISTS_THM; REAL_ARITH `a + b = &0 <=> a = --b`] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);; | |
let NONPOSITIVE_INTEGER_ALT = prove | |
(`!x. integer x /\ x <= &0 <=> ?n. x + &n = &0`, | |
GEN_TAC THEN REWRITE_TAC[NONPOSITIVE_INTEGER] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN REAL_ARITH_TAC);; | |
let INTEGER_ADD_EQ = prove | |
(`(!x y. integer(x) ==> (integer(x + y) <=> integer(y))) /\ | |
(!x y. integer(y) ==> (integer(x + y) <=> integer(x)))`, | |
MESON_TAC[REAL_ADD_SUB; REAL_ADD_SYM; INTEGER_CLOSED]);; | |
let INTEGER_SUB_EQ = prove | |
(`(!x y. integer(x) ==> (integer(x - y) <=> integer(y))) /\ | |
(!x y. integer(y) ==> (integer(x - y) <=> integer(x)))`, | |
MESON_TAC[REAL_SUB_ADD; REAL_NEG_SUB; INTEGER_CLOSED]);; | |
let FORALL_INTEGER = prove | |
(`!P. (!n. P(&n)) /\ (!x. P x ==> P(--x)) ==> !x. integer x ==> P x`, | |
MESON_TAC[INTEGER_CASES]);; | |
let INTEGER_SUM = prove | |
(`!f:A->real s. (!x. x IN s ==> integer(f x)) ==> integer(sum s f)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_CLOSED THEN | |
ASM_REWRITE_TAC[INTEGER_CLOSED]);; | |
let INTEGER_ABS_MUL_EQ_1 = prove | |
(`!x y. integer x /\ integer y | |
==> (abs(x * y) = &1 <=> abs x = &1 /\ abs y = &1)`, | |
REWRITE_TAC[integer] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_MUL] THEN | |
REWRITE_TAC[REAL_OF_NUM_EQ; REAL_OF_NUM_MUL; MULT_EQ_1]);; | |
let INTEGER_DIV = prove | |
(`!m n. integer(&m / &n) <=> n = 0 \/ n divides m`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THENL | |
[ASM_REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO; INTEGER_CLOSED]; | |
ASM_SIMP_TAC[INTEGER_POS; REAL_POS; REAL_LE_DIV; divides] THEN | |
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD | |
`~(n = &0) ==> (x / n = y <=> x = n * y)`] THEN | |
REWRITE_TAC[REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Similar theorems for rational-valued reals. *) | |
(* ------------------------------------------------------------------------- *) | |
let rational = new_definition | |
`rational x <=> ?m n. integer m /\ integer n /\ ~(n = &0) /\ x = m / n`;; | |
let RATIONAL_INTEGER = prove | |
(`!x. integer x ==> rational x`, | |
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[rational] THEN | |
MAP_EVERY EXISTS_TAC [`x:real`; `&1`] THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN CONV_TAC REAL_FIELD);; | |
let RATIONAL_NUM = prove | |
(`!n. rational(&n)`, | |
SIMP_TAC[RATIONAL_INTEGER; INTEGER_CLOSED]);; | |
let RATIONAL_NEG = prove | |
(`!x. rational(x) ==> rational(--x)`, | |
REWRITE_TAC[rational; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:real`; `m:real`; `n:real`] THEN | |
STRIP_TAC THEN | |
MAP_EVERY EXISTS_TAC [`--m:real`; `n:real`] THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN CONV_TAC REAL_FIELD);; | |
let RATIONAL_ABS = prove | |
(`!x. rational(x) ==> rational(abs x)`, | |
REWRITE_TAC[real_abs] THEN MESON_TAC[RATIONAL_NEG]);; | |
let RATIONAL_INV = prove | |
(`!x. rational(x) ==> rational(inv x)`, | |
GEN_TAC THEN ASM_CASES_TAC `x = &0` THEN | |
ASM_SIMP_TAC[REAL_INV_0; RATIONAL_NUM] THEN | |
REWRITE_TAC[rational; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`m:real`; `n:real`] THEN STRIP_TAC THEN | |
MAP_EVERY EXISTS_TAC [`n:real`; `m:real`] THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);; | |
let RATIONAL_ADD = prove | |
(`!x y. rational(x) /\ rational(y) ==> rational(x + y)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[rational; LEFT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`m1:real`; `n1:real`; `m2:real`; `n2:real`] THEN | |
STRIP_TAC THEN | |
MAP_EVERY EXISTS_TAC [`m1 * n2 + m2 * n1:real`; `n1 * n2:real`] THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);; | |
let RATIONAL_SUB = prove | |
(`!x y. rational(x) /\ rational(y) ==> rational(x - y)`, | |
SIMP_TAC[real_sub; RATIONAL_NEG; RATIONAL_ADD]);; | |
let RATIONAL_MUL = prove | |
(`!x y. rational(x) /\ rational(y) ==> rational(x * y)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[rational; LEFT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`m1:real`; `n1:real`; `m2:real`; `n2:real`] THEN | |
STRIP_TAC THEN | |
MAP_EVERY EXISTS_TAC [`m1 * m2:real`; `n1 * n2:real`] THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC REAL_FIELD);; | |
let RATIONAL_DIV = prove | |
(`!x y. rational(x) /\ rational(y) ==> rational(x / y)`, | |
SIMP_TAC[real_div; RATIONAL_INV; RATIONAL_MUL]);; | |
let RATIONAL_POW = prove | |
(`!x n. rational(x) ==> rational(x pow n)`, | |
GEN_TAC THEN INDUCT_TAC THEN | |
ASM_SIMP_TAC[real_pow; RATIONAL_NUM; RATIONAL_MUL]);; | |
let RATIONAL_CLOSED = prove | |
(`(!n. rational(&n)) /\ | |
(!x. integer x ==> rational x) /\ | |
(!x y. rational(x) /\ rational(y) ==> rational(x + y)) /\ | |
(!x y. rational(x) /\ rational(y) ==> rational(x - y)) /\ | |
(!x y. rational(x) /\ rational(y) ==> rational(x * y)) /\ | |
(!x y. rational(x) /\ rational(y) ==> rational(x / y)) /\ | |
(!x r. rational(x) ==> rational(x pow r)) /\ | |
(!x. rational(x) ==> rational(--x)) /\ | |
(!x. rational(x) ==> rational(inv x)) /\ | |
(!x. rational(x) ==> rational(abs x))`, | |
SIMP_TAC[RATIONAL_NUM; RATIONAL_NEG; RATIONAL_ABS; RATIONAL_INV; | |
RATIONAL_ADD; RATIONAL_SUB; RATIONAL_MUL; RATIONAL_DIV; | |
RATIONAL_POW; RATIONAL_INTEGER]);; | |
let RATIONAL_NEG_EQ = prove | |
(`!x. rational(--x) <=> rational x`, | |
MESON_TAC[REAL_NEG_NEG; RATIONAL_NEG]);; | |
let RATIONAL_ABS_EQ = prove | |
(`!x. rational(abs x) <=> rational x`, | |
REWRITE_TAC[real_abs] THEN MESON_TAC[RATIONAL_NEG_EQ; RATIONAL_NUM]);; | |
let RATIONAL_INV_EQ = prove | |
(`!x. rational(inv x) <=> rational x`, | |
MESON_TAC[REAL_INV_INV; RATIONAL_INV]);; | |
let RATIONAL_SUM = prove | |
(`!s x. (!i. i IN s ==> rational(x i)) ==> rational(sum s x)`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC SUM_CLOSED THEN | |
ASM_SIMP_TAC[RATIONAL_CLOSED]);; | |
let RATIONAL_ALT = prove | |
(`!x. rational(x) <=> ?p q. ~(q = 0) /\ abs x = &p / &q`, | |
GEN_TAC THEN REWRITE_TAC[rational] THEN EQ_TAC THENL | |
[REWRITE_TAC[integer] THEN STRIP_TAC THEN ASM_REWRITE_TAC[REAL_ABS_DIV] THEN | |
ASM_MESON_TAC[REAL_OF_NUM_EQ; REAL_ABS_ZERO]; | |
STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_THEN SUBST1_TAC o MATCH_MP | |
(REAL_ARITH `abs(x:real) = a ==> x = a \/ x = --a`)) THEN | |
ASM_REWRITE_TAC[real_div; GSYM REAL_MUL_LNEG] THEN | |
REWRITE_TAC[GSYM real_div] THEN | |
ASM_MESON_TAC[INTEGER_CLOSED; REAL_OF_NUM_EQ]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The floor and frac functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_TRUNCATE_POS = prove | |
(`!x. &0 <= x ==> ?n r. &0 <= r /\ r < &1 /\ (x = &n + r)`, | |
REPEAT STRIP_TAC THEN MP_TAC(SPEC `x:real` REAL_ARCH_SIMPLE) THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
INDUCT_TAC THEN REWRITE_TAC[LT_SUC_LE; CONJUNCT1 LT] THENL | |
[DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`0`; `&0`] THEN ASM_REAL_ARITH_TAC; | |
POP_ASSUM_LIST(K ALL_TAC)] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `n:num`)) THEN | |
REWRITE_TAC[LE_REFL; REAL_NOT_LE] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(DISJ_CASES_THEN STRIP_ASSUME_TAC o REWRITE_RULE[REAL_LE_LT]) | |
THENL | |
[MAP_EVERY EXISTS_TAC [`n:num`; `x - &n`] THEN ASM_REAL_ARITH_TAC; | |
MAP_EVERY EXISTS_TAC [`SUC n`; `x - &(SUC n)`] THEN | |
REWRITE_TAC[REAL_ADD_SUB; GSYM REAL_OF_NUM_SUC] THEN ASM_REAL_ARITH_TAC]);; | |
let REAL_TRUNCATE = prove | |
(`!x. ?n r. integer(n) /\ &0 <= r /\ r < &1 /\ (x = n + r)`, | |
GEN_TAC THEN DISJ_CASES_TAC(SPECL [`x:real`; `&0`] REAL_LE_TOTAL) THENL | |
[MP_TAC(SPEC `--x` REAL_ARCH_SIMPLE) THEN | |
REWRITE_TAC[REAL_ARITH `--a <= b <=> &0 <= a + b`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` | |
(MP_TAC o MATCH_MP REAL_TRUNCATE_POS)) THEN | |
REWRITE_TAC[REAL_ARITH `(a + b = c + d) <=> (a = (c - b) + d)`]; | |
ALL_TAC] THEN | |
ASM_MESON_TAC[integer; INTEGER_CLOSED; REAL_TRUNCATE_POS]);; | |
let FLOOR_FRAC = | |
new_specification ["floor"; "frac"] | |
(REWRITE_RULE[SKOLEM_THM] REAL_TRUNCATE);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful lemmas about floor and frac. *) | |
(* ------------------------------------------------------------------------- *) | |
let FLOOR_UNIQUE = prove | |
(`!x a. integer(a) /\ a <= x /\ x < a + &1 <=> (floor x = a)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[STRIP_TAC THEN STRIP_ASSUME_TAC(SPEC `x:real` FLOOR_FRAC) THEN | |
SUBGOAL_THEN `abs(floor x - a) < &1` MP_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
DISCH_TAC THEN REWRITE_TAC[REAL_NOT_LT] THEN | |
MATCH_MP_TAC REAL_ABS_INTEGER_LEMMA THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[INTEGER_CLOSED]; ASM_REAL_ARITH_TAC]; | |
DISCH_THEN(SUBST1_TAC o SYM) THEN | |
MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN | |
SIMP_TAC[] THEN REAL_ARITH_TAC]);; | |
let FLOOR_EQ_0 = prove | |
(`!x. (floor x = &0) <=> &0 <= x /\ x < &1`, | |
GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN | |
REWRITE_TAC[INTEGER_CLOSED; REAL_ADD_LID]);; | |
let FLOOR = prove | |
(`!x. integer(floor x) /\ floor(x) <= x /\ x < floor(x) + &1`, | |
GEN_TAC THEN MP_TAC(SPEC `x:real` FLOOR_FRAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; | |
let FLOOR_DOUBLE = prove | |
(`!u. &2 * floor(u) <= floor(&2 * u) /\ floor(&2 * u) <= &2 * floor(u) + &1`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_REVERSE_INTEGERS THEN | |
SIMP_TAC[INTEGER_CLOSED; FLOOR] THEN | |
MP_TAC(SPEC `u:real` FLOOR) THEN MP_TAC(SPEC `&2 * u` FLOOR) THEN | |
REAL_ARITH_TAC);; | |
let FRAC_FLOOR = prove | |
(`!x. frac(x) = x - floor(x)`, | |
MP_TAC FLOOR_FRAC THEN MATCH_MP_TAC MONO_FORALL THEN REAL_ARITH_TAC);; | |
let FLOOR_NUM = prove | |
(`!n. floor(&n) = &n`, | |
REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED] THEN REAL_ARITH_TAC);; | |
let REAL_LE_FLOOR = prove | |
(`!x n. integer(n) ==> (n <= floor x <=> n <= x)`, | |
REPEAT STRIP_TAC THEN EQ_TAC THENL | |
[ASM_MESON_TAC[FLOOR; REAL_LE_TRANS]; ALL_TAC] THEN | |
REWRITE_TAC[GSYM REAL_NOT_LT] THEN ASM_SIMP_TAC[REAL_LT_INTEGERS; FLOOR] THEN | |
MP_TAC(SPEC `x:real` FLOOR) THEN REAL_ARITH_TAC);; | |
let REAL_FLOOR_LE = prove | |
(`!x n. integer n ==> (floor x <= n <=> x - &1 < n)`, | |
REPEAT STRIP_TAC THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `x <= y <=> x + &1 <= y + &1`] THEN | |
ASM_SIMP_TAC[GSYM REAL_LT_INTEGERS; FLOOR; INTEGER_CLOSED] THEN | |
ONCE_REWRITE_TAC[TAUT `(p <=> q) <=> (~p <=> ~q)`] THEN | |
ASM_SIMP_TAC[REAL_NOT_LT; REAL_LE_FLOOR; INTEGER_CLOSED] THEN | |
REAL_ARITH_TAC);; | |
let REAL_FLOOR_LT = prove | |
(`!x n. integer n ==> (floor x < n <=> x < n)`, | |
SIMP_TAC[GSYM REAL_NOT_LE; REAL_LE_FLOOR]);; | |
let REAL_LT_FLOOR = prove | |
(`!x n. integer n ==> (n < floor x <=> n <= x - &1)`, | |
SIMP_TAC[GSYM REAL_NOT_LE; REAL_FLOOR_LE]);; | |
let FLOOR_POS = prove | |
(`!x. &0 <= x ==> ?n. floor(x) = &n`, | |
REPEAT STRIP_TAC THEN MP_TAC(CONJUNCT1(SPEC `x:real` FLOOR)) THEN | |
REWRITE_TAC[integer] THEN | |
ASM_SIMP_TAC[real_abs; REAL_LE_FLOOR; FLOOR; INTEGER_CLOSED]);; | |
let FLOOR_DIV_DIV = prove | |
(`!m n. ~(m = 0) ==> floor(&n / &m) = &(n DIV m)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE; INTEGER_CLOSED] THEN | |
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; | |
REAL_OF_NUM_LE; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD; LT_NZ] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN ARITH_TAC);; | |
let FLOOR_MONO = prove | |
(`!x y. x <= y ==> floor x <= floor y`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN | |
SIMP_TAC[FLOOR; REAL_LT_INTEGERS] THEN | |
MAP_EVERY (MP_TAC o C SPEC FLOOR) [`x:real`; `y:real`] THEN REAL_ARITH_TAC);; | |
let REAL_FLOOR_EQ = prove | |
(`!x. floor x = x <=> integer x`, | |
REWRITE_TAC[GSYM FLOOR_UNIQUE; REAL_LE_REFL; REAL_ARITH `x < x + &1`]);; | |
let REAL_FLOOR_LT_REFL = prove | |
(`!x. floor x < x <=> ~(integer x)`, | |
MESON_TAC[REAL_LT_LE; REAL_FLOOR_EQ; FLOOR]);; | |
let REAL_FRAC_EQ_0 = prove | |
(`!x. frac x = &0 <=> integer x`, | |
REWRITE_TAC[FRAC_FLOOR; REAL_SUB_0] THEN MESON_TAC[REAL_FLOOR_EQ]);; | |
let REAL_FRAC_POS_LT = prove | |
(`!x. &0 < frac x <=> ~(integer x)`, | |
REWRITE_TAC[FRAC_FLOOR; REAL_SUB_LT; REAL_FLOOR_LT_REFL]);; | |
let FRAC_NUM = prove | |
(`!n. frac(&n) = &0`, | |
REWRITE_TAC[REAL_FRAC_EQ_0; INTEGER_CLOSED]);; | |
let REAL_FLOOR_REFL = prove | |
(`!x. integer x ==> floor x = x`, | |
REWRITE_TAC[REAL_FLOOR_EQ]);; | |
let REAL_FRAC_ZERO = prove | |
(`!x. integer x ==> frac x = &0`, | |
REWRITE_TAC[REAL_FRAC_EQ_0]);; | |
let REAL_FLOOR_ADD = prove | |
(`!x y. floor(x + y) = if frac x + frac y < &1 then floor(x) + floor(y) | |
else (floor(x) + floor(y)) + &1`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN | |
CONJ_TAC THENL [ASM_MESON_TAC[INTEGER_CLOSED; FLOOR]; ALL_TAC] THEN | |
MAP_EVERY (MP_TAC o C SPEC FLOOR_FRAC)[`x:real`; `y:real`; `x + y:real`] THEN | |
REAL_ARITH_TAC);; | |
let REAL_FLOOR_TRIANGLE = prove | |
(`!x y. floor(x) + floor(y) <= floor(x + y) /\ | |
floor(x + y) <= (floor x + floor y) + &1`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[REAL_FLOOR_ADD] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC);; | |
let REAL_FLOOR_NEG = prove | |
(`!x. floor(--x) = if integer x then --x else --(floor x + &1)`, | |
GEN_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN | |
MP_TAC(SPEC `x:real` FLOOR) THEN | |
MP_TAC(SPEC `x:real` REAL_FLOOR_EQ) THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);; | |
let REAL_FRAC_ADD = prove | |
(`!x y. frac(x + y) = if frac x + frac y < &1 then frac(x) + frac(y) | |
else (frac(x) + frac(y)) - &1`, | |
REWRITE_TAC[FRAC_FLOOR; REAL_FLOOR_ADD] THEN REAL_ARITH_TAC);; | |
let FLOOR_POS_LE = prove | |
(`!x. &0 <= floor x <=> &0 <= x`, | |
SIMP_TAC[REAL_LE_FLOOR; INTEGER_CLOSED]);; | |
let FRAC_UNIQUE = prove | |
(`!x a. integer(x - a) /\ &0 <= a /\ a < &1 <=> frac x = a`, | |
REWRITE_TAC[FRAC_FLOOR; REAL_ARITH `x - f:real = a <=> f = x - a`] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM FLOOR_UNIQUE] THEN | |
AP_TERM_TAC THEN REAL_ARITH_TAC);; | |
let REAL_FRAC_EQ = prove | |
(`!x. frac x = x <=> &0 <= x /\ x < &1`, | |
REWRITE_TAC[GSYM FRAC_UNIQUE; REAL_SUB_REFL; INTEGER_CLOSED]);; | |
let INTEGER_ROUND = prove | |
(`!x. ?n. integer n /\ abs(x - n) <= &1 / &2`, | |
GEN_TAC THEN MATCH_MP_TAC(MESON[] `!a. P a \/ P(a + &1) ==> ?x. P x`) THEN | |
EXISTS_TAC `floor x` THEN MP_TAC(ISPEC `x:real` FLOOR) THEN | |
SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);; | |
let FRAC_DIV_MOD = prove | |
(`!m n. ~(n = 0) ==> frac(&m / &n) = &(m MOD n) / &n`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM FRAC_UNIQUE] THEN | |
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_LT_LDIV_EQ; REAL_OF_NUM_LT; LE_1; | |
REAL_ARITH `x / a - y / a:real = (x - y) / a`] THEN | |
MP_TAC(SPECL [`m:num`; `n:num`] DIVISION) THEN | |
ASM_SIMP_TAC[REAL_OF_NUM_LT; REAL_MUL_LID] THEN | |
DISCH_THEN(fun th -> | |
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o LAND_CONV o RAND_CONV) | |
[CONJUNCT1 th]) THEN | |
SIMP_TAC[REAL_OF_NUM_SUB; ONCE_REWRITE_RULE[ADD_SYM] LE_ADD; ADD_SUB] THEN | |
ASM_SIMP_TAC[GSYM REAL_OF_NUM_MUL; REAL_OF_NUM_EQ; INTEGER_CLOSED; | |
REAL_FIELD `~(n:real = &0) ==> (x * n) / n = x`]);; | |
let FRAC_NEG = prove | |
(`!x. frac(--x) = if integer x then &0 else &1 - frac x`, | |
GEN_TAC THEN REWRITE_TAC[FRAC_FLOOR; REAL_FLOOR_NEG] THEN | |
COND_CASES_TAC THEN REAL_ARITH_TAC);; | |
let REAL_FLOOR_FLOOR_DIV = prove | |
(`!x n. floor(floor x / &n) = floor(x / &n)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN | |
ASM_REWRITE_TAC[real_div; REAL_INV_0; REAL_MUL_RZERO] THEN | |
REWRITE_TAC[GSYM real_div; GSYM FLOOR_UNIQUE; FLOOR] THEN | |
ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN | |
SIMP_TAC[REAL_FLOOR_LT; REAL_LE_FLOOR; FLOOR; INTEGER_CLOSED] THEN | |
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; GSYM REAL_LE_RDIV_EQ; | |
REAL_OF_NUM_LT; LE_1; FLOOR]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Assertions that there are integers between well-spaced reals. *) | |
(* ------------------------------------------------------------------------- *) | |
let INTEGER_EXISTS_BETWEEN_ALT = prove | |
(`!x y. x + &1 <= y ==> ?n. integer n /\ x < n /\ n <= y`, | |
REPEAT STRIP_TAC THEN EXISTS_TAC `floor y` THEN | |
MP_TAC(SPEC `y:real` FLOOR) THEN SIMP_TAC[] THEN ASM_REAL_ARITH_TAC);; | |
let INTEGER_EXISTS_BETWEEN_LT = prove | |
(`!x y. x + &1 < y ==> ?n. integer n /\ x < n /\ n < y`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `integer y` THENL | |
[EXISTS_TAC `y - &1:real` THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC; | |
FIRST_ASSUM(MP_TAC o MATCH_MP INTEGER_EXISTS_BETWEEN_ALT o | |
MATCH_MP REAL_LT_IMP_LE) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[REAL_LT_LE] THEN ASM_MESON_TAC[]]);; | |
let INTEGER_EXISTS_BETWEEN = prove | |
(`!x y. x + &1 <= y ==> ?n. integer n /\ x <= n /\ n < y`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `integer y` THENL | |
[EXISTS_TAC `y - &1:real` THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC; | |
FIRST_ASSUM(MP_TAC o MATCH_MP INTEGER_EXISTS_BETWEEN_ALT) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[REAL_LT_LE] THENL [ASM_REAL_ARITH_TAC; ASM_MESON_TAC[]]]);; | |
let INTEGER_EXISTS_BETWEEN_ABS = prove | |
(`!x y. &1 <= abs(x - y) | |
==> ?n. integer n /\ (x <= n /\ n < y \/ y <= n /\ n < x)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL | |
[MP_TAC(ISPECL [`y:real`; `x:real`] INTEGER_EXISTS_BETWEEN); | |
MP_TAC(ISPECL [`x:real`; `y:real`] INTEGER_EXISTS_BETWEEN)] THEN | |
(ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS]) THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; | |
let INTEGER_EXISTS_BETWEEN_ABS_LT = prove | |
(`!x y. &1 < abs(x - y) | |
==> ?n. integer n /\ (x < n /\ n < y \/ y < n /\ n < x)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[real_abs] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THENL | |
[MP_TAC(ISPECL [`y:real`; `x:real`] INTEGER_EXISTS_BETWEEN_LT); | |
MP_TAC(ISPECL [`x:real`; `y:real`] INTEGER_EXISTS_BETWEEN_LT)] THEN | |
(ANTS_TAC THENL [ASM_REAL_ARITH_TAC; MATCH_MP_TAC MONO_EXISTS]) THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* More trivial theorems about real_of_int. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_OF_INT_OF_REAL = prove | |
(`!x. integer(x) ==> real_of_int(int_of_real x) = x`, | |
SIMP_TAC[int_rep]);; | |
let IMAGE_REAL_OF_INT_UNIV = prove | |
(`IMAGE real_of_int (:int) = integer`, | |
REWRITE_TAC[EXTENSION; IN_IMAGE; IN_UNIV] THEN | |
REWRITE_TAC[IN] THEN MESON_TAC[int_tybij]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finiteness of bounded set of integers. *) | |
(* ------------------------------------------------------------------------- *) | |
let HAS_SIZE_INTSEG_NUM = prove | |
(`!m n. {x | integer(x) /\ &m <= x /\ x <= &n} HAS_SIZE ((n + 1) - m)`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `{x | integer(x) /\ &m <= x /\ x <= &n} = | |
IMAGE real_of_num (m..n)` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; IN_ELIM_THM] THEN | |
X_GEN_TAC `x:real` THEN ASM_CASES_TAC `?k. x = &k` THENL | |
[FIRST_X_ASSUM(CHOOSE_THEN SUBST_ALL_TAC) THEN | |
REWRITE_TAC[REAL_OF_NUM_LE; INTEGER_CLOSED; REAL_OF_NUM_EQ] THEN | |
REWRITE_TAC[UNWIND_THM1; IN_NUMSEG]; | |
ASM_MESON_TAC[INTEGER_POS; REAL_ARITH `&n <= x ==> &0 <= x`]]; | |
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN REWRITE_TAC[HAS_SIZE_NUMSEG] THEN | |
SIMP_TAC[REAL_OF_NUM_EQ]]);; | |
let FINITE_INTSEG = prove | |
(`!a b. FINITE {x | integer(x) /\ a <= x /\ x <= b}`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `max (abs a) (abs b)` REAL_ARCH_SIMPLE) THEN | |
REWRITE_TAC[REAL_MAX_LE; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `n:num` THEN STRIP_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `{x | integer(x) /\ abs(x) <= &n}` THEN CONJ_TAC THENL | |
[ALL_TAC; SIMP_TAC[SUBSET; IN_ELIM_THM] THEN ASM_REAL_ARITH_TAC] THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `IMAGE (\x. &x) (0..n) UNION IMAGE (\x. --(&x)) (0..n)` THEN | |
ASM_SIMP_TAC[FINITE_UNION; FINITE_IMAGE; FINITE_NUMSEG] THEN | |
REWRITE_TAC[INTEGER_CASES; SUBSET; IN_ELIM_THM] THEN | |
REPEAT STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
REWRITE_TAC[IN_UNION; IN_IMAGE; REAL_OF_NUM_EQ; REAL_EQ_NEG2] THEN | |
REWRITE_TAC[UNWIND_THM1; IN_NUMSEG] THEN | |
REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN | |
ASM_REAL_ARITH_TAC);; | |
let HAS_SIZE_INTSEG_INT = prove | |
(`!a b. integer a /\ integer b | |
==> {x | integer(x) /\ a <= x /\ x <= b} HAS_SIZE | |
if b < a then 0 else num_of_int(int_of_real(b - a + &1))`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`{x | integer(x) /\ a <= x /\ x <= b} = | |
IMAGE (\n. a + &n) {n | &n <= b - a}` | |
SUBST1_TAC THENL | |
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC SURJECTIVE_IMAGE_EQ THEN | |
ASM_SIMP_TAC[IN_ELIM_THM; INTEGER_CLOSED] THEN | |
CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN | |
X_GEN_TAC `c:real` THEN STRIP_TAC THEN | |
ONCE_REWRITE_TAC[REAL_ARITH `a + x:real = y <=> y - a = x`] THEN | |
ASM_SIMP_TAC[GSYM INTEGER_POS; REAL_SUB_LE; INTEGER_CLOSED]; | |
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN | |
SIMP_TAC[REAL_EQ_ADD_LCANCEL; REAL_OF_NUM_EQ] THEN | |
COND_CASES_TAC THENL | |
[ASM_SIMP_TAC[REAL_ARITH `b < a ==> ~(&n <= b - a)`] THEN | |
REWRITE_TAC[HAS_SIZE_0; EMPTY_GSPEC]; | |
SUBGOAL_THEN `?m. b - a = &m` (CHOOSE_THEN SUBST1_TAC) THENL | |
[ASM_MESON_TAC[INTEGER_POS; INTEGER_CLOSED; REAL_NOT_LT; REAL_SUB_LE]; | |
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_LE; GSYM int_of_num; | |
NUM_OF_INT_OF_NUM; HAS_SIZE_NUMSEG_LE]]]]);; | |
let CARD_INTSEG_INT = prove | |
(`!a b. integer a /\ integer b | |
==> CARD {x | integer(x) /\ a <= x /\ x <= b} = | |
if b < a then 0 else num_of_int(int_of_real(b - a + &1))`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(MP_TAC o MATCH_MP HAS_SIZE_INTSEG_INT) THEN | |
SIMP_TAC[HAS_SIZE]);; | |
let REAL_CARD_INTSEG_INT = prove | |
(`!a b. integer a /\ integer b | |
==> &(CARD {x | integer(x) /\ a <= x /\ x <= b}) = | |
if b < a then &0 else b - a + &1`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[CARD_INTSEG_INT] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_OF_INT_OF_REAL] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [GSYM int_of_num_th] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) INT_OF_NUM_OF_INT o | |
rand o lhand o snd) THEN | |
ANTS_TAC THENL | |
[ASM_SIMP_TAC[int_le; int_of_num_th; REAL_OF_INT_OF_REAL; | |
INTEGER_CLOSED] THEN ASM_REAL_ARITH_TAC; | |
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC REAL_OF_INT_OF_REAL THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Yet set of all integers or rationals is infinite. *) | |
(* ------------------------------------------------------------------------- *) | |
let INFINITE_INTEGER = prove | |
(`INFINITE integer`, | |
SUBGOAL_THEN `INFINITE(IMAGE real_of_num (:num))` MP_TAC THENL | |
[SIMP_TAC[INFINITE_IMAGE_INJ; REAL_OF_NUM_EQ; num_INFINITE]; ALL_TAC] THEN | |
REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_UNIV] THEN | |
REWRITE_TAC[IN; INTEGER_CLOSED]);; | |
let INFINITE_RATIONAL = prove | |
(`INFINITE rational`, | |
MP_TAC INFINITE_INTEGER THEN | |
REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] FINITE_SUBSET) THEN | |
REWRITE_TAC[SUBSET; IN; RATIONAL_INTEGER]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Arbitrarily good rational approximations. *) | |
(* ------------------------------------------------------------------------- *) | |
let PADIC_RATIONAL_APPROXIMATION_STRADDLE = prove | |
(`!p x e. &0 < e /\ &1 < p | |
==> ?n q r. integer q /\ integer r /\ | |
q / p pow n < x /\ x < r / p pow n /\ | |
abs(q / p pow n - r / p pow n) < e`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`p:real`; `&2 / e:real`] REAL_ARCH_POW) THEN | |
ASM_SIMP_TAC[REAL_LT_LDIV_EQ] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `n:num` THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [REAL_MUL_SYM] THEN | |
ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_POW_LT; | |
REAL_ARITH `&1 < p ==> &0 < p`] THEN | |
DISCH_TAC THEN MAP_EVERY EXISTS_TAC | |
[`floor(p pow n * x) - &1`; `floor(p pow n * x) + &1`] THEN | |
REWRITE_TAC[REAL_ARITH | |
`abs((x - &1) / p - (x + &1) / p) = abs(&2 / p)`] THEN | |
ASM_SIMP_TAC[FLOOR; INTEGER_CLOSED; REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; | |
REAL_POW_LT; REAL_ARITH `&1 < p ==> &0 < p`] THEN | |
REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_POW; REAL_ABS_NUM] THEN | |
ASM_SIMP_TAC[REAL_ARITH `&1 < p ==> abs p = p`] THEN | |
MP_TAC(ISPEC `p pow n * x:real` FLOOR) THEN REAL_ARITH_TAC);; | |
let PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS, | |
PADIC_RATIONAL_APPROXIMATION_STRADDLE_POS_LE = (CONJ_PAIR o prove) | |
(`(!p x e. &0 < e /\ &1 < p /\ &0 < x | |
==> ?n q r. &q / p pow n < x /\ x < &r / p pow n /\ | |
abs(&q / p pow n - &r / p pow n) < e) /\ | |
(!p x e. &0 < e /\ &1 < p /\ &0 <= x | |
==> ?n q r. &q / p pow n <= x /\ x < &r / p pow n /\ | |
abs(&q / p pow n - &r / p pow n) < e)`, | |
REPEAT STRIP_TAC THEN | |
(SUBGOAL_THEN `&0 < p /\ &0 <= p` STRIP_ASSUME_TAC THENL | |
[ASM_REAL_ARITH_TAC; ALL_TAC] THEN | |
MP_TAC(ISPECL [`p:real`; `x:real`; `e:real`] | |
PADIC_RATIONAL_APPROXIMATION_STRADDLE) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `n:num` THEN | |
ASM_SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_POW_LT; | |
REAL_LE_LDIV_EQ; REAL_LE_RDIV_EQ; LEFT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`q:real`; `r:real`] THEN STRIP_TAC THEN | |
MP_TAC(ISPEC `r:real` integer) THEN | |
MP_TAC(ISPEC `max q (&0)` integer) THEN | |
ASM_SIMP_TAC[INTEGER_CLOSED] THEN | |
REWRITE_TAC[IMP_IMP; LEFT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `a:num` THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `b:num` THEN | |
REWRITE_TAC[REAL_ARITH `abs(max q (&0)) = max q (&0)`] THEN | |
SUBGOAL_THEN `&0 < r` ASSUME_TAC THENL | |
[FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH | |
`a < r ==> &0 <= a ==> &0 < r`)) THEN | |
MATCH_MP_TAC REAL_LE_MUL THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN | |
MATCH_MP_TAC REAL_POW_LE THEN ASM_REAL_ARITH_TAC; | |
ASM_SIMP_TAC[REAL_ARITH `&0 < r ==> abs r = r`]] THEN | |
DISCH_THEN(CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN | |
REWRITE_TAC[REAL_ARITH `max q (&0) = if &0 <= q then q else &0`] THEN | |
COND_CASES_TAC THEN ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_LT_MUL; REAL_POW_LE; REAL_POW_LT] THEN | |
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH | |
`abs(q - r) < e ==> &0 < --q /\ z = &0 /\ &0 < r | |
==> abs(z - r) < e`)) THEN | |
ASM_SIMP_TAC[REAL_LT_DIV; REAL_POW_LT] THEN | |
REWRITE_TAC[real_div; REAL_MUL_LZERO; GSYM REAL_MUL_LNEG] THEN | |
MATCH_MP_TAC REAL_LT_MUL THEN | |
ASM_SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT] THEN ASM_REAL_ARITH_TAC));; | |
let RATIONAL_APPROXIMATION = prove | |
(`!x e. &0 < e ==> ?r. rational r /\ abs(r - x) < e`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`&2:real`; `x:real`; `e:real`] | |
PADIC_RATIONAL_APPROXIMATION_STRADDLE) THEN | |
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[LEFT_IMP_EXISTS_THM]] THEN | |
MAP_EVERY X_GEN_TAC [`n:num`; `q:real`; `r:real`] THEN | |
STRIP_TAC THEN EXISTS_TAC `q / &2 pow n` THEN | |
ASM_SIMP_TAC[RATIONAL_CLOSED] THEN ASM_REAL_ARITH_TAC);; | |
let RATIONAL_BETWEEN = prove | |
(`!a b. a < b ==> ?q. rational q /\ a < q /\ q < b`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`(a + b) / &2`; `(b - a) / &4`] RATIONAL_APPROXIMATION) THEN | |
ANTS_TAC THENL [ALL_TAC; MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]] THEN | |
ASM_REAL_ARITH_TAC);; | |
let RATIONAL_BETWEEN_EQ = prove | |
(`!a b. (?q. rational q /\ a < q /\ q < b) <=> a < b`, | |
MESON_TAC[RATIONAL_BETWEEN; REAL_LT_TRANS]);; | |
let RATIONAL_APPROXIMATION_STRADDLE = prove | |
(`!x e. &0 < e | |
==> ?a b. rational a /\ rational b /\ | |
a < x /\ x < b /\ abs(b - a) < e`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPECL [`x - e / &4`; `e / &4`] RATIONAL_APPROXIMATION) THEN | |
ANTS_TAC THENL | |
[ASM_REAL_ARITH_TAC; | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN | |
MP_TAC(ISPECL [`x + e / &4`; `e / &4`] RATIONAL_APPROXIMATION) THEN | |
ANTS_TAC THENL | |
[ASM_REAL_ARITH_TAC; | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC] THEN | |
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; | |
let RATIONAL_APPROXIMATION_ABOVE = prove | |
(`!x e. &0 < e ==> ?q. rational q /\ x < q /\ q < x + e`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`x:real`; `e:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN | |
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; | |
let RATIONAL_APPROXIMATION_BELOW = prove | |
(`!x e. &0 < e ==> ?q. rational q /\ x - e < q /\ q < x`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(SPECL [`x:real`; `e:real`] RATIONAL_APPROXIMATION_STRADDLE) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC);; | |
let INFINITE_RATIONAL_IN_RANGE = prove | |
(`!a b. a < b ==> INFINITE {q | rational q /\ a < q /\ q < b}`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN | |
`?q. (!n. rational(q n) /\ a < q n /\ q n < b) /\ (!n. q(SUC n) < q n)` | |
STRIP_ASSUME_TAC THENL | |
[MATCH_MP_TAC DEPENDENT_CHOICE THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; GSYM REAL_LT_MIN] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC RATIONAL_BETWEEN THEN | |
ASM_REWRITE_TAC[REAL_LT_MIN]; | |
MATCH_MP_TAC INFINITE_SUPERSET THEN | |
EXISTS_TAC `IMAGE (q:num->real) (:num)` THEN | |
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN | |
MATCH_MP_TAC INFINITE_IMAGE THEN REWRITE_TAC[num_INFINITE; IN_UNIV] THEN | |
SUBGOAL_THEN `!m n. m < n ==> (q:num->real) n < q m` | |
(fun th -> MESON_TAC[LT_CASES; th; REAL_LT_REFL]) THEN | |
MATCH_MP_TAC TRANSITIVE_STEPWISE_LT THEN | |
ASM_MESON_TAC[REAL_LT_TRANS]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Converting a congruence over N or Z into a real equivalent. *) | |
(* ------------------------------------------------------------------------- *) | |
let REAL_CONGRUENCE = prove | |
(`!a b n. (a == b) (mod n) <=> | |
if n = 0 then &a:real = &b | |
else integer((&a - &b) / &n)`, | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_OF_NUM_EQ] THENL | |
[CONV_TAC NUMBER_RULE; ALL_TAC] THEN | |
REWRITE_TAC[GSYM IMAGE_REAL_OF_INT_UNIV] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM IN] THEN | |
REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN | |
ASM_SIMP_TAC[REAL_OF_NUM_EQ; REAL_FIELD | |
`~(n:real = &0) ==> (x / n = y <=> n * y = x)`] THEN | |
REWRITE_TAC[GSYM int_of_num_th] THEN | |
REWRITE_TAC[GSYM int_sub_th; GSYM int_mul_th; GSYM int_eq] THEN | |
REWRITE_TAC[num_congruent; int_congruent] THEN MESON_TAC[]);; | |
let REAL_INT_CONGRUENCE = prove | |
(`!a b n. (a == b) (mod n) <=> | |
if n = &0 then real_of_int a = real_of_int b | |
else integer((real_of_int a - real_of_int b) / real_of_int n)`, | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[GSYM int_eq] THENL | |
[CONV_TAC INTEGER_RULE; ALL_TAC] THEN | |
REWRITE_TAC[GSYM IMAGE_REAL_OF_INT_UNIV] THEN | |
GEN_REWRITE_TAC RAND_CONV [GSYM IN] THEN | |
REWRITE_TAC[IN_IMAGE; IN_UNIV] THEN | |
ASM_SIMP_TAC[GSYM int_of_num_th; GSYM int_eq; REAL_FIELD | |
`~(n:real = &0) ==> (x / n = y <=> n * y = x)`] THEN | |
REWRITE_TAC[GSYM int_mul_th; GSYM int_sub_th; GSYM int_eq] THEN | |
CONV_TAC INTEGER_RULE);; | |
(* ------------------------------------------------------------------------- *) | |
(* A simple tactic to try and prove that a real expression is integral. *) | |
(* ------------------------------------------------------------------------- *) | |
let (REAL_INTEGER_TAC:tactic) = | |
let base = MATCH_ACCEPT_TAC(CONJUNCT1 INTEGER_CLOSED) ORELSE | |
MATCH_ACCEPT_TAC INTEGER_REAL_OF_INT | |
and step = | |
MAP_FIRST MATCH_MP_TAC (CONJUNCTS(CONJUNCT2 INTEGER_CLOSED)) THEN | |
TRY CONJ_TAC in | |
let tac = REPEAT step THEN base in | |
fun (asl,w) -> | |
(match w with | |
Comb(Const("integer",_),t) -> | |
(tac ORELSE | |
(CONV_TAC(RAND_CONV REAL_POLY_CONV) THEN tac)) (asl,w) | |
| _ -> failwith "REAL_INTEGER_TAC: Goal not of expected form");; | |