Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Basic notions of cardinal arithmetic. *) | |
(* ========================================================================= *) | |
needs "Library/wo.ml";; | |
let TRANS_CHAIN_TAC th = | |
MAP_EVERY (fun t -> TRANS_TAC th t THEN ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* We need these a few times, so give them names. *) | |
(* ------------------------------------------------------------------------- *) | |
let sum_DISTINCT = distinctness "sum";; | |
let sum_INJECTIVE = injectivity "sum";; | |
let sum_CASES = prove_cases_thm sum_INDUCT;; | |
let FORALL_SUM_THM = prove | |
(`(!z. P z) <=> (!x. P(INL x)) /\ (!x. P(INR x))`, | |
MESON_TAC[sum_CASES]);; | |
let EXISTS_SUM_THM = prove | |
(`(?z. P z) <=> (?x. P(INL x)) \/ (?x. P(INR x))`, | |
MESON_TAC[sum_CASES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Useful lemma to reduce some higher order stuff to first order. *) | |
(* ------------------------------------------------------------------------- *) | |
let FLATTEN_LEMMA = prove | |
(`(!x. x IN s ==> (g(f(x)) = x)) <=> !y x. x IN s /\ (y = f x) ==> (g y = x)`, | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Knaster-Tarski fixpoint theorem (used in Schroeder-Bernstein below). *) | |
(* ------------------------------------------------------------------------- *) | |
let TARSKI_SET = prove | |
(`!f. (!s t. s SUBSET t ==> f(s) SUBSET f(t)) ==> ?s:A->bool. f(s) = s`, | |
REPEAT STRIP_TAC THEN MAP_EVERY ABBREV_TAC | |
[`Y = {b:A->bool | f(b) SUBSET b}`; `a:A->bool = INTERS Y`] THEN | |
SUBGOAL_THEN `!b:A->bool. b IN Y <=> f(b) SUBSET b` ASSUME_TAC THENL | |
[EXPAND_TAC "Y" THEN REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN | |
SUBGOAL_THEN `!b:A->bool. b IN Y ==> f(a:A->bool) SUBSET b` ASSUME_TAC THENL | |
[ASM_MESON_TAC[SUBSET_TRANS; IN_INTERS; SUBSET]; ALL_TAC] THEN | |
SUBGOAL_THEN `f(a:A->bool) SUBSET a` | |
(fun th -> ASM_MESON_TAC[SUBSET_ANTISYM; IN_INTERS; th]) THEN | |
ASM_MESON_TAC[IN_INTERS; SUBSET]);; | |
(* ------------------------------------------------------------------------- *) | |
(* We need a nonemptiness hypothesis for the nicest total function form. *) | |
(* ------------------------------------------------------------------------- *) | |
let INJECTIVE_LEFT_INVERSE_NONEMPTY = prove | |
(`(?x. x IN s) | |
==> ((!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) <=> | |
?g. (!y. y IN t ==> g(y) IN s) /\ | |
(!x. x IN s ==> (g(f(x)) = x)))`, | |
REWRITE_TAC[FLATTEN_LEMMA; GSYM SKOLEM_THM; AND_FORALL_THM] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Now bijectivity. *) | |
(* ------------------------------------------------------------------------- *) | |
let BIJECTIVE_INJECTIVE_SURJECTIVE = prove | |
(`(!x. x IN s ==> f(x) IN t) /\ | |
(!y. y IN t ==> ?!x. x IN s /\ (f x = y)) <=> | |
(!x. x IN s ==> f(x) IN t) /\ | |
(!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) /\ | |
(!y. y IN t ==> ?x. x IN s /\ (f x = y))`, | |
MESON_TAC[]);; | |
let BIJECTIVE_INVERSES = prove | |
(`(!x. x IN s ==> f(x) IN t) /\ | |
(!y. y IN t ==> ?!x. x IN s /\ (f x = y)) <=> | |
(!x. x IN s ==> f(x) IN t) /\ | |
?g. (!y. y IN t ==> g(y) IN s) /\ | |
(!y. y IN t ==> (f(g(y)) = y)) /\ | |
(!x. x IN s ==> (g(f(x)) = x))`, | |
REWRITE_TAC[BIJECTIVE_INJECTIVE_SURJECTIVE; | |
INJECTIVE_ON_LEFT_INVERSE; | |
SURJECTIVE_ON_RIGHT_INVERSE] THEN | |
MATCH_MP_TAC(TAUT `(a ==> (b <=> c)) ==> (a /\ b <=> a /\ c)`) THEN | |
DISCH_TAC THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN EQ_TAC THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Other variants of cardinal equality. *) | |
(* ------------------------------------------------------------------------- *) | |
let EQ_C_BIJECTIONS = prove | |
(`!s:A->bool t:B->bool. | |
s =_c t <=> ?f g. (!x. x IN s ==> f x IN t /\ g(f x) = x) /\ | |
(!y. y IN t ==> g y IN s /\ f(g y) = y)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN | |
AP_TERM_TAC THEN GEN_REWRITE_TAC I [FUN_EQ_THM] THEN | |
X_GEN_TAC `f:A->B` THEN REWRITE_TAC[] THEN | |
EQ_TAC THENL [STRIP_TAC; MESON_TAC[]] THEN | |
EXISTS_TAC `(\y. @x. x IN s /\ f x = y):B->A` THEN | |
ASM_MESON_TAC[]);; | |
let EQ_C = prove | |
(`s =_c t <=> | |
?R:A#B->bool. (!x y. R(x,y) ==> x IN s /\ y IN t) /\ | |
(!x. x IN s ==> ?!y. y IN t /\ R(x,y)) /\ | |
(!y. y IN t ==> ?!x. x IN s /\ R(x,y))`, | |
REWRITE_TAC[eq_c] THEN EQ_TAC THENL | |
[DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `\(x:A,y:B). x IN s /\ y IN t /\ (y = f x)` THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN ASM_MESON_TAC[]; | |
DISCH_THEN(CHOOSE_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[EXISTS_UNIQUE_ALT; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN ASM_MESON_TAC[]]);; | |
let EQ_C_ALT = prove | |
(`s =_c t <=> | |
?R:A#B->bool. (!x. x IN s ==> ?!y. y IN t /\ R(x,y)) /\ | |
(!y. y IN t ==> ?!x. x IN s /\ R(x,y))`, | |
GEN_REWRITE_TAC LAND_CONV [EQ_C] THEN | |
EQ_TAC THENL [MATCH_MP_TAC MONO_EXISTS THEN SIMP_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_THEN `R:A#B->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `\(x,y). (R:A#B->bool)(x,y) /\ x IN s /\ y IN t` THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The "easy" ordering properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_LE_REFL = prove | |
(`!s:A->bool. s <=_c s`, | |
GEN_TAC THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. x` THEN SIMP_TAC[]);; | |
let CARD_EMPTY_LE = prove | |
(`!s:B->bool. ({}:A->bool) <=_c s`, | |
REWRITE_TAC[LE_C; NOT_IN_EMPTY]);; | |
let CARD_LE_TRANS = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s <=_c t /\ t <=_c u ==> s <=_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_TAC `f:A->B`) (X_CHOOSE_TAC `g:B->C`)) THEN | |
EXISTS_TAC `(g:B->C) o (f:A->B)` THEN REWRITE_TAC[o_THM] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_LT_REFL = prove | |
(`!s:A->bool. ~(s <_c s)`, | |
MESON_TAC[lt_c; CARD_LE_REFL]);; | |
let CARD_LET_TRANS = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s <=_c t /\ t <_c u ==> s <_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[lt_c] THEN | |
MATCH_MP_TAC(TAUT `(a /\ b ==> c) /\ (c' /\ a ==> b') | |
==> a /\ b /\ ~b' ==> c /\ ~c'`) THEN | |
REWRITE_TAC[CARD_LE_TRANS]);; | |
let CARD_LTE_TRANS = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s <_c t /\ t <=_c u ==> s <_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[lt_c] THEN | |
MATCH_MP_TAC(TAUT `(a /\ b ==> c) /\ (b /\ c' ==> a') | |
==> (a /\ ~a') /\ b ==> c /\ ~c'`) THEN | |
REWRITE_TAC[CARD_LE_TRANS]);; | |
let CARD_LT_TRANS = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s <_c t /\ t <_c u ==> s <_c u`, | |
MESON_TAC[lt_c; CARD_LTE_TRANS]);; | |
let CARD_EQ_REFL = prove | |
(`!s:A->bool. s =_c s`, | |
GEN_TAC THEN REWRITE_TAC[eq_c] THEN EXISTS_TAC `\x:A. x` THEN | |
SIMP_TAC[] THEN MESON_TAC[]);; | |
let CARD_EQ_REFL_IMP = prove | |
(`!s t:A->bool. s = t ==> s =_c t`, | |
SIMP_TAC[CARD_EQ_REFL]);; | |
let CARD_EQ_SYM = prove | |
(`!s t. s =_c t <=> t =_c s`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c; BIJECTIVE_INVERSES] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN | |
GEN_REWRITE_TAC RAND_CONV [SWAP_EXISTS_THM] THEN | |
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN REWRITE_TAC[CONJ_ACI]);; | |
let CARD_EQ_IMP_LE = prove | |
(`!s t. s =_c t ==> s <=_c t`, | |
REWRITE_TAC[le_c; eq_c] THEN MESON_TAC[]);; | |
let CARD_LT_IMP_LE = prove | |
(`!s t. s <_c t ==> s <=_c t`, | |
SIMP_TAC[lt_c]);; | |
let CARD_LE_RELATIONAL = prove | |
(`!R:A->B->bool. | |
(!x y y'. x IN s /\ R x y /\ R x y' ==> y = y') | |
==> {y | ?x. x IN s /\ R x y} <=_c s`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[le_c] THEN | |
EXISTS_TAC `\y:B. @x:A. x IN s /\ R x y` THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]);; | |
let CARD_LE_RELATIONAL_FULL = prove | |
(`!R:A->B->bool s t. | |
(!y. y IN t ==> ?x. x IN s /\ R x y) /\ | |
(!x y y'. x IN s /\ y IN t /\ y' IN t /\ R x y /\ R x y' ==> y = y') | |
==> t <=_c s`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[le_c] THEN | |
EXISTS_TAC `\y:B. @x:A. x IN s /\ R x y` THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN ASM_MESON_TAC[]);; | |
let CARD_LE_EMPTY = prove | |
(`!s. s <=_c {} <=> s = {}`, | |
REWRITE_TAC[le_c; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[]);; | |
let CARD_EQ_EMPTY = prove | |
(`!s. s =_c {} <=> s = {}`, | |
REWRITE_TAC[eq_c; EXTENSION; NOT_IN_EMPTY] THEN MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Antisymmetry (the Schroeder-Bernstein theorem). *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_LE_ANTISYM = prove | |
(`!s:A->bool t:B->bool. s <=_c t /\ t <=_c s <=> (s =_c t)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[REWRITE_TAC[le_c; EQ_C; INJECTIVE_ON_ALT]; | |
MESON_TAC[CARD_EQ_IMP_LE; CARD_EQ_SYM]] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `g:B->A` STRIP_ASSUME_TAC)) THEN | |
MP_TAC(ISPEC | |
`\X. IMAGE (g:B->A) (t DIFF IMAGE (f:A->B) (s DIFF X))` TARSKI_SET) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL [SET_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(X_CHOOSE_TAC `u:A->bool`) THEN | |
EXISTS_TAC `\(x:A,y:B). x IN s /\ y IN t /\ | |
(~(x IN u) /\ y = f x \/ x IN u /\ x = g y)` THEN | |
REWRITE_TAC[] THEN REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN | |
X_GEN_TAC `y:B` THEN STRIP_TAC THEN | |
ASM_CASES_TAC `y IN IMAGE (f:A->B) (s DIFF u)` THEN ASM SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Totality (cardinal comparability). *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_LE_TOTAL = prove | |
(`!s:A->bool t:B->bool. s <=_c t \/ t <=_c s`, | |
REPEAT GEN_TAC THEN | |
ABBREV_TAC | |
`P = \R. (!x:A y:B. R(x,y) ==> x IN s /\ y IN t) /\ | |
(!x y y'. R(x,y) /\ R(x,y') ==> (y = y')) /\ | |
(!x x' y. R(x,y) /\ R(x',y) ==> (x = x'))` THEN | |
MP_TAC(ISPEC `P:((A#B)->bool)->bool` ZL_SUBSETS_UNIONS) THEN ANTS_TAC THENL | |
[GEN_TAC THEN EXPAND_TAC "P" THEN | |
REWRITE_TAC[UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `R:A#B->bool` STRIP_ASSUME_TAC) THEN | |
ASM_CASES_TAC `(!x:A. x IN s ==> ?y:B. y IN t /\ R(x,y)) \/ | |
(!y:B. y IN t ==> ?x:A. x IN s /\ R(x,y))` | |
THENL | |
[FIRST_X_ASSUM(K ALL_TAC o SPEC `\(x:A,y:B). T`) THEN | |
FIRST_X_ASSUM(DISJ_CASES_THEN MP_TAC) THEN | |
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; le_c] THEN ASM_MESON_TAC[]; | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [DE_MORGAN_THM]) THEN | |
REWRITE_TAC[NOT_FORALL_THM; NOT_IMP] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:A`) (X_CHOOSE_TAC `b:B`)) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC | |
`\(x:A,y:B). (x = a) /\ (y = b) \/ R(x,y)`) THEN | |
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN; EXTENSION] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IN]) THEN ASM_MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Other variants like "trichotomy of cardinals" now follow easily. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_LET_TOTAL = prove | |
(`!s:A->bool t:B->bool. s <=_c t \/ t <_c s`, | |
REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);; | |
let CARD_LTE_TOTAL = prove | |
(`!s:A->bool t:B->bool. s <_c t \/ t <=_c s`, | |
REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);; | |
let CARD_LT_TOTAL = prove | |
(`!s:A->bool t:B->bool. s =_c t \/ s <_c t \/ t <_c s`, | |
REWRITE_TAC[lt_c; GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_TOTAL]);; | |
let CARD_NOT_LE = prove | |
(`!s:A->bool t:B->bool. ~(s <=_c t) <=> t <_c s`, | |
REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);; | |
let CARD_NOT_LT = prove | |
(`!s:A->bool t:B->bool. ~(s <_c t) <=> t <=_c s`, | |
REWRITE_TAC[lt_c] THEN MESON_TAC[CARD_LE_TOTAL]);; | |
let CARD_LT_LE = prove | |
(`!s t. s <_c t <=> s <=_c t /\ ~(s =_c t)`, | |
REWRITE_TAC[lt_c; GSYM CARD_LE_ANTISYM] THEN CONV_TAC TAUT);; | |
let CARD_LE_LT = prove | |
(`!s t. s <=_c t <=> s <_c t \/ s =_c t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CARD_NOT_LT] THEN | |
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [CARD_LT_LE] THEN | |
REWRITE_TAC[DE_MORGAN_THM; CARD_NOT_LE; CARD_EQ_SYM]);; | |
let CARD_LE_CONG = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s =_c s' /\ t =_c t' ==> (s <=_c t <=> s' <=_c t')`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
MATCH_MP_TAC(TAUT | |
`!x y. (b /\ e ==> x) /\ (x /\ c ==> f) /\ (a /\ f ==> y) /\ (y /\ d ==> e) | |
==> (a /\ b) /\ (c /\ d) ==> (e <=> f)`) THEN | |
MAP_EVERY EXISTS_TAC | |
[`(s':B->bool) <=_c (t:C->bool)`; | |
`(s:A->bool) <=_c (t':D->bool)`] THEN | |
REWRITE_TAC[CARD_LE_TRANS]);; | |
let CARD_LT_CONG = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s =_c s' /\ t =_c t' ==> (s <_c t <=> s' <_c t')`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_NOT_LE] THEN | |
AP_TERM_TAC THEN MATCH_MP_TAC CARD_LE_CONG THEN | |
ASM_REWRITE_TAC[]);; | |
let CARD_EQ_TRANS = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s =_c t /\ t =_c u ==> s =_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
REPEAT STRIP_TAC THEN ASM_MESON_TAC[CARD_LE_TRANS]);; | |
let CARD_EQ_CONG = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s =_c s' /\ t =_c t' ==> (s =_c t <=> s' =_c t')`, | |
REPEAT STRIP_TAC THEN EQ_TAC THEN DISCH_TAC THENL | |
[TRANS_CHAIN_TAC CARD_EQ_TRANS [`t:C->bool`; `s:A->bool`]; | |
TRANS_CHAIN_TAC CARD_EQ_TRANS [`s':B->bool`; `t':D->bool`]] THEN | |
ASM_MESON_TAC[CARD_EQ_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Finiteness and infiniteness in terms of cardinality of N. *) | |
(* ------------------------------------------------------------------------- *) | |
let INFINITE_CARD_LE = prove | |
(`!s:A->bool. INFINITE s <=> (UNIV:num->bool) <=_c s`, | |
REWRITE_TAC[INFINITE_ENUMERATE_SUBSET; le_c; IN_UNIV]);; | |
let FINITE_CARD_LT = prove | |
(`!s:A->bool. FINITE s <=> s <_c (UNIV:num->bool)`, | |
ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN | |
REWRITE_TAC[GSYM INFINITE; CARD_NOT_LT; INFINITE_CARD_LE]);; | |
let CARD_LE_SUBSET = prove | |
(`!s:A->bool t. s SUBSET t ==> s <=_c t`, | |
REWRITE_TAC[SUBSET; le_c] THEN METIS_TAC[I_THM]);; | |
let CARD_LE_UNIV = prove | |
(`!s:A->bool. s <=_c (:A)`, | |
GEN_TAC THEN MATCH_MP_TAC CARD_LE_SUBSET THEN REWRITE_TAC[SUBSET_UNIV]);; | |
let CARD_LE_EQ_SUBSET = prove | |
(`!s:A->bool t:B->bool. s <=_c t <=> ?u. u SUBSET t /\ (s =_c u)`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[ALL_TAC; | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP CARD_LE_SUBSET) THEN | |
MATCH_MP_TAC(TAUT `(a <=> b) ==> b ==> a`) THEN | |
MATCH_MP_TAC CARD_LE_CONG THEN | |
ASM_REWRITE_TAC[CARD_LE_CONG; CARD_EQ_REFL]] THEN | |
REWRITE_TAC[le_c; eq_c] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN EXISTS_TAC `IMAGE (f:A->B) s` THEN | |
EXISTS_TAC `f:A->B` THEN REWRITE_TAC[IN_IMAGE; SUBSET] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_LE_EQ_SUBSET_UNIV = prove | |
(`!s:A->bool. (?t:B->bool. t =_c s) <=> s <=_c (:B)`, | |
REWRITE_TAC[CARD_LE_EQ_SUBSET; SUBSET_UNIV] THEN | |
MESON_TAC[CARD_EQ_SYM]);; | |
let CARD_INFINITE_CONG = prove | |
(`!s:A->bool t:B->bool. s =_c t ==> (INFINITE s <=> INFINITE t)`, | |
REWRITE_TAC[INFINITE_CARD_LE] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC CARD_LE_CONG THEN ASM_REWRITE_TAC[CARD_EQ_REFL]);; | |
let CARD_FINITE_CONG = prove | |
(`!s:A->bool t:B->bool. s =_c t ==> (FINITE s <=> FINITE t)`, | |
ONCE_REWRITE_TAC[TAUT `(a <=> b) <=> (~a <=> ~b)`] THEN | |
REWRITE_TAC[GSYM INFINITE; CARD_INFINITE_CONG]);; | |
let CARD_LE_FINITE = prove | |
(`!s:A->bool t:B->bool. FINITE t /\ s <=_c t ==> FINITE s`, | |
ASM_MESON_TAC[CARD_LE_EQ_SUBSET; FINITE_SUBSET; CARD_FINITE_CONG]);; | |
let CARD_EQ_FINITE = prove | |
(`!s t:A->bool. FINITE t /\ s =_c t ==> FINITE s`, | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_FINITE]);; | |
let CARD_EQ_INFINITE = prove | |
(`!(s:A->bool) (t:B->bool). INFINITE t /\ s =_c t ==> INFINITE s`, | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[INFINITE] THEN | |
MESON_TAC[CARD_EQ_FINITE]);; | |
let CARD_LE_INFINITE = prove | |
(`!s:A->bool t:B->bool. INFINITE s /\ s <=_c t ==> INFINITE t`, | |
MESON_TAC[CARD_LE_FINITE; INFINITE]);; | |
let CARD_LT_FINITE_INFINITE = prove | |
(`!s:A->bool t:B->bool. FINITE s /\ INFINITE t ==> s <_c t`, | |
REWRITE_TAC[GSYM CARD_NOT_LE; INFINITE] THEN MESON_TAC[CARD_LE_FINITE]);; | |
let CARD_LE_FINITE_INFINITE = prove | |
(`!s:A->bool t:B->bool. | |
FINITE s /\ INFINITE t ==> s <=_c t`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC CARD_LT_IMP_LE THEN | |
ASM_SIMP_TAC[CARD_LT_FINITE_INFINITE]);; | |
let CARD_LE_CARD_IMP = prove | |
(`!s:A->bool t:B->bool. FINITE t /\ s <=_c t ==> CARD s <= CARD t`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `FINITE(s:A->bool)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[CARD_LE_FINITE]; ALL_TAC] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [le_c]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD(IMAGE (f:A->B) s)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC(ARITH_RULE `(m = n:num) ==> n <= m`) THEN | |
MATCH_MP_TAC CARD_IMAGE_INJ THEN ASM_REWRITE_TAC[]; | |
MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN | |
ASM_MESON_TAC[SUBSET; IN_IMAGE]]);; | |
let CARD_EQ_CARD_IMP = prove | |
(`!s:A->bool t:B->bool. FINITE t /\ s =_c t ==> (CARD s = CARD t)`, | |
MESON_TAC[CARD_FINITE_CONG; LE_ANTISYM; CARD_LE_ANTISYM; CARD_LE_CARD_IMP]);; | |
let CARD_LE_CARD = prove | |
(`!s:A->bool t:B->bool. | |
FINITE s /\ FINITE t ==> (s <=_c t <=> CARD s <= CARD t)`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(TAUT `(a ==> b) /\ (~a ==> ~b) ==> (a <=> b)`) THEN | |
ASM_SIMP_TAC[CARD_LE_CARD_IMP] THEN | |
REWRITE_TAC[CARD_NOT_LE; NOT_LE] THEN REWRITE_TAC[lt_c; LT_LE] THEN | |
ASM_SIMP_TAC[CARD_LE_CARD_IMP] THEN | |
MATCH_MP_TAC(TAUT `(c ==> a ==> b) ==> a /\ ~b ==> ~c`) THEN | |
DISCH_TAC THEN GEN_REWRITE_TAC LAND_CONV [CARD_LE_EQ_SUBSET] THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:A->bool` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
SUBGOAL_THEN `u:A->bool = s` (fun th -> ASM_MESON_TAC[th; CARD_EQ_SYM]) THEN | |
ASM_MESON_TAC[CARD_SUBSET_EQ; CARD_EQ_CARD_IMP; CARD_EQ_SYM]);; | |
let CARD_EQ_CARD = prove | |
(`!s:A->bool t:B->bool. | |
FINITE s /\ FINITE t ==> (s =_c t <=> (CARD s = CARD t))`, | |
MESON_TAC[CARD_FINITE_CONG; LE_ANTISYM; CARD_LE_ANTISYM; CARD_LE_CARD]);; | |
let CARD_LT_CARD = prove | |
(`!s:A->bool t:B->bool. | |
FINITE s /\ FINITE t ==> (s <_c t <=> CARD s < CARD t)`, | |
SIMP_TAC[CARD_LE_CARD; GSYM NOT_LE; GSYM CARD_NOT_LE]);; | |
let CARD_HAS_SIZE_CONG = prove | |
(`!(s:A->bool) (t:B->bool) n. s =_c t ==> (s HAS_SIZE n <=> t HAS_SIZE n)`, | |
REWRITE_TAC[HAS_SIZE] THEN | |
MESON_TAC[CARD_EQ_CARD; CARD_FINITE_CONG]);; | |
let NUMSEG_CARD_LE = prove | |
(`!(s:A->bool). (1..n) <=_c s <=> (FINITE s ==> n <= CARD s)`, | |
GEN_TAC THEN ASM_CASES_TAC `FINITE(s:A->bool)` THEN | |
ASM_SIMP_TAC[CARD_LE_CARD; FINITE_NUMSEG; CARD_NUMSEG_1] THEN | |
ASM_SIMP_TAC[CARD_LE_FINITE_INFINITE; INFINITE; FINITE_NUMSEG]);; | |
let CARD_LE_IMAGE = prove | |
(`!f s. IMAGE f s <=_c s`, | |
REWRITE_TAC[LE_C; FORALL_IN_IMAGE] THEN MESON_TAC[]);; | |
let CARD_LE_IMAGE_GEN = prove | |
(`!f:A->B s t. t SUBSET IMAGE f s ==> t <=_c s`, | |
REPEAT STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `IMAGE (f:A->B) s` THEN | |
ASM_SIMP_TAC[CARD_LE_IMAGE; CARD_LE_SUBSET]);; | |
let CARD_EQ_IMAGE = prove | |
(`!f:A->B s. | |
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y) | |
==> IMAGE f s =_c s`, | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
REWRITE_TAC[eq_c] THEN EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]);; | |
let CARD_GE_PREIMAGE = prove | |
(`!(f:A->B) s t. | |
t SUBSET IMAGE f s ==> t <=_c {x | x IN s /\ f x IN t}`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[LE_C] THEN EXISTS_TAC `f:A->B` THEN | |
ASM SET_TAC[]);; | |
let CARD_LE_PREIMAGE = prove | |
(`!(f:A->B) s t. | |
(!x y. x IN s /\ y IN s /\ f x IN t /\ f y IN t /\ f x = f y ==> x = y) | |
==> {x | x IN s /\ f x IN t} <=_c t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `f:A->B` THEN | |
ASM SET_TAC[]);; | |
let CARD_EQ_PREIMAGE = prove | |
(`!(f:A->B) s t. | |
(!x y. x IN s /\ y IN s /\ f x IN t /\ f y IN t /\ f x = f y ==> x = y) /\ | |
t SUBSET IMAGE f s | |
==> {x | x IN s /\ f x IN t} =_c t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_LE_PREIMAGE; MATCH_MP_TAC CARD_GE_PREIMAGE] THEN | |
ASM SET_TAC[]);; | |
let CARD_LE_IMAGES = prove | |
(`!(f:A->B) (g:A->C) s. | |
(!x y. x IN s /\ y IN s /\ g x = g y ==> f x = f y) | |
==> IMAGE f s <=_c IMAGE g s`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[FUNCTION_FACTORS_LEFT_GEN; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `h:C->B` THEN STRIP_TAC THEN | |
SUBGOAL_THEN `IMAGE f s = IMAGE (h:C->B) (IMAGE (g:A->C) s)` SUBST1_TAC THENL | |
[ASM SET_TAC[]; REWRITE_TAC[CARD_LE_IMAGE]]);; | |
let CARD_EQ_IMAGES = prove | |
(`!(f:A->B) (g:A->C) s. | |
(!x y. x IN s /\ y IN s ==> (f x = f y <=> g x = g y)) | |
==> IMAGE f s =_c IMAGE g s`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
CONJ_TAC THEN MATCH_MP_TAC CARD_LE_IMAGES THEN ASM_MESON_TAC[]);; | |
let LE_C_IMAGE = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c t <=> s = {} \/ ?f. IMAGE f t = s`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `s:A->bool = {}` THEN | |
ASM_REWRITE_TAC[CARD_EMPTY_LE] THEN EQ_TAC THENL | |
[FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o | |
GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[LE_C] THEN DISCH_THEN(X_CHOOSE_TAC `f:B->A`) THEN | |
EXISTS_TAC `\x. if (f:B->A) x IN s then f x else a` THEN | |
ASM SET_TAC[]; | |
DISCH_THEN(CHOOSE_THEN(SUBST1_TAC o SYM)) THEN | |
REWRITE_TAC[CARD_LE_IMAGE]]);; | |
let LE_C_IMAGE_SUBSET = prove | |
(`!s:A->bool t:B->bool. s <=_c t <=> ?f. s SUBSET IMAGE f t`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[REWRITE_TAC[LE_C_IMAGE] THEN MESON_TAC[EMPTY_SUBSET; SUBSET_REFL]; | |
DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP CARD_LE_SUBSET)) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
REWRITE_TAC[CARD_LE_IMAGE]]);; | |
let CARD_LE_SING = prove | |
(`!(c:B) (s:A->bool). s <=_c {c} <=> ?a. s SUBSET {a}`, | |
REPEAT STRIP_TAC THEN ASM_CASES_TAC `FINITE(s:A->bool)` THENL | |
[ASM_SIMP_TAC[CARD_LE_CARD; FINITE_SING; GSYM CARD_LE_1; CARD_SING]; | |
ASM_MESON_TAC[FINITE_SUBSET; FINITE_SING; CARD_LE_FINITE]]);; | |
let CARD_SING_LE = prove | |
(`!a:A s:B->bool. {a} <=_c s <=> ~(s = {})`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `s:B->bool = {}` THEN | |
ASM_REWRITE_TAC[CARD_LE_EMPTY; NOT_INSERT_EMPTY] THEN | |
FIRST_X_ASSUM(X_CHOOSE_TAC `b:B` o | |
GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[le_c] THEN EXISTS_TAC `(\x. b):A->B` THEN | |
ASM_SIMP_TAC[IN_SING]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Strict cardinal comparability on a given type is a wellfounded relation. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_EQ_ORDINAL_EXISTS = prove | |
(`!s:A->bool. ?l:A->A->bool. ordinal l /\ fld l =_c s`, | |
REPEAT STRIP_TAC THEN | |
SUBGOAL_THEN `?l:A->A->bool. ordinal l /\ !x. fld l x` STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[WO_ORDINAL]; | |
MP_TAC(ISPECL [`l:A->A->bool`; `s:A->bool`] SUBWOSET_ISO_INSEG)] THEN | |
FIRST_ASSUM(ASSUME_TAC o CONJUNCT1 o REWRITE_RULE[ordinal]) THEN | |
ASM_REWRITE_TAC[SET_RULE `s = UNIV <=> !x. s x`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:A->A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `\x y. x IN IMAGE (f:A->A) s /\ y IN IMAGE f s /\ l x y` THEN | |
CONJ_TAC THENL | |
[FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] | |
INSEG_ORDINAL)) THEN ASM_SIMP_TAC[inseg; FLD_RESTRICT]; | |
GEN_REWRITE_TAC LAND_CONV [GSYM ETA_AX] THEN | |
ASM_SIMP_TAC[FLD_RESTRICT; SET_RULE `(\x. x IN s) = s`] THEN | |
MATCH_MP_TAC CARD_EQ_IMAGE] THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[properly; woset] THEN SET_TAC[]);; | |
let WF_CARD_LT = prove | |
(`WF((<_c):(A->bool)->(A->bool)->bool)`, | |
SUBGOAL_THEN | |
`?w:(A->bool)->A->A->bool. (!s. ordinal(w s)) /\ (!s. fld(w s) =_c s)` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[AND_FORALL_THM; GSYM SKOLEM_THM; CARD_EQ_ORDINAL_EXISTS]; | |
ALL_TAC] THEN | |
MP_TAC(ISPEC `w:(A->bool)->A->A->bool` | |
(MATCH_MP WF_MEASURE_GEN (INST_TYPE [`:B`,`:A`] WF_INSEG_WOSET))) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] WF_SUBSET) THEN | |
REWRITE_TAC[] THEN | |
MAP_EVERY X_GEN_TAC [`s:A->bool`; `t:A->bool`] THEN DISCH_TAC THEN | |
ASM_SIMP_TAC[ORDINAL_IMP_WOSET] THEN | |
MP_TAC(ISPECL [`(w:(A->bool)->A->A->bool) s`; `(w:(A->bool)->A->A->bool) t`] | |
ORDINAL_CHAINED) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT | |
`~p /\ (~p /\ q ==> r) ==> p \/ q ==> r`) THEN | |
CONJ_TAC THENL [ALL_TAC; MESON_TAC[INSEG_REFL]] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP INSEG_SUBSET_FLD) THEN | |
REWRITE_TAC[SET_RULE `(!x. s x ==> t x) <=> s SUBSET t`; ETA_AX] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_SUBSET) THEN | |
REWRITE_TAC[CARD_NOT_LE] THEN | |
TRANS_TAC CARD_LET_TRANS `s:A->bool` THEN | |
ASM_SIMP_TAC[CARD_EQ_IMP_LE] THEN | |
TRANS_TAC CARD_LTE_TRANS `t:A->bool` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
ASM_REWRITE_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Cardinal arithmetic operations. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("+_c",(16,"right"));; | |
parse_as_infix("*_c",(20,"right"));; | |
let add_c = new_definition | |
`s +_c t = {INL x | x IN s} UNION {INR y | y IN t}`;; | |
let mul_c = new_definition | |
`s *_c t = {(x,y) | x IN s /\ y IN t}`;; | |
(* ------------------------------------------------------------------------- *) | |
(* Congruence properties for the arithmetic operators. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_LE_ADD = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s <=_c s' /\ t <=_c t' ==> s +_c t <=_c s' +_c t'`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c; add_c] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `g:C->D` STRIP_ASSUME_TAC)) THEN | |
MP_TAC(prove_recursive_functions_exist sum_RECURSION | |
`(!x. h(INL x) = INL((f:A->B) x)) /\ (!y. h(INR y) = INR((g:C->D) y))`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:(A+C)->(B+D)` THEN STRIP_TAC THEN | |
REWRITE_TAC[IN_UNION; IN_ELIM_THM] THEN | |
CONJ_TAC THEN REPEAT GEN_TAC THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN | |
ASM_REWRITE_TAC[]) THEN | |
ASM_REWRITE_TAC[sum_DISTINCT; | |
sum_INJECTIVE] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_LE_MUL = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s <=_c s' /\ t <=_c t' ==> s *_c t <=_c s' *_c t'`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c; mul_c] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) | |
(X_CHOOSE_THEN `g:C->D` STRIP_ASSUME_TAC)) THEN | |
EXISTS_TAC `\(x,y). (f:A->B) x,(g:C->D) y` THEN | |
REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN | |
REWRITE_TAC[PAIR_EQ] THEN ASM_MESON_TAC[]);; | |
let CARD_FUNSPACE_LE = prove | |
(`(:A) <=_c (:A') /\ (:B) <=_c (:B') ==> (:A->B) <=_c (:A'->B')`, | |
REWRITE_TAC[le_c; IN_UNIV] THEN DISCH_THEN(CONJUNCTS_THEN2 | |
(X_CHOOSE_TAC `f:A->A'`) (X_CHOOSE_TAC `g:B->B'`)) THEN | |
SUBGOAL_THEN `?f':A'->A. !x. f'(f x) = x` STRIP_ASSUME_TAC THENL | |
[ASM_REWRITE_TAC[GSYM INJECTIVE_LEFT_INVERSE]; ALL_TAC] THEN | |
EXISTS_TAC `\h. (g:B->B') o (h:A->B) o (f':A'->A)` THEN | |
ASM_REWRITE_TAC[o_DEF; FUN_EQ_THM] THEN ASM_MESON_TAC[]);; | |
let CARD_ADD_CONG = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s =_c s' /\ t =_c t' ==> s +_c t =_c s' +_c t'`, | |
SIMP_TAC[CARD_LE_ADD; GSYM CARD_LE_ANTISYM]);; | |
let CARD_MUL_CONG = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s =_c s' /\ t =_c t' ==> s *_c t =_c s' *_c t'`, | |
SIMP_TAC[CARD_LE_MUL; GSYM CARD_LE_ANTISYM]);; | |
let CARD_FUNSPACE_CONG = prove | |
(`(:A) =_c (:A') /\ (:B) =_c (:B') ==> (:A->B) =_c (:A'->B')`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_FUNSPACE_LE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Misc lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let MUL_C_UNIV = prove | |
(`(:A) *_c (:B) = (:A#B)`, | |
REWRITE_TAC[EXTENSION; FORALL_PAIR_THM; mul_c; IN_ELIM_PAIR_THM; IN_UNIV]);; | |
let CARD_FUNSPACE_CURRY = prove | |
(`(:A->B->C) =_c (:A#B->C)`, | |
REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
EXISTS_TAC `\(f:A->B->C) (x,y). f x y` THEN | |
EXISTS_TAC `\(g:A#B->C) x y. g(x,y)` THEN | |
REWRITE_TAC[IN_UNIV] THEN | |
REWRITE_TAC[FUN_EQ_THM; FORALL_PAIR_THM]);; | |
let IN_CARD_ADD = prove | |
(`(!x. INL(x) IN (s +_c t) <=> x IN s) /\ | |
(!y. INR(y) IN (s +_c t) <=> y IN t)`, | |
REWRITE_TAC[add_c; IN_UNION; IN_ELIM_THM] THEN | |
REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE] THEN MESON_TAC[]);; | |
let IN_CARD_MUL = prove | |
(`!s t x y. (x,y) IN (s *_c t) <=> x IN s /\ y IN t`, | |
REWRITE_TAC[mul_c; IN_ELIM_THM; PAIR_EQ] THEN MESON_TAC[]);; | |
let CARD_LE_SQUARE = prove | |
(`!s:A->bool. s <=_c s *_c s`, | |
GEN_TAC THEN REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. x,(@z:A. z IN s)` THEN | |
SIMP_TAC[IN_CARD_MUL; PAIR_EQ] THEN | |
CONV_TAC(ONCE_DEPTH_CONV SELECT_CONV) THEN MESON_TAC[]);; | |
let CARD_SQUARE_NUM = prove | |
(`(UNIV:num->bool) *_c (UNIV:num->bool) =_c (UNIV:num->bool)`, | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_SQUARE] THEN | |
REWRITE_TAC[le_c; IN_UNIV; mul_c; IN_ELIM_THM] THEN | |
EXISTS_TAC `\(x,y). NUMPAIR x y` THEN | |
REWRITE_TAC[FORALL_PAIR_THM] THEN | |
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN MESON_TAC[NUMPAIR_INJ]);; | |
let UNION_LE_ADD_C = prove | |
(`!s t:A->bool. (s UNION t) <=_c s +_c t`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC CARD_LE_IMAGE_GEN THEN | |
EXISTS_TAC `function INL x -> (x:A) | INR x -> x` THEN | |
REWRITE_TAC[add_c; IMAGE_UNION] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE] THEN | |
REWRITE_TAC[GSYM IMAGE_o; o_DEF] THEN SET_TAC[]);; | |
let CARD_ADD_C = prove | |
(`!s t. FINITE s /\ FINITE t ==> CARD(s +_c t) = CARD s + CARD t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[add_c] THEN | |
W(MP_TAC o PART_MATCH (lhs o rand) CARD_UNION o lhand o snd) THEN | |
ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE] THEN | |
REWRITE_TAC[SET_RULE `IMAGE f s INTER IMAGE g t = {} <=> | |
!x y. x IN s /\ y IN t ==> ~(f x = g y)`] THEN | |
REWRITE_TAC[sum_DISTINCT] THEN DISCH_THEN SUBST1_TAC THEN | |
BINOP_TAC THEN MATCH_MP_TAC CARD_IMAGE_INJ THEN | |
ASM_SIMP_TAC[sum_INJECTIVE]);; | |
let CARD_MUL_C = prove | |
(`!s t. FINITE s /\ FINITE t ==> CARD(s *_c t) = CARD s * CARD t`, | |
SIMP_TAC[mul_c; GSYM CROSS; CARD_CROSS]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Various "arithmetical" lemmas. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_ADD_SYM = prove | |
(`!s:A->bool t:B->bool. s +_c t =_c t +_c s`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN | |
MP_TAC(prove_recursive_functions_exist sum_RECURSION | |
`(!x. (h:A+B->B+A) (INL x) = INR x) /\ (!y. h(INR y) = INL y)`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN | |
SIMP_TAC[FORALL_SUM_THM; EXISTS_SUM_THM; EXISTS_UNIQUE_THM] THEN | |
REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN MESON_TAC[]);; | |
let CARD_ADD_ASSOC = prove | |
(`!s:A->bool t:B->bool u:C->bool. s +_c (t +_c u) =_c (s +_c t) +_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN | |
CHOOSE_TAC(prove_recursive_functions_exist sum_RECURSION | |
`(!u. (i:B+C->(A+B)+C) (INL u) = INL(INR u)) /\ | |
(!v. i(INR v) = INR v)`) THEN | |
MP_TAC(prove_recursive_functions_exist sum_RECURSION | |
`(!x. (h:A+B+C->(A+B)+C) (INL x) = INL(INL x)) /\ | |
(!z. h(INR z) = i(z))`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[FORALL_SUM_THM; EXISTS_SUM_THM; EXISTS_UNIQUE_THM; | |
sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN | |
MESON_TAC[]);; | |
let CARD_MUL_SYM = prove | |
(`!s:A->bool t:B->bool. s *_c t =_c t *_c s`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN | |
MP_TAC(prove_recursive_functions_exist pair_RECURSION | |
`(!x:A y:B. h(x,y) = (y,x))`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN | |
ASM_REWRITE_TAC[FORALL_PAIR_THM; IN_CARD_MUL; PAIR_EQ] THEN | |
MESON_TAC[]);; | |
let CARD_MUL_ASSOC = prove | |
(`!s:A->bool t:B->bool u:C->bool. s *_c (t *_c u) =_c (s *_c t) *_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN | |
CHOOSE_TAC(prove_recursive_functions_exist pair_RECURSION | |
`(!x y z. (i:A->B#C->(A#B)#C) x (y,z) = (x,y),z)`) THEN | |
MP_TAC(prove_recursive_functions_exist pair_RECURSION | |
`(!x p. (h:A#B#C->(A#B)#C) (x,p) = i x p)`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN | |
ASM_REWRITE_TAC[FORALL_PAIR_THM; IN_CARD_MUL; PAIR_EQ] THEN | |
MESON_TAC[]);; | |
let CARD_LDISTRIB = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s *_c (t +_c u) =_c (s *_c t) +_c (s *_c u)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[eq_c] THEN | |
CHOOSE_TAC(prove_recursive_functions_exist sum_RECURSION | |
`(!x y. (i:A->(B+C)->A#B+A#C) x (INL y) = INL(x,y)) /\ | |
(!x z. (i:A->(B+C)->A#B+A#C) x (INR z) = INR(x,z))`) THEN | |
MP_TAC(prove_recursive_functions_exist pair_RECURSION | |
`(!x s. (h:A#(B+C)->(A#B)+(A#C)) (x,s) = i x s)`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM; EXISTS_PAIR_THM; | |
FORALL_SUM_THM; EXISTS_SUM_THM; PAIR_EQ; IN_CARD_MUL; | |
sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN | |
MESON_TAC[]);; | |
let CARD_RDISTRIB = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
(s +_c t) *_c u =_c (s *_c u) +_c (t *_c u)`, | |
REPEAT GEN_TAC THEN | |
TRANS_TAC CARD_EQ_TRANS | |
`(u:C->bool) *_c ((s:A->bool) +_c (t:B->bool))` THEN | |
REWRITE_TAC[CARD_MUL_SYM] THEN | |
TRANS_TAC CARD_EQ_TRANS | |
`(u:C->bool) *_c (s:A->bool) +_c (u:C->bool) *_c (t:B->bool)` THEN | |
REWRITE_TAC[CARD_LDISTRIB] THEN | |
MATCH_MP_TAC CARD_ADD_CONG THEN REWRITE_TAC[CARD_MUL_SYM]);; | |
let CARD_LE_ADDR = prove | |
(`!s:A->bool t:B->bool. s <=_c s +_c t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN | |
EXISTS_TAC `INL:A->A+B` THEN SIMP_TAC[IN_CARD_ADD; sum_INJECTIVE]);; | |
let CARD_LE_ADDL = prove | |
(`!s:A->bool t:B->bool. t <=_c s +_c t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN | |
EXISTS_TAC `INR:B->A+B` THEN SIMP_TAC[IN_CARD_ADD; sum_INJECTIVE]);; | |
let CARD_MUL_LID = prove | |
(`!(a:A) (t:B->bool). {a} *_c t =_c t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
EXISTS_TAC `SND:A#B->B` THEN EXISTS_TAC `\b:B. (a:A,b)` THEN | |
REWRITE_TAC[mul_c; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[IN_SING; PAIR_EQ] THEN SET_TAC[]);; | |
let CARD_MUL_RID = prove | |
(`!(s:A->bool) (b:B). s *_c {b} =_c s`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
EXISTS_TAC `FST:A#B->A` THEN EXISTS_TAC `\a:A. (a,(b:B))` THEN | |
REWRITE_TAC[mul_c; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[IN_SING; PAIR_EQ] THEN SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A rather special lemma but temporarily useful. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_ADD_LE_MUL_INFINITE = prove | |
(`!s:A->bool. INFINITE s ==> s +_c s <=_c s *_c s`, | |
GEN_TAC THEN REWRITE_TAC[INFINITE_CARD_LE; le_c; IN_UNIV] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:num->A` STRIP_ASSUME_TAC) THEN | |
MP_TAC(prove_recursive_functions_exist sum_RECURSION | |
`(!x. h(INL x) = (f(0),x):A#A) /\ (!x. h(INR x) = (f(1),x))`) THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:A+A->A#A` THEN | |
STRIP_TAC THEN | |
REPEAT((MATCH_MP_TAC sum_INDUCT THEN | |
ASM_REWRITE_TAC[IN_CARD_ADD; IN_CARD_MUL; PAIR_EQ]) | |
ORELSE STRIP_TAC) THEN | |
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[NUM_REDUCE_CONV `1 = 0`]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Relate cardinal addition to the simple union operation. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_DISJOINT_UNION = prove | |
(`!s:A->bool t. (s INTER t = {}) ==> (s UNION t =_c s +_c t)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY] THEN | |
STRIP_TAC THEN REWRITE_TAC[eq_c; IN_UNION] THEN | |
EXISTS_TAC `\x:A. if x IN s then INL x else INR x` THEN | |
REWRITE_TAC[FORALL_SUM_THM; IN_CARD_ADD] THEN | |
REWRITE_TAC[COND_RAND; COND_RATOR] THEN | |
REWRITE_TAC[TAUT `(if b then x else y) <=> b /\ x \/ ~b /\ y`] THEN | |
REWRITE_TAC[sum_DISTINCT; sum_INJECTIVE; IN_CARD_ADD] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_LE_EXISTS = prove | |
(`!s:A->bool t:B->bool. s <=_c t <=> ?u:B->bool. t =_c s +_c u`, | |
REPEAT GEN_TAC THEN EQ_TAC THEN STRIP_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [le_c]) THEN | |
REWRITE_TAC[INJECTIVE_ON_ALT; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `f:A->B` THEN STRIP_TAC THEN | |
EXISTS_TAC `t DIFF IMAGE (f:A->B) s` THEN | |
TRANS_TAC CARD_EQ_TRANS `(IMAGE (f:A->B) s) UNION (t DIFF IMAGE f s)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_EQ_REFL_IMP THEN ASM SET_TAC[]; | |
W(MP_TAC o PART_MATCH (lhand o rand) CARD_DISJOINT_UNION o | |
lhand o snd) THEN | |
ANTS_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN | |
MATCH_MP_TAC CARD_ADD_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN | |
MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM SET_TAC[]]; | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c (u:B->bool)` THEN | |
REWRITE_TAC[CARD_LE_ADDR] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
ASM_REWRITE_TAC[]]);; | |
let CARD_LT_IMP_SUC_LE = prove | |
(`!s:A->bool t:B->bool a:C. s <_c t ==> s +_c {a} <=_c t`, | |
REWRITE_TAC[CARD_LT_LE] THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [le_c]) THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `?b. b IN t DIFF IMAGE (f:A->B) s` MP_TAC THENL | |
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV [eq_c]) THEN | |
REWRITE_TAC[NOT_EXISTS_THM; LEFT_IMP_FORALL_THM] THEN | |
EXISTS_TAC `f:A->B` THEN ASM SET_TAC[]; | |
REWRITE_TAC[IN_DIFF; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `b:B` THEN | |
SIMP_TAC[SET_RULE `~(b IN IMAGE f s) <=> !x. x IN s ==> ~(f x = b)`] THEN | |
STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS `IMAGE (f:A->B) s +_c {b:B}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_LE_ADD THEN | |
SIMP_TAC[CARD_LE_CARD; FINITE_SING; CARD_SING; LE_REFL] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM SET_TAC[]; | |
W(MP_TAC o PART_MATCH (rand o rand) CARD_DISJOINT_UNION o | |
lhand o snd) THEN | |
ANTS_TAC THENL [ASM SET_TAC[]; ONCE_REWRITE_TAC[CARD_EQ_SYM]] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_IMP_LE) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_LE_SUBSET THEN ASM SET_TAC[]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The key to arithmetic on infinite cardinals: k^2 = k. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_SQUARE_INFINITE = prove | |
(`!k:A->bool. INFINITE k ==> (k *_c k =_c k)`, | |
let lemma = prove | |
(`INFINITE(s:A->bool) /\ s SUBSET k /\ | |
(!x y. R(x,y) ==> x IN (s *_c s) /\ y IN s) /\ | |
(!x. x IN (s *_c s) ==> ?!y. y IN s /\ R(x,y)) /\ | |
(!y:A. y IN s ==> ?!x. x IN (s *_c s) /\ R(x,y)) | |
==> (s = {z | ?p. R(p,z)})`, | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM] THEN MESON_TAC[]) in | |
REPEAT STRIP_TAC THEN | |
ABBREV_TAC | |
`P = \R. ?s. INFINITE(s:A->bool) /\ s SUBSET k /\ | |
(!x y. R(x,y) ==> x IN (s *_c s) /\ y IN s) /\ | |
(!x. x IN (s *_c s) ==> ?!y. y IN s /\ R(x,y)) /\ | |
(!y. y IN s ==> ?!x. x IN (s *_c s) /\ R(x,y))` THEN | |
MP_TAC(ISPEC `P:((A#A)#A->bool)->bool` ZL_SUBSETS_UNIONS_NONEMPTY) THEN | |
ANTS_TAC THENL | |
[CONJ_TAC THENL | |
[FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[SWAP_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_EXISTS_AND_THM; GSYM EQ_C] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INFINITE_CARD_LE]) THEN | |
REWRITE_TAC[CARD_LE_EQ_SUBSET] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `s:A->bool` THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL | |
[ASM_MESON_TAC[num_INFINITE; CARD_INFINITE_CONG]; ALL_TAC] THEN | |
FIRST_ASSUM(fun th -> | |
MP_TAC(MATCH_MP CARD_MUL_CONG (CONJ th th))) THEN | |
GEN_REWRITE_TAC LAND_CONV [CARD_EQ_SYM] THEN | |
DISCH_THEN(MP_TAC o C CONJ CARD_SQUARE_NUM) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_TRANS) THEN | |
FIRST_ASSUM(fun th -> | |
DISCH_THEN(ACCEPT_TAC o MATCH_MP CARD_EQ_TRANS o C CONJ th)); | |
ALL_TAC] THEN | |
SUBGOAL_THEN | |
`P = \R. INFINITE {z | ?x y. R((x,y),z)} /\ | |
(!x:A y z. R((x,y),z) ==> x IN k /\ y IN k /\ z IN k) /\ | |
(!x y. (?u v. R((u,v),x)) /\ (?u v. R((u,v),y)) | |
==> ?z. R((x,y),z)) /\ | |
(!x y. (?z. R((x,y),z)) | |
==> (?u v. R((u,v),x)) /\ (?u v. R((u,v),y))) /\ | |
(!x y z1 z2. R((x,y),z1) /\ R((x,y),z2) ==> (z1 = z2)) /\ | |
(!x1 y1 x2 y2 z. R((x1,y1),z) /\ R((x2,y2),z) | |
==> (x1 = x2) /\ (y1 = y2))` | |
SUBST1_TAC THENL | |
[FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN | |
ONCE_REWRITE_TAC[MATCH_MP(TAUT `(a ==> b) ==> (a <=> b /\ a)`) lemma] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN REWRITE_TAC[FUN_EQ_THM] THEN | |
REWRITE_TAC[IN_CARD_MUL; EXISTS_PAIR_THM; SUBSET; FUN_EQ_THM; | |
IN_ELIM_THM; FORALL_PAIR_THM; EXISTS_UNIQUE_THM; | |
UNIONS; PAIR_EQ] THEN | |
GEN_TAC THEN AP_TERM_TAC THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(K ALL_TAC o SYM) THEN REWRITE_TAC[] THEN GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) | |
[TAUT `a ==> b /\ c <=> (a ==> b) /\ (a ==> c)`] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [FORALL_AND_THM] THEN | |
MATCH_MP_TAC(TAUT | |
`(c /\ d ==> f) /\ (a /\ b ==> e) | |
==> (a /\ (b /\ c) /\ d ==> e /\ f)`) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[UNIONS; IN_ELIM_THM] THEN | |
REWRITE_TAC[SUBSET; IN] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `s:(A#A)#A->bool`) MP_TAC) THEN | |
DISCH_THEN(MP_TAC o SPEC `s:(A#A)#A->bool`) THEN | |
ASM_REWRITE_TAC[INFINITE; CONTRAPOS_THM] THEN | |
MATCH_MP_TAC(ONCE_REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`] | |
FINITE_SUBSET) THEN | |
REWRITE_TAC[SUBSET; IN_ELIM_THM; UNIONS] THEN ASM_MESON_TAC[IN]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN REWRITE_TAC[] THEN | |
DISCH_THEN(X_CHOOSE_THEN `R:(A#A)#A->bool` | |
(CONJUNCTS_THEN2 (X_CHOOSE_TAC `s:A->bool`) ASSUME_TAC)) THEN | |
SUBGOAL_THEN `(s:A->bool) *_c s =_c s` ASSUME_TAC THENL | |
[REWRITE_TAC[EQ_C] THEN EXISTS_TAC `R:(A#A)#A->bool` THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `s +_c s <=_c (s:A->bool)` ASSUME_TAC THENL | |
[TRANS_TAC CARD_LE_TRANS `(s:A->bool) *_c s` THEN | |
ASM_SIMP_TAC[CARD_EQ_IMP_LE; CARD_ADD_LE_MUL_INFINITE]; | |
ALL_TAC] THEN | |
SUBGOAL_THEN `(s:A->bool) INTER (k DIFF s) = {}` ASSUME_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_INTER; IN_DIFF; NOT_IN_EMPTY] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
DISJ_CASES_TAC(ISPECL [`k DIFF (s:A->bool)`; `s:A->bool`] CARD_LE_TOTAL) | |
THENL | |
[SUBGOAL_THEN `k = (s:A->bool) UNION (k DIFF s)` SUBST1_TAC THENL | |
[FIRST_ASSUM(MP_TAC o CONJUNCT1 o CONJUNCT2) THEN | |
REWRITE_TAC[SUBSET; EXTENSION; IN_INTER; NOT_IN_EMPTY; | |
IN_UNION; IN_DIFF] THEN | |
MESON_TAC[]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_SQUARE] THEN | |
TRANS_TAC CARD_LE_TRANS | |
`((s:A->bool) +_c (k DIFF s:A->bool)) *_c (s +_c k DIFF s)` THEN | |
ASM_SIMP_TAC[CARD_DISJOINT_UNION; CARD_EQ_IMP_LE; CARD_MUL_CONG] THEN | |
TRANS_TAC CARD_LE_TRANS `((s:A->bool) +_c s) *_c (s +_c s)` THEN | |
ASM_SIMP_TAC[CARD_LE_ADD; CARD_LE_MUL; CARD_LE_REFL] THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) *_c s` THEN | |
ASM_SIMP_TAC[CARD_LE_MUL] THEN | |
TRANS_TAC CARD_LE_TRANS `s:A->bool` THEN ASM_SIMP_TAC[CARD_EQ_IMP_LE] THEN | |
REWRITE_TAC[CARD_LE_EQ_SUBSET] THEN EXISTS_TAC `s:A->bool` THEN | |
SIMP_TAC[CARD_EQ_REFL; SUBSET; IN_UNION]; | |
ALL_TAC] THEN | |
UNDISCH_TAC `s:A->bool <=_c k DIFF s` THEN | |
REWRITE_TAC[CARD_LE_EQ_SUBSET] THEN | |
DISCH_THEN(X_CHOOSE_THEN `d:A->bool` STRIP_ASSUME_TAC) THEN | |
SUBGOAL_THEN `(s:A->bool *_c d) UNION (d *_c s) UNION (d *_c d) =_c d` | |
MP_TAC THENL | |
[TRANS_TAC CARD_EQ_TRANS | |
`((s:A->bool) *_c (d:A->bool)) +_c ((d *_c s) +_c (d *_c d))` THEN | |
CONJ_TAC THENL | |
[TRANS_TAC CARD_EQ_TRANS | |
`((s:A->bool) *_c d) +_c ((d *_c s) UNION (d *_c d))` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC CARD_ADD_CONG THEN REWRITE_TAC[CARD_EQ_REFL]] THEN | |
MATCH_MP_TAC CARD_DISJOINT_UNION THEN | |
UNDISCH_TAC `s INTER (k DIFF s:A->bool) = {}` THEN | |
UNDISCH_TAC `d SUBSET (k DIFF s:A->bool)` THEN | |
REWRITE_TAC[EXTENSION; SUBSET; FORALL_PAIR_THM; NOT_IN_EMPTY; | |
IN_INTER; IN_UNION; IN_CARD_MUL; IN_DIFF] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
TRANS_TAC CARD_EQ_TRANS `s:A->bool` THEN ASM_REWRITE_TAC[] THEN | |
TRANS_TAC CARD_EQ_TRANS | |
`(s:A->bool *_c s) +_c (s *_c s) +_c (s *_c s)` THEN | |
CONJ_TAC THENL | |
[REPEAT(MATCH_MP_TAC CARD_ADD_CONG THEN CONJ_TAC) THEN | |
MATCH_MP_TAC CARD_MUL_CONG THEN ASM_REWRITE_TAC[CARD_EQ_REFL] THEN | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN ASM_REWRITE_TAC[]; | |
ALL_TAC] THEN | |
TRANS_TAC CARD_EQ_TRANS `(s:A->bool) +_c s +_c s` THEN CONJ_TAC THENL | |
[REPEAT(MATCH_MP_TAC CARD_ADD_CONG THEN ASM_REWRITE_TAC[]); | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_ADDR] THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c s` THEN | |
ASM_SIMP_TAC[CARD_LE_ADD; CARD_LE_REFL]; | |
ALL_TAC] THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN | |
FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN | |
REWRITE_TAC[EQ_C; IN_UNION] THEN | |
DISCH_THEN(X_CHOOSE_TAC `S:(A#A)#A->bool`) THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\x:(A#A)#A. R(x) \/ S(x)`) THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN DISCH_THEN(K ALL_TAC) THEN | |
REWRITE_TAC[NOT_IMP] THEN REPEAT CONJ_TAC THENL | |
[EXISTS_TAC `(s:A->bool) UNION d`; | |
SIMP_TAC[SUBSET; IN]; | |
SUBGOAL_THEN `~(d:A->bool = {})` MP_TAC THENL | |
[DISCH_THEN(MP_TAC o AP_TERM `FINITE:(A->bool)->bool`) THEN | |
REWRITE_TAC[FINITE_RULES; GSYM INFINITE] THEN | |
ASM_MESON_TAC[CARD_INFINITE_CONG]; | |
ALL_TAC] THEN | |
REWRITE_TAC[GSYM MEMBER_NOT_EMPTY] THEN DISCH_THEN(X_CHOOSE_TAC `a:A`) THEN | |
FIRST_ASSUM(MP_TAC o C MATCH_MP | |
(ASSUME `a:A IN d`) o last o CONJUNCTS) THEN | |
DISCH_THEN(MP_TAC o EXISTENCE) THEN | |
DISCH_THEN(X_CHOOSE_THEN `b:A#A` (CONJUNCTS_THEN ASSUME_TAC)) THEN | |
REWRITE_TAC[EXTENSION; NOT_FORALL_THM] THEN | |
EXISTS_TAC `(b:A#A,a:A)` THEN ASM_REWRITE_TAC[IN] THEN | |
DISCH_THEN(fun th -> FIRST_ASSUM | |
(MP_TAC o CONJUNCT2 o C MATCH_MP th o CONJUNCT1)) THEN | |
MAP_EVERY UNDISCH_TAC | |
[`a:A IN d`; `(d:A->bool) SUBSET (k DIFF s)`] THEN | |
REWRITE_TAC[SUBSET; IN_DIFF] THEN MESON_TAC[]] THEN | |
REWRITE_TAC[INFINITE; FINITE_UNION; DE_MORGAN_THM] THEN | |
ASM_REWRITE_TAC[GSYM INFINITE] THEN CONJ_TAC THENL | |
[MAP_EVERY UNDISCH_TAC | |
[`(d:A->bool) SUBSET (k DIFF s)`; `(s:A->bool) SUBSET k`] THEN | |
REWRITE_TAC[SUBSET; IN_UNION; IN_DIFF] THEN MESON_TAC[]; | |
ALL_TAC] THEN | |
REPEAT(FIRST_ASSUM(UNDISCH_TAC o check is_conj o concl)) THEN | |
REWRITE_TAC[FORALL_PAIR_THM; EXISTS_UNIQUE_THM; EXISTS_PAIR_THM; | |
IN_CARD_MUL; IN_UNION; PAIR_EQ] THEN | |
MAP_EVERY UNDISCH_TAC | |
[`(s:A->bool) SUBSET k`; | |
`(d:A->bool) SUBSET (k DIFF s)`] THEN | |
REWRITE_TAC[SUBSET; EXTENSION; NOT_IN_EMPTY; IN_INTER; IN_DIFF] THEN | |
POP_ASSUM_LIST(K ALL_TAC) THEN | |
REPEAT DISCH_TAC THEN REPEAT CONJ_TAC THENL | |
[ASM_MESON_TAC[]; ASM_MESON_TAC[]; ALL_TAC] THEN | |
GEN_TAC THEN DISCH_THEN(DISJ_CASES_THEN MP_TAC) THENL | |
[ASM_MESON_TAC[]; ALL_TAC] THEN | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THENL | |
[ALL_TAC; ASM_MESON_TAC[]] THEN | |
DISCH_THEN(fun th -> | |
FIRST_ASSUM(MP_TAC o C MATCH_MP th o last o CONJUNCTS)) THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Preservation of finiteness. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_ADD_FINITE = prove | |
(`!s t. FINITE s /\ FINITE t ==> FINITE(s +_c t)`, | |
SIMP_TAC[add_c; FINITE_UNION; SIMPLE_IMAGE; FINITE_IMAGE]);; | |
let CARD_ADD_FINITE_EQ = prove | |
(`!s:A->bool t:B->bool. FINITE(s +_c t) <=> FINITE s /\ FINITE t`, | |
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[CARD_ADD_FINITE] THEN | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN | |
REWRITE_TAC[CARD_LE_ADDL; CARD_LE_ADDR]);; | |
let CARD_MUL_FINITE = prove | |
(`!s t. FINITE s /\ FINITE t ==> FINITE(s *_c t)`, | |
SIMP_TAC[mul_c; FINITE_PRODUCT]);; | |
let CARD_MUL_FINITE_EQ = prove | |
(`!s:A->bool t:B->bool. | |
FINITE(s *_c t) <=> s = {} \/ t = {} \/ FINITE s /\ FINITE t`, | |
REWRITE_TAC[mul_c; GSYM CROSS; FINITE_CROSS_EQ]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the "absorption laws" for arithmetic with an infinite cardinal. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_MUL_ABSORB_LE = prove | |
(`!s:A->bool t:B->bool. INFINITE(t) /\ s <=_c t ==> s *_c t <=_c t`, | |
REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(t:B->bool) *_c t` THEN | |
ASM_SIMP_TAC[CARD_LE_MUL; CARD_LE_REFL; | |
CARD_SQUARE_INFINITE; CARD_EQ_IMP_LE]);; | |
let CARD_MUL2_ABSORB_LE = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
INFINITE(u) /\ s <=_c u /\ t <=_c u ==> s *_c t <=_c u`, | |
REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) *_c (u:C->bool)` THEN | |
ASM_SIMP_TAC[CARD_MUL_ABSORB_LE] THEN MATCH_MP_TAC CARD_LE_MUL THEN | |
ASM_REWRITE_TAC[CARD_LE_REFL]);; | |
let CARD_MUL2_ABSORB_LE_ALT = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(INFINITE s \/ INFINITE t) /\ s <=_c u /\ t <=_c u | |
==> s *_c t <=_c u`, | |
MESON_TAC[CARD_LE_INFINITE; CARD_MUL2_ABSORB_LE]);; | |
let CARD_ADD_ABSORB_LE = prove | |
(`!s:A->bool t:B->bool. INFINITE(t) /\ s <=_c t ==> s +_c t <=_c t`, | |
REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(t:B->bool) *_c t` THEN | |
ASM_SIMP_TAC[CARD_SQUARE_INFINITE; CARD_EQ_IMP_LE] THEN | |
TRANS_TAC CARD_LE_TRANS `(t:B->bool) +_c t` THEN | |
ASM_SIMP_TAC[CARD_ADD_LE_MUL_INFINITE; CARD_LE_ADD; CARD_LE_REFL]);; | |
let CARD_ADD2_ABSORB_LE = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
INFINITE(u) /\ s <=_c u /\ t <=_c u ==> s +_c t <=_c u`, | |
REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c (u:C->bool)` THEN | |
ASM_SIMP_TAC[CARD_ADD_ABSORB_LE] THEN MATCH_MP_TAC CARD_LE_ADD THEN | |
ASM_REWRITE_TAC[CARD_LE_REFL]);; | |
let CARD_MUL_ABSORB = prove | |
(`!s:A->bool t:B->bool. | |
INFINITE(t) /\ ~(s = {}) /\ s <=_c t ==> s *_c t =_c t`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_MUL_ABSORB_LE] THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o | |
GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:B. (a:A,x)` THEN | |
ASM_SIMP_TAC[IN_CARD_MUL; PAIR_EQ]);; | |
let CARD_ADD_ABSORB_LEFT = prove | |
(`!s:A->bool t:B->bool. INFINITE(t) /\ s <=_c t ==> s +_c t =_c t`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_ADDL; CARD_ADD_ABSORB_LE]);; | |
let CARD_ADD_ABSORB_RIGHT = prove | |
(`!s:A->bool t:B->bool. INFINITE(s) /\ t <=_c s ==> s +_c t =_c s`, | |
REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_EQ_TRANS `(t:B->bool) +_c (s:A->bool)` THEN | |
ASM_SIMP_TAC[CARD_ADD_ABSORB_LEFT; CARD_ADD_SYM]);; | |
let CARD_UNION_ABSORB_LEFT = prove | |
(`!s t:A->bool. INFINITE(t) /\ s <=_c t ==> s UNION t =_c t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
SIMP_TAC[CARD_LE_SUBSET; SUBSET_UNION] THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c (t:A->bool)` THEN | |
REWRITE_TAC[UNION_LE_ADD_C] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
ASM_SIMP_TAC[CARD_ADD_ABSORB_LEFT]);; | |
let CARD_UNION_ABSORB_RIGHT = prove | |
(`!s t:A->bool. INFINITE(s) /\ t <=_c s ==> s UNION t =_c s`, | |
ONCE_REWRITE_TAC[UNION_COMM] THEN REWRITE_TAC[CARD_UNION_ABSORB_LEFT]);; | |
let CARD_ADD2_ABSORB_LT = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
INFINITE u /\ s <_c u /\ t <_c u ==> s +_c t <_c u`, | |
REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `FINITE((s:A->bool) +_c (t:B->bool))` THEN | |
ASM_SIMP_TAC[CARD_LT_FINITE_INFINITE] THEN | |
DISJ_CASES_TAC(ISPECL [`s:A->bool`; `t:B->bool`] CARD_LE_TOTAL) THENL | |
[ASM_CASES_TAC `FINITE(t:B->bool)` THENL | |
[ASM_MESON_TAC[CARD_LE_FINITE; CARD_ADD_FINITE]; | |
TRANS_TAC CARD_LET_TRANS `t:B->bool`]; | |
ASM_CASES_TAC `FINITE(s:A->bool)` THENL | |
[ASM_MESON_TAC[CARD_LE_FINITE; CARD_ADD_FINITE]; | |
TRANS_TAC CARD_LET_TRANS `s:A->bool`]] THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC CARD_ADD2_ABSORB_LE THEN | |
ASM_REWRITE_TAC[INFINITE; CARD_LE_REFL]);; | |
let CARD_DIFF_ABSORB = prove | |
(`!s t:A->bool. INFINITE s /\ t <_c s ==> s DIFF t =_c s`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_SUBSET; SUBSET_DIFF] THEN | |
REWRITE_TAC[GSYM CARD_NOT_LT] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SET_RULE `s SUBSET (s DIFF t) UNION t:A->bool`) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_SUBSET) THEN | |
REWRITE_TAC[CARD_NOT_LE] THEN | |
TRANS_TAC CARD_LET_TRANS `(s DIFF t:A->bool) +_c t` THEN | |
ASM_SIMP_TAC[UNION_LE_ADD_C; CARD_ADD2_ABSORB_LT]);; | |
let CARD_LT_ADD = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s <_c s' /\ t <_c t' ==> s +_c t <_c s' +_c t'`, | |
REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `FINITE((s':B->bool) +_c (t':D->bool))` THENL | |
[FIRST_X_ASSUM(STRIP_ASSUME_TAC o GEN_REWRITE_RULE I | |
[CARD_ADD_FINITE_EQ]) THEN | |
SUBGOAL_THEN `FINITE(s:A->bool) /\ FINITE(t:C->bool)` | |
STRIP_ASSUME_TAC THENL | |
[CONJ_TAC THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) o | |
MATCH_MP CARD_LT_IMP_LE) THEN | |
ASM_REWRITE_TAC[]; | |
MAP_EVERY UNDISCH_TAC | |
[`(s:A->bool) <_c (s':B->bool)`; | |
`(t:C->bool) <_c (t':D->bool)`] THEN | |
ASM_SIMP_TAC[CARD_LT_CARD; CARD_ADD_FINITE; CARD_ADD_C] THEN | |
ARITH_TAC]; | |
MATCH_MP_TAC CARD_ADD2_ABSORB_LT THEN ASM_REWRITE_TAC[INFINITE] THEN | |
CONJ_TAC THENL | |
[TRANS_TAC CARD_LTE_TRANS `s':B->bool` THEN | |
ASM_REWRITE_TAC[CARD_LE_ADDR]; | |
TRANS_TAC CARD_LTE_TRANS `t':D->bool` THEN | |
ASM_REWRITE_TAC[CARD_LE_ADDL]]]);; | |
let CARD_LE_ADD_LCANCEL = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE s \/ s <=_c u) /\ | |
s +_c t <=_c s +_c u | |
==> t <=_c u`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `FINITE(u:C->bool)` THENL | |
[ASM_CASES_TAC `FINITE(s:A->bool)` THENL | |
[ALL_TAC; ASM_MESON_TAC[CARD_LE_FINITE]] THEN | |
DISCH_THEN(MP_TAC o CONJUNCT2) THEN | |
DISCH_THEN(fun th -> | |
MP_TAC th THEN MP_TAC(MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] | |
CARD_LE_FINITE) th)) THEN | |
ASM_SIMP_TAC[CARD_LE_CARD; CARD_ADD_FINITE_EQ; CARD_ADD_C] THEN | |
SIMP_TAC[LE_ADD_LCANCEL]; | |
ALL_TAC] THEN | |
ASM_CASES_TAC `FINITE(t:B->bool)` THENL | |
[ASM_MESON_TAC[CARD_LE_FINITE_INFINITE; INFINITE]; ALL_TAC] THEN | |
ASM_CASES_TAC `(s:A->bool) <=_c (u:C->bool)` THENL | |
[ASM_REWRITE_TAC[]; ASM_MESON_TAC[CARD_LE_FINITE_INFINITE; INFINITE]] THEN | |
ASM_CASES_TAC `(s:A->bool) <=_c (t:B->bool)` THENL | |
[ALL_TAC; ASM_MESON_TAC[CARD_NOT_LE; CARD_LT_IMP_LE; CARD_LE_TRANS]] THEN | |
MATCH_MP_TAC EQ_IMP THEN MATCH_MP_TAC CARD_LE_CONG THEN | |
CONJ_TAC THEN MATCH_MP_TAC CARD_ADD_ABSORB_LEFT THEN | |
ASM_REWRITE_TAC[INFINITE]);; | |
let CARD_LE_ADD_LCANCEL_EQ = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE s \/ s <=_c u) | |
==> (s +_c t <=_c s +_c u <=> t <=_c u)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN | |
ASM_SIMP_TAC[CARD_LE_ADD; CARD_LE_REFL] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_ADD_LCANCEL) THEN | |
ASM_REWRITE_TAC[]);; | |
let CARD_LE_ADD_RCANCEL = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE u \/ u <=_c t) /\ | |
s +_c u <=_c t +_c u | |
==> s <=_c t`, | |
let lemma = prove | |
(`s +_c u <=_c t +_c u <=> u +_c s <=_c u +_c t`, | |
MATCH_MP_TAC CARD_LE_CONG THEN REWRITE_TAC[CARD_ADD_SYM]) in | |
ONCE_REWRITE_TAC[lemma] THEN REWRITE_TAC[CARD_LE_ADD_LCANCEL]);; | |
let CARD_LE_ADD_RCANCEL_EQ = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE u \/ u <=_c t) | |
==> (s +_c u <=_c t +_c u <=> s <=_c t)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN EQ_TAC THEN | |
ASM_SIMP_TAC[CARD_LE_ADD; CARD_LE_REFL] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_ADD_RCANCEL) THEN | |
ASM_REWRITE_TAC[]);; | |
let CARD_EQ_ADD_LCANCEL = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE s \/ s <=_c t /\ s <=_c u) /\ | |
s +_c t =_c s +_c u | |
==> t =_c u`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MATCH_MP_TAC MONO_AND THEN | |
CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_ADD_LCANCEL) THEN | |
ASM_MESON_TAC[]);; | |
let CARD_EQ_ADD_LCANCEL_EQ = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE s \/ s <=_c t /\ s <=_c u) | |
==> (s +_c t =_c s +_c u <=> t =_c u)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN BINOP_TAC THEN | |
MATCH_MP_TAC CARD_LE_ADD_LCANCEL_EQ THEN ASM_MESON_TAC[]);; | |
let CARD_EQ_ADD_RCANCEL = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE u \/ u <=_c s /\ u <=_c t) /\ | |
s +_c u =_c t +_c u | |
==> s =_c t`, | |
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MATCH_MP_TAC MONO_AND THEN | |
CONJ_TAC THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_ADD_RCANCEL) THEN | |
ASM_MESON_TAC[]);; | |
let CARD_EQ_ADD_RCANCEL_EQ = prove | |
(`!(s:A->bool) (t:B->bool) (u:C->bool). | |
(FINITE u \/ u <=_c s /\ u <=_c t) | |
==> (s +_c u =_c t +_c u <=> s =_c t)`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN BINOP_TAC THEN | |
MATCH_MP_TAC CARD_LE_ADD_RCANCEL_EQ THEN ASM_MESON_TAC[]);; | |
let CARD_LE_UNIONS2 = prove | |
(`!u:((A->bool)->bool) k:B->bool l:C->bool. | |
u <=_c k /\ (!s. s IN u ==> s <=_c l) ==> UNIONS u <=_c k *_c l`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [LE_C_IMAGE_SUBSET] THEN | |
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM; LEFT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f:B->A->bool`; `g:(A->bool)->C->A`] THEN STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS | |
`IMAGE (\(x,y). (g:(A->bool)->C->A) (f x) y) | |
((k:B->bool) *_c (l:C->bool))` THEN | |
REWRITE_TAC[CARD_LE_IMAGE] THEN MATCH_MP_TAC CARD_LE_SUBSET THEN | |
REWRITE_TAC[SUBSET; IN_UNIONS; IN_IMAGE; mul_c; IN_ELIM_PAIR_THM; | |
EXISTS_PAIR_THM] THEN | |
ASM SET_TAC[]);; | |
let CARD_LE_UNIONS = prove | |
(`!k:B->bool u:(A->bool)->bool. | |
INFINITE k /\ u <=_c k /\ (!s. s IN u ==> s <=_c k) | |
==> UNIONS u <=_c k`, | |
REPEAT GEN_TAC THEN DISCH_THEN | |
(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o MATCH_MP CARD_LE_UNIONS2)) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN MATCH_MP_TAC CARD_SQUARE_INFINITE THEN | |
ASM_REWRITE_TAC[]);; | |
let CARD_LE_DISJOINT_UNIONS = prove | |
(`!(s:(A->bool)->bool) (t:B->bool). | |
pairwise DISJOINT s /\ (!u. u IN s ==> t <=_c u) | |
==> s *_c t <=_c UNIONS s`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[pairwise; SET_RULE | |
`DISJOINT s t <=> !x. ~(x IN s /\ x IN t)`] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[le_c] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `f:(A->bool)->B->A` THEN DISCH_TAC THEN | |
EXISTS_TAC `\(u,y). (f:(A->bool)->B->A) u y` THEN | |
REWRITE_TAC[FORALL_PAIR_THM; IN_CARD_MUL; IN_UNIONS; PAIR_EQ] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_EQ_DISJOINT_UNIONS = prove | |
(`!(s:(A->bool)->bool) (t:B->bool). | |
pairwise DISJOINT s /\ (!u. u IN s ==> u =_c t) | |
==> UNIONS s =_c s *_c t`, | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN REPEAT STRIP_TAC THEN | |
ASM_SIMP_TAC[CARD_LE_DISJOINT_UNIONS] THEN | |
MATCH_MP_TAC CARD_LE_UNIONS2 THEN ASM_SIMP_TAC[CARD_LE_REFL]);; | |
let CARD_EQ_IMAGE_MUL_FIBRES = prove | |
(`!(f:A->B) s (t:C->bool). | |
(!x. x IN s ==> {z | z IN s /\ f z = f x} =_c t) | |
==> IMAGE f s *_c t =_c s`, | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [CARD_EQ_SYM] THEN | |
REWRITE_TAC[eq_c] THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM; IN_ELIM_THM] THEN | |
X_GEN_TAC `k:A->C->A` THEN DISCH_TAC THEN | |
SUBGOAL_THEN `!y. y IN IMAGE (f:A->B) s ==> ?x. x IN s /\ f x = y` | |
MP_TAC THENL [SET_TAC[]; REWRITE_TAC[SURJECTIVE_ON_RIGHT_INVERSE]] THEN | |
DISCH_THEN(X_CHOOSE_TAC `h:B->A`) THEN | |
EXISTS_TAC `\(y,z). (k:A->C->A) ((h:B->A) y) z` THEN | |
REWRITE_TAC[EXISTS_UNIQUE_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[IN_CARD_MUL; EXISTS_PAIR_THM; PAIR_EQ] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[FORALL_IN_IMAGE]) THEN ASM_SIMP_TAC[] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_DIFF_CONG = prove | |
(`!(s:A->bool) s' (t:B->bool) t'. | |
s' SUBSET s /\ t' SUBSET t /\ | |
s =_c t /\ s' =_c t' /\ | |
(INFINITE s ==> s' <_c s) | |
==> s DIFF s' =_c t DIFF t'`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `INFINITE(s:A->bool)` THEN | |
ASM_REWRITE_TAC[] THEN STRIP_TAC THENL | |
[TRANS_TAC CARD_EQ_TRANS `(s:A->bool)` THEN | |
ASM_SIMP_TAC[CARD_DIFF_ABSORB] THEN | |
TRANS_TAC CARD_EQ_TRANS `(t:B->bool)` THEN | |
ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
MATCH_MP_TAC CARD_DIFF_ABSORB THEN | |
ASM_MESON_TAC[CARD_LT_CONG; CARD_INFINITE_CONG]; | |
RULE_ASSUM_TAC(REWRITE_RULE[INFINITE]) THEN | |
SUBGOAL_THEN `FINITE(t:B->bool)` ASSUME_TAC THENL | |
[ASM_MESON_TAC[CARD_FINITE_CONG]; ALL_TAC] THEN | |
ASM_SIMP_TAC[CARD_EQ_CARD; FINITE_DIFF; CARD_DIFF] THEN | |
ASM_MESON_TAC[CARD_EQ_CARD; FINITE_SUBSET]]);; | |
let EQ_C_BIJECTIONS_DISJOINT = prove | |
(`!(s:A->bool) s' (t:B->bool) t'. | |
DISJOINT s s' /\ DISJOINT t t' | |
==> (s =_c t /\ s' =_c t' <=> | |
?f g. (!x. x IN s ==> f x IN t /\ g (f x) = x) /\ | |
(!y. y IN t ==> g y IN s /\ f (g y) = y) /\ | |
(!x. x IN s' ==> f x IN t' /\ g (f x) = x) /\ | |
(!y. y IN t' ==> g y IN s' /\ f (g y) = y))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN EQ_TAC THENL | |
[REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM]; | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN MESON_TAC[]] THEN | |
MAP_EVERY X_GEN_TAC [`f:A->B`; `g:B->A`; `f':A->B`; `g':B->A`] THEN | |
STRIP_TAC THEN | |
EXISTS_TAC `\x. if x IN s then (f:A->B) x else f' x` THEN | |
EXISTS_TAC `\y. if y IN t then (g:B->A) y else g' y` THEN | |
ASM SET_TAC[]);; | |
let EQ_C_BIJECTIONS_SUBSETS = prove | |
(`!(s:A->bool) s' (t:B->bool) t'. | |
s' SUBSET s /\ t' SUBSET t | |
==> (s' =_c t' /\ s DIFF s' =_c t DIFF t' <=> | |
?f g. (!x. x IN s ==> f x IN t /\ g (f x) = x) /\ | |
(!y. y IN t ==> g y IN s /\ f (g y) = y) /\ | |
IMAGE f s' = t' /\ IMAGE g t' = s')`, | |
REPEAT STRIP_TAC THEN W(MP_TAC o PART_MATCH | |
(lhand o rand) EQ_C_BIJECTIONS_DISJOINT o lhand o snd) THEN | |
REWRITE_TAC[SET_RULE `DISJOINT t (s DIFF t)`] THEN | |
DISCH_THEN SUBST1_TAC THEN REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN | |
ASM SET_TAC[]);; | |
let EQ_C_BIJECTIONS_SUBSETS_LT = prove | |
(`!(s:A->bool) s' (t:B->bool) t'. | |
s' SUBSET s /\ t' SUBSET t /\ (INFINITE s ==> s' <_c s) | |
==> (s =_c t /\ s' =_c t' <=> | |
?f g. (!x. x IN s ==> f x IN t /\ g (f x) = x) /\ | |
(!y. y IN t ==> g y IN s /\ f (g y) = y) /\ | |
IMAGE f s' = t' /\ IMAGE g t' = s')`, | |
REPEAT STRIP_TAC THEN EQ_TAC THENL | |
[STRIP_TAC THEN ASM_SIMP_TAC[GSYM EQ_C_BIJECTIONS_SUBSETS] THEN | |
MATCH_MP_TAC CARD_DIFF_CONG THEN ASM_REWRITE_TAC[]; | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN | |
REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
REPEAT(MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC) THEN ASM SET_TAC[]]);; | |
let EQ_C_BIJECTIONS_EXTEND = prove | |
(`!(f:A->B) g (s:A->bool) s' (t:B->bool) t'. | |
s SUBSET s' /\ t SUBSET t' /\ s' DIFF s =_c t' DIFF t /\ | |
(!x. x IN s ==> f x IN t /\ g (f x) = x) /\ | |
(!y. y IN t ==> g y IN s /\ f (g y) = y) | |
==> ?f' g'. (!x. x IN s' ==> f' x IN t' /\ g' (f' x) = x) /\ | |
(!y. y IN t' ==> g' y IN s' /\ f' (g' y) = y) /\ | |
(!x. x IN s ==> f' x = f x) /\ | |
(!y. y IN t ==> g' y = g y)`, | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [EQ_C_BIJECTIONS]) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`f':A->B`; `g':B->A`] THEN | |
STRIP_TAC THEN | |
EXISTS_TAC `\x. if x IN s then (f:A->B) x else f' x` THEN | |
EXISTS_TAC `\y. if y IN t then (g:B->A) y else g' y` THEN | |
ASM SET_TAC[]);; | |
let EQ_C_INVOLUTION = prove | |
(`!f s t:A->bool. | |
(!x. x IN s ==> f x IN t) /\ (!x. x IN t ==> f x IN s) /\ | |
(!x. x IN s \/ x IN t ==> f(f x) = x) | |
==> s =_c t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
REPEAT(EXISTS_TAC `f:A->A`) THEN ASM SET_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some more ad-hoc but useful theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_MUL_LT_LEMMA = prove | |
(`!s t:B->bool u. s <=_c t /\ t <_c u /\ INFINITE u ==> s *_c t <_c u`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `FINITE(t:B->bool)` THENL | |
[REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[CARD_NOT_LT; INFINITE] THEN | |
ASM_MESON_TAC[CARD_LE_FINITE; CARD_MUL_FINITE]; | |
ASM_MESON_TAC[INFINITE; CARD_MUL_ABSORB_LE; CARD_LET_TRANS]]);; | |
let CARD_MUL_LT_INFINITE = prove | |
(`!s:A->bool t:B->bool u. s <_c u /\ t <_c u /\ INFINITE u ==> s *_c t <_c u`, | |
REPEAT GEN_TAC THEN | |
DISJ_CASES_TAC(ISPECL [`s:A->bool`; `t:B->bool`] CARD_LE_TOTAL) THENL | |
[ASM_MESON_TAC[CARD_MUL_SYM; CARD_MUL_LT_LEMMA]; | |
STRIP_TAC THEN TRANS_TAC CARD_LET_TRANS `t:B->bool *_c s:A->bool` THEN | |
ASM_MESON_TAC[CARD_EQ_IMP_LE; CARD_MUL_SYM; CARD_MUL_LT_LEMMA]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Cantor's theorem. *) | |
(* ------------------------------------------------------------------------- *) | |
let CANTOR_THM = prove | |
(`!s:A->bool. s <_c {t | t SUBSET s}`, | |
GEN_TAC THEN REWRITE_TAC[lt_c] THEN CONJ_TAC THENL | |
[REWRITE_TAC[le_c] THEN EXISTS_TAC `(=):A->A->bool` THEN | |
REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; SUBSET; IN] THEN MESON_TAC[]; | |
REWRITE_TAC[LE_C; IN_ELIM_THM; SURJECTIVE_RIGHT_INVERSE] THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN X_GEN_TAC `g:A->(A->bool)` THEN | |
DISCH_THEN(MP_TAC o SPEC `\x:A. s(x) /\ ~(g x x)`) THEN | |
REWRITE_TAC[SUBSET; IN; FUN_EQ_THM] THEN MESON_TAC[]]);; | |
let CANTOR_THM_UNIV = prove | |
(`(UNIV:A->bool) <_c (UNIV:(A->bool)->bool)`, | |
MP_TAC(ISPEC `UNIV:A->bool` CANTOR_THM) THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN | |
REWRITE_TAC[EXTENSION; SUBSET; IN_UNIV; IN_ELIM_THM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lemmas about countability. *) | |
(* ------------------------------------------------------------------------- *) | |
let NUM_COUNTABLE = prove | |
(`COUNTABLE(:num)`, | |
REWRITE_TAC[COUNTABLE; ge_c; CARD_LE_REFL]);; | |
let COUNTABLE_ALT = prove | |
(`!s. COUNTABLE s <=> s <=_c (:num)`, | |
REWRITE_TAC[COUNTABLE; ge_c]);; | |
let COUNTABLE_CASES = prove | |
(`!s. COUNTABLE s <=> FINITE s \/ s =_c (:num)`, | |
REWRITE_TAC[COUNTABLE_ALT; FINITE_CARD_LT; CARD_LE_LT]);; | |
let CARD_LE_COUNTABLE = prove | |
(`!s t:A->bool. COUNTABLE t /\ s <=_c t ==> COUNTABLE s`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `t:A->bool` THEN ASM_REWRITE_TAC[]);; | |
let CARD_EQ_COUNTABLE = prove | |
(`!s t:A->bool. COUNTABLE t /\ s =_c t ==> COUNTABLE s`, | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_COUNTABLE]);; | |
let CARD_COUNTABLE_CONG = prove | |
(`!s t. s =_c t ==> (COUNTABLE s <=> COUNTABLE t)`, | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN MESON_TAC[CARD_LE_COUNTABLE]);; | |
let COUNTABLE_SUBSET = prove | |
(`!s t:A->bool. COUNTABLE t /\ s SUBSET t ==> COUNTABLE s`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `t:A->bool` THEN | |
ASM_SIMP_TAC[CARD_LE_SUBSET]);; | |
let COUNTABLE_RESTRICT = prove | |
(`!s P. COUNTABLE s ==> COUNTABLE {x | x IN s /\ P x}`, | |
REPEAT GEN_TAC THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN | |
SET_TAC[]);; | |
let COUNTABLE_SUBSET_NUM = prove | |
(`!s:num->bool. COUNTABLE s`, | |
MESON_TAC[NUM_COUNTABLE; COUNTABLE_SUBSET; SUBSET_UNIV]);; | |
let FINITE_IMP_COUNTABLE = prove | |
(`!s. FINITE s ==> COUNTABLE s`, | |
SIMP_TAC[FINITE_CARD_LT; lt_c; COUNTABLE; ge_c]);; | |
let CARD_LE_COUNTABLE_INFINITE = prove | |
(`!(s:A->bool) (t:B->bool). COUNTABLE s /\ INFINITE t ==> s <=_c t`, | |
REWRITE_TAC[COUNTABLE; ge_c; INFINITE_CARD_LE; CARD_LE_TRANS]);; | |
let CARD_LT_COUNTABLE_UNCOUNTABLE = prove | |
(`!(s:A->bool) (t:B->bool). | |
COUNTABLE s /\ ~COUNTABLE t ==> s <_c t`, | |
REWRITE_TAC[COUNTABLE; ge_c; CARD_NOT_LE; CARD_LET_TRANS]);; | |
let COUNTABLE_IMAGE = prove | |
(`!f:A->B s. COUNTABLE s ==> COUNTABLE (IMAGE f s)`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `s:A->bool` THEN | |
ASM_SIMP_TAC[CARD_LE_IMAGE]);; | |
let COUNTABLE_IMAGE_INJ_GENERAL = prove | |
(`!(f:A->B) A s. | |
(!x y. x IN s /\ y IN s /\ f(x) = f(y) ==> x = y) /\ | |
COUNTABLE A | |
==> COUNTABLE {x | x IN s /\ f(x) IN A}`, | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN | |
DISCH_THEN(X_CHOOSE_TAC `g:B->A`) THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC `IMAGE (g:B->A) A` THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN ASM SET_TAC[]);; | |
let COUNTABLE_IMAGE_INJ_EQ = prove | |
(`!(f:A->B) s. | |
(!x y. x IN s /\ y IN s /\ (f(x) = f(y)) ==> (x = y)) | |
==> (COUNTABLE(IMAGE f s) <=> COUNTABLE s)`, | |
REPEAT STRIP_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[COUNTABLE_IMAGE] THEN | |
POP_ASSUM MP_TAC THEN REWRITE_TAC[IMP_IMP] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP COUNTABLE_IMAGE_INJ_GENERAL) THEN | |
MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN SET_TAC[]);; | |
let COUNTABLE_IMAGE_INJ = prove | |
(`!(f:A->B) A. | |
(!x y. (f(x) = f(y)) ==> (x = y)) /\ | |
COUNTABLE A | |
==> COUNTABLE {x | f(x) IN A}`, | |
REPEAT GEN_TAC THEN | |
MP_TAC(SPECL [`f:A->B`; `A:B->bool`; `UNIV:A->bool`] | |
COUNTABLE_IMAGE_INJ_GENERAL) THEN REWRITE_TAC[IN_UNIV]);; | |
let COUNTABLE_EMPTY = prove | |
(`COUNTABLE {}`, | |
SIMP_TAC[FINITE_IMP_COUNTABLE; FINITE_RULES]);; | |
let COUNTABLE_INTER = prove | |
(`!s t. COUNTABLE s \/ COUNTABLE t ==> COUNTABLE (s INTER t)`, | |
REWRITE_TAC[TAUT `(a \/ b ==> c) <=> (a ==> c) /\ (b ==> c)`] THEN | |
REPEAT GEN_TAC THEN CONJ_TAC THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN | |
SET_TAC[]);; | |
let COUNTABLE_UNION_IMP = prove | |
(`!s t:A->bool. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s UNION t)`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) +_c (t:A->bool)` THEN | |
ASM_SIMP_TAC[CARD_ADD2_ABSORB_LE; num_INFINITE; UNION_LE_ADD_C]);; | |
let COUNTABLE_UNION = prove | |
(`!s t:A->bool. COUNTABLE(s UNION t) <=> COUNTABLE s /\ COUNTABLE t`, | |
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[COUNTABLE_UNION_IMP] THEN | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN | |
SET_TAC[]);; | |
let COUNTABLE_SING = prove | |
(`!x. COUNTABLE {x}`, | |
SIMP_TAC[FINITE_IMP_COUNTABLE; FINITE_SING]);; | |
let COUNTABLE_INSERT = prove | |
(`!x s. COUNTABLE(x INSERT s) <=> COUNTABLE s`, | |
ONCE_REWRITE_TAC[SET_RULE `x INSERT s = {x} UNION s`] THEN | |
REWRITE_TAC[COUNTABLE_UNION; COUNTABLE_SING]);; | |
let COUNTABLE_DELETE = prove | |
(`!x:A s. COUNTABLE(s DELETE x) <=> COUNTABLE s`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `(x:A) IN s` THEN | |
ASM_SIMP_TAC[SET_RULE `~(x IN s) ==> s DELETE x = s`] THEN | |
MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `COUNTABLE((x:A) INSERT (s DELETE x))` THEN CONJ_TAC THENL | |
[REWRITE_TAC[COUNTABLE_INSERT]; AP_TERM_TAC THEN ASM SET_TAC[]]);; | |
let COUNTABLE_DIFF_FINITE = prove | |
(`!s t. FINITE s ==> (COUNTABLE(t DIFF s) <=> COUNTABLE t)`, | |
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
SIMP_TAC[DIFF_EMPTY; SET_RULE `s DIFF (x INSERT t) = (s DIFF t) DELETE x`; | |
COUNTABLE_DELETE]);; | |
let COUNTABLE_DIFF = prove | |
(`!s t:A->bool. COUNTABLE s ==> COUNTABLE(s DIFF t)`, | |
MESON_TAC[COUNTABLE_SUBSET; SET_RULE `s DIFF t SUBSET s`]);; | |
let COUNTABLE_CROSS = prove | |
(`!s t. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s CROSS t)`, | |
REWRITE_TAC[COUNTABLE; ge_c; CROSS; GSYM mul_c] THEN | |
SIMP_TAC[CARD_MUL2_ABSORB_LE; num_INFINITE]);; | |
let COUNTABLE_AS_IMAGE_SUBSET = prove | |
(`!s. COUNTABLE s ==> ?f. s SUBSET (IMAGE f (:num))`, | |
REWRITE_TAC[COUNTABLE; ge_c; LE_C; SUBSET; IN_IMAGE] THEN MESON_TAC[]);; | |
let COUNTABLE_AS_IMAGE_SUBSET_EQ = prove | |
(`!s:A->bool. COUNTABLE s <=> ?f. s SUBSET (IMAGE f (:num))`, | |
REWRITE_TAC[COUNTABLE; ge_c; LE_C; SUBSET; IN_IMAGE] THEN MESON_TAC[]);; | |
let COUNTABLE_AS_IMAGE = prove | |
(`!s:A->bool. COUNTABLE s /\ ~(s = {}) ==> ?f. s = IMAGE f (:num)`, | |
REPEAT STRIP_TAC THEN FIRST_X_ASSUM(X_CHOOSE_TAC `a:A` o | |
GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
FIRST_X_ASSUM(MP_TAC o MATCH_MP COUNTABLE_AS_IMAGE_SUBSET) THEN | |
DISCH_THEN(X_CHOOSE_TAC `f:num->A`) THEN | |
EXISTS_TAC `\n. if (f:num->A) n IN s then f n else a` THEN | |
ASM SET_TAC[]);; | |
let FORALL_COUNTABLE_AS_IMAGE = prove | |
(`(!d. COUNTABLE d ==> P d) <=> P {} /\ (!f. P(IMAGE f (:num)))`, | |
MESON_TAC[COUNTABLE_AS_IMAGE; COUNTABLE_IMAGE; NUM_COUNTABLE; | |
COUNTABLE_EMPTY]);; | |
let COUNTABLE_AS_INJECTIVE_IMAGE = prove | |
(`!s. COUNTABLE s /\ INFINITE s | |
==> ?f. s = IMAGE f (:num) /\ (!m n. f(m) = f(n) ==> m = n)`, | |
GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN | |
REWRITE_TAC[INFINITE_CARD_LE; COUNTABLE; ge_c] THEN | |
REWRITE_TAC[CARD_LE_ANTISYM; eq_c] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN SET_TAC[]);; | |
let COUNTABLE_AS_IMAGE_NUM_SUBSET,COUNTABLE_AS_INJECTIVE_IMAGE_SUBSET = | |
(CONJ_PAIR o prove) | |
(`(!s. COUNTABLE s <=> ?(f:num->A) k. s = IMAGE f k) /\ | |
(!s. COUNTABLE s <=> | |
?(f:num->A) k. s = IMAGE f k /\ | |
(!m n. m IN k /\ n IN k /\ f m = f n ==> m = n))`, | |
REWRITE_TAC[AND_FORALL_THM] THEN X_GEN_TAC `s:A->bool` THEN | |
MATCH_MP_TAC(TAUT | |
`(r ==> q) /\ (q ==> p) /\ (p ==> r) ==> (p <=> q) /\ (p <=> r)`) THEN | |
REPEAT CONJ_TAC THENL | |
[MESON_TAC[]; | |
SIMP_TAC[LEFT_IMP_EXISTS_THM; COUNTABLE_IMAGE; COUNTABLE_SUBSET_NUM]; | |
DISCH_TAC THEN ASM_CASES_TAC `FINITE(s:A->bool)` THENL | |
[ASM_MESON_TAC[FINITE_INDEX_NUMBERS]; | |
ASM_MESON_TAC[COUNTABLE_AS_INJECTIVE_IMAGE; INFINITE]]]);; | |
let COUNTABLE_UNIONS = prove | |
(`!A:(A->bool)->bool. | |
COUNTABLE A /\ (!s. s IN A ==> COUNTABLE s) | |
==> COUNTABLE (UNIONS A)`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC CARD_LE_UNIONS THEN ASM_REWRITE_TAC[num_INFINITE]);; | |
let COUNTABLE_PRODUCT_DEPENDENT = prove | |
(`!f:A->B->C s t. | |
COUNTABLE s /\ (!x. x IN s ==> COUNTABLE(t x)) | |
==> COUNTABLE {f x y | x IN s /\ y IN (t x)}`, | |
REPEAT GEN_TAC THEN DISCH_TAC THEN | |
SUBGOAL_THEN `{(f:A->B->C) x y | x IN s /\ y IN (t x)} = | |
IMAGE (\(x,y). f x y) {(x,y) | x IN s /\ y IN (t x)}` | |
SUBST1_TAC THENL | |
[REWRITE_TAC[EXTENSION; IN_IMAGE; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
SET_TAC[]; | |
MATCH_MP_TAC COUNTABLE_IMAGE THEN POP_ASSUM MP_TAC] THEN | |
GEN_REWRITE_TAC (LAND_CONV o TOP_DEPTH_CONV) | |
[COUNTABLE_AS_IMAGE_SUBSET_EQ] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `f:num->A`) MP_TAC) THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM] THEN | |
DISCH_THEN(X_CHOOSE_TAC `g:A->num->B`) THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC `IMAGE (\(m,n). (f:num->A) m,(g:A->num->B)(f m) n) | |
((:num) CROSS (:num))` THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_CROSS; NUM_COUNTABLE] THEN | |
REWRITE_TAC[SUBSET; FORALL_IN_UNIONS] THEN | |
REWRITE_TAC[IN_IMAGE; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; | |
EXISTS_PAIR_THM; IN_CROSS; IN_UNIV] THEN | |
ASM SET_TAC[]);; | |
let COUNTABLE_CARD_ADD = prove | |
(`!s:A->bool t:B->bool. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s +_c t)`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(:num) +_c (:num)` THEN | |
ASM_SIMP_TAC[CARD_LE_ADD] THEN MATCH_MP_TAC CARD_ADD_ABSORB_LE THEN | |
REWRITE_TAC[num_INFINITE; CARD_LE_REFL]);; | |
let COUNTABLE_CARD_ADD_EQ = prove | |
(`!s:A->bool t:B->bool. COUNTABLE(s +_c t) <=> COUNTABLE s /\ COUNTABLE t`, | |
REPEAT GEN_TAC THEN EQ_TAC THEN REWRITE_TAC[COUNTABLE_CARD_ADD] THEN | |
DISCH_THEN(fun th -> CONJ_TAC THEN MP_TAC th) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_COUNTABLE) THEN | |
REWRITE_TAC[CARD_LE_ADDL; CARD_LE_ADDR]);; | |
let COUNTABLE_CARD_MUL = prove | |
(`!s:A->bool t:B->bool. COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s *_c t)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[mul_c] THEN | |
ASM_SIMP_TAC[COUNTABLE_PRODUCT_DEPENDENT]);; | |
let COUNTABLE_CARD_MUL_EQ = prove | |
(`!s:A->bool t:B->bool. | |
COUNTABLE(s *_c t) <=> s = {} \/ t = {} \/ COUNTABLE s /\ COUNTABLE t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[mul_c] THEN | |
MAP_EVERY ASM_CASES_TAC [`s:A->bool = {}`; `t:B->bool = {}`] THEN | |
ASM_REWRITE_TAC[COUNTABLE_EMPTY; EMPTY_GSPEC; NOT_IN_EMPTY; | |
SET_RULE `{x,y | F} = {}`] THEN | |
EQ_TAC THEN SIMP_TAC[REWRITE_RULE[mul_c] COUNTABLE_CARD_MUL] THEN | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC COUNTABLE_SUBSET THENL | |
[EXISTS_TAC `IMAGE FST ((s:A->bool) *_c (t:B->bool))`; | |
EXISTS_TAC `IMAGE SND ((s:A->bool) *_c (t:B->bool))`] THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; mul_c; SUBSET; IN_IMAGE; EXISTS_PAIR_THM] THEN | |
REWRITE_TAC[IN_ELIM_PAIR_THM] THEN ASM SET_TAC[]);; | |
let CARD_EQ_PCROSS = prove | |
(`!s:A^M->bool t:A^N->bool. s PCROSS t =_c s *_c t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS; mul_c] THEN | |
EXISTS_TAC `\z:A^(M,N)finite_sum. fstcart z,sndcart z` THEN | |
EXISTS_TAC `\(x:A^M,y:A^N). pastecart x y` THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; PASTECART_IN_PCROSS] THEN | |
REWRITE_TAC[IN_ELIM_PAIR_THM; PASTECART_FST_SND] THEN | |
REWRITE_TAC[FORALL_IN_PCROSS; FSTCART_PASTECART; SNDCART_PASTECART]);; | |
let COUNTABLE_PCROSS_EQ = prove | |
(`!s:A^M->bool t:A^N->bool. | |
COUNTABLE(s PCROSS t) <=> | |
s = {} \/ t = {} \/ COUNTABLE s /\ COUNTABLE t`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN | |
EXISTS_TAC `COUNTABLE((s:A^M->bool) *_c (t:A^N->bool))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_COUNTABLE_CONG THEN REWRITE_TAC[CARD_EQ_PCROSS]; | |
REWRITE_TAC[COUNTABLE_CARD_MUL_EQ]]);; | |
let COUNTABLE_PCROSS = prove | |
(`!s:A^M->bool t:A^N->bool. | |
COUNTABLE s /\ COUNTABLE t ==> COUNTABLE(s PCROSS t)`, | |
SIMP_TAC[COUNTABLE_PCROSS_EQ]);; | |
let INT_COUNTABLE = prove | |
(`COUNTABLE (:int)`, | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC `IMAGE (\n. (&n:int)) (:num) UNION IMAGE (\n. --(&n)) (:num)` THEN | |
SIMP_TAC[COUNTABLE_UNION; COUNTABLE_IMAGE; NUM_COUNTABLE] THEN | |
REWRITE_TAC[SUBSET; FORALL_INT_CASES] THEN SET_TAC[]);; | |
let CARD_EQ_INT_NUM = prove | |
(`(:int) =_c (:num)`, | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM; GSYM COUNTABLE_ALT; INT_COUNTABLE] THEN | |
REWRITE_TAC[le_c] THEN EXISTS_TAC `int_of_num` THEN | |
SIMP_TAC[INT_OF_NUM_EQ; IN_UNIV]);; | |
let int_INFINITE = prove | |
(`INFINITE (:int)`, | |
SUBST1_TAC(MATCH_MP CARD_INFINITE_CONG CARD_EQ_INT_NUM) THEN | |
REWRITE_TAC[num_INFINITE]);; | |
let COUNTABLE_CART = prove | |
(`!P. (!i. 1 <= i /\ i <= dimindex(:N) ==> COUNTABLE {x | P i x}) | |
==> COUNTABLE {v:A^N | !i. 1 <= i /\ i <= dimindex(:N) ==> P i (v$i)}`, | |
GEN_TAC THEN DISCH_TAC THEN | |
SUBGOAL_THEN | |
`!n. n <= dimindex(:N) | |
==> COUNTABLE {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n | |
==> P i (v$i)) /\ | |
(!i. 1 <= i /\ i <= dimindex(:N) /\ n < i | |
==> v$i = @x. F)}` | |
(MP_TAC o SPEC `dimindex(:N)`) THEN REWRITE_TAC[LE_REFL; LET_ANTISYM] THEN | |
INDUCT_TAC THENL | |
[REWRITE_TAC[ARITH_RULE `1 <= i /\ i <= n /\ i <= 0 <=> F`] THEN | |
SIMP_TAC[ARITH_RULE `1 <= i /\ i <= n /\ 0 < i <=> 1 <= i /\ i <= n`] THEN | |
SUBGOAL_THEN | |
`{v | !i. 1 <= i /\ i <= dimindex (:N) ==> v$i = (@x. F)} = | |
{(lambda i. @x. F):A^N}` | |
(fun th -> SIMP_TAC[COUNTABLE_SING;th]) THEN | |
SIMP_TAC[EXTENSION; IN_SING; IN_ELIM_THM; CART_EQ; LAMBDA_BETA]; | |
ALL_TAC] THEN | |
DISCH_TAC THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN EXISTS_TAC | |
`IMAGE (\(x:A,v:A^N). (lambda i. if i = SUC n then x else v$i):A^N) | |
{x,v | x IN {x:A | P (SUC n) x} /\ | |
v IN {v:A^N | (!i. 1 <= i /\ i <= dimindex(:N) /\ i <= n | |
==> P i (v$i)) /\ | |
(!i. 1 <= i /\ i <= dimindex (:N) /\ n < i | |
==> v$i = (@x. F))}}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC COUNTABLE_IMAGE THEN | |
ASM_SIMP_TAC[REWRITE_RULE[CROSS] COUNTABLE_CROSS; ARITH_RULE `1 <= SUC n`; | |
ARITH_RULE `SUC n <= m ==> n <= m`]; | |
ALL_TAC] THEN | |
REWRITE_TAC[SUBSET; IN_IMAGE; IN_ELIM_PAIR_THM; EXISTS_PAIR_THM] THEN | |
X_GEN_TAC `v:A^N` THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
STRIP_TAC THEN EXISTS_TAC `(v:A^N)$(SUC n)` THEN | |
EXISTS_TAC `(lambda i. if i = SUC n then @x. F else (v:A^N)$i):A^N` THEN | |
SIMP_TAC[CART_EQ; LAMBDA_BETA; ARITH_RULE `i <= n ==> ~(i = SUC n)`] THEN | |
ASM_MESON_TAC[LE; ARITH_RULE `1 <= SUC n`; | |
ARITH_RULE `n < i /\ ~(i = SUC n) ==> SUC n < i`]);; | |
let EXISTS_COUNTABLE_SUBSET_IMAGE_INJ = prove | |
(`!P f s. | |
(?t. COUNTABLE t /\ t SUBSET IMAGE f s /\ P t) <=> | |
(?t. COUNTABLE t /\ t SUBSET s /\ | |
(!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y)) /\ | |
P (IMAGE f t))`, | |
ONCE_REWRITE_TAC[TAUT `p /\ q /\ r <=> q /\ p /\ r`] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[EXISTS_SUBSET_IMAGE_INJ] THEN | |
AP_TERM_TAC THEN ABS_TAC THEN MESON_TAC[COUNTABLE_IMAGE_INJ_EQ]);; | |
let FORALL_COUNTABLE_SUBSET_IMAGE_INJ = prove | |
(`!P f s. (!t. COUNTABLE t /\ t SUBSET IMAGE f s ==> P t) <=> | |
(!t. COUNTABLE t /\ t SUBSET s /\ | |
(!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y)) | |
==> P(IMAGE f t))`, | |
REPEAT GEN_TAC THEN | |
ONCE_REWRITE_TAC[MESON[] `(!t. p t) <=> ~(?t. ~p t)`] THEN | |
REWRITE_TAC[NOT_IMP; EXISTS_COUNTABLE_SUBSET_IMAGE_INJ; GSYM CONJ_ASSOC]);; | |
let EXISTS_COUNTABLE_SUBSET_IMAGE = prove | |
(`!P f s. | |
(?t. COUNTABLE t /\ t SUBSET IMAGE f s /\ P t) <=> | |
(?t. COUNTABLE t /\ t SUBSET s /\ P (IMAGE f t))`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[REWRITE_TAC[EXISTS_COUNTABLE_SUBSET_IMAGE_INJ] THEN MESON_TAC[]; | |
MESON_TAC[COUNTABLE_IMAGE; IMAGE_SUBSET]]);; | |
let FORALL_COUNTABLE_SUBSET_IMAGE = prove | |
(`!P f s. (!t. COUNTABLE t /\ t SUBSET IMAGE f s ==> P t) <=> | |
(!t. COUNTABLE t /\ t SUBSET s ==> P(IMAGE f t))`, | |
REPEAT GEN_TAC THEN | |
ONCE_REWRITE_TAC[MESON[] `(!x. P x) <=> ~(?x. ~P x)`] THEN | |
REWRITE_TAC[NOT_IMP; GSYM CONJ_ASSOC; EXISTS_COUNTABLE_SUBSET_IMAGE]);; | |
let COUNTABLE_SUBSET_IMAGE = prove | |
(`!f:A->B s t. | |
COUNTABLE(t) /\ t SUBSET (IMAGE f s) <=> | |
?s'. COUNTABLE s' /\ s' SUBSET s /\ (t = IMAGE f s')`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL | |
[ALL_TAC; ASM_MESON_TAC[COUNTABLE_IMAGE; IMAGE_SUBSET]] THEN | |
SPEC_TAC(`t:B->bool`,`t:B->bool`) THEN | |
REWRITE_TAC[FORALL_COUNTABLE_SUBSET_IMAGE] THEN MESON_TAC[]);; | |
let COUNTABLE_IMAGE_EQ = prove | |
(`!(f:A->B) s. COUNTABLE(IMAGE f s) <=> | |
?t. COUNTABLE t /\ t SUBSET s /\ IMAGE f s = IMAGE f t`, | |
MESON_TAC[COUNTABLE_SUBSET_IMAGE; COUNTABLE_IMAGE; SUBSET_REFL]);; | |
let COUNTABLE_IMAGE_EQ_INJ = prove | |
(`!(f:A->B) s. COUNTABLE(IMAGE f s) <=> | |
?t. COUNTABLE t /\ t SUBSET s /\ IMAGE f s = IMAGE f t /\ | |
(!x y. x IN t /\ y IN t ==> (f x = f y <=> x = y))`, | |
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; MESON_TAC[COUNTABLE_IMAGE]] THEN | |
DISCH_TAC THEN | |
MP_TAC(ISPECL [`f:A->B`; `IMAGE (f:A->B) s`; `s:A->bool`] | |
SUBSET_IMAGE_INJ) THEN | |
REWRITE_TAC[SUBSET_REFL] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
ASM_METIS_TAC[COUNTABLE_IMAGE_INJ_EQ]);; | |
let COUNTABLE_FLD = prove | |
(`!l:A->A->bool. COUNTABLE(fld l) <=> COUNTABLE {(x,y) | l x y}`, | |
GEN_TAC THEN EQ_TAC THENL | |
[DISCH_THEN(MP_TAC o MATCH_MP COUNTABLE_CROSS o W CONJ); | |
DISCH_THEN((fun th -> | |
MP_TAC(ISPEC `FST:A#A->A` th) THEN MP_TAC(ISPEC `SND:A#A->A` th)) o | |
MATCH_MP COUNTABLE_IMAGE) THEN | |
REWRITE_TAC[IMP_IMP; GSYM COUNTABLE_UNION]] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] COUNTABLE_SUBSET) THEN | |
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[IN_CROSS; fld; IN_IMAGE; IN_ELIM_THM; IN_UNION] THEN | |
REWRITE_TAC[EXISTS_PAIR_THM; PAIR_EQ] THEN SET_TAC[]);; | |
let COUNTABLE_UNION_OF_EMPTY = prove | |
(`!P:(A->bool)->bool. (COUNTABLE UNION_OF P) {}`, | |
SIMP_TAC[UNION_OF_EMPTY; COUNTABLE_EMPTY]);; | |
let COUNTABLE_INTERSECTION_OF_EMPTY = prove | |
(`!P:(A->bool)->bool. (COUNTABLE INTERSECTION_OF P) UNIV`, | |
SIMP_TAC[INTERSECTION_OF_EMPTY; COUNTABLE_EMPTY]);; | |
let COUNTABLE_UNION_OF_INC = prove | |
(`!P s:A->bool. P s ==> (COUNTABLE UNION_OF P) s`, | |
SIMP_TAC[UNION_OF_INC; COUNTABLE_SING]);; | |
let COUNTABLE_INTERSECTION_OF_INC = prove | |
(`!P s:A->bool. P s ==> (COUNTABLE INTERSECTION_OF P) s`, | |
SIMP_TAC[INTERSECTION_OF_INC; COUNTABLE_SING]);; | |
let COUNTABLE_UNION_OF_COMPLEMENT = prove | |
(`!P s. (COUNTABLE UNION_OF P) s <=> | |
(COUNTABLE INTERSECTION_OF (\s. P((:A) DIFF s))) ((:A) DIFF s)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[UNION_OF; INTERSECTION_OF] THEN | |
EQ_TAC THEN | |
DISCH_THEN(X_CHOOSE_THEN `u:(A->bool)->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `IMAGE (\c. (:A) DIFF c) u` THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; FORALL_IN_IMAGE; COMPL_COMPL] THEN | |
ONCE_REWRITE_TAC[UNIONS_INTERS; INTERS_UNIONS] THEN | |
REWRITE_TAC[SET_RULE `{f y | y IN IMAGE g s} = IMAGE (\x. f(g x)) s`] THEN | |
ASM_REWRITE_TAC[IMAGE_ID; COMPL_COMPL]);; | |
let COUNTABLE_INTERSECTION_OF_COMPLEMENT = prove | |
(`!P s. (COUNTABLE INTERSECTION_OF P) s <=> | |
(COUNTABLE UNION_OF (\s. P((:A) DIFF s))) ((:A) DIFF s)`, | |
REWRITE_TAC[COUNTABLE_UNION_OF_COMPLEMENT] THEN | |
REWRITE_TAC[ETA_AX; COMPL_COMPL]);; | |
let COUNTABLE_UNION_OF_EXPLICIT = prove | |
(`!P s:A->bool. | |
P {} | |
==> ((COUNTABLE UNION_OF P) s <=> | |
?t. (!n. P(t n)) /\ UNIONS {t n | n IN (:num)} = s)`, | |
REPEAT STRIP_TAC THEN EQ_TAC THEN | |
REWRITE_TAC[UNION_OF; LEFT_IMP_EXISTS_THM] THENL | |
[X_GEN_TAC `u:(A->bool)->bool` THEN | |
ASM_CASES_TAC `u:(A->bool)->bool = {}` THENL | |
[ASM_REWRITE_TAC[UNIONS_0] THEN | |
DISCH_THEN(SUBST1_TAC o SYM o last o CONJUNCTS) THEN | |
EXISTS_TAC `(\n. {}):num->A->bool` THEN | |
ASM_REWRITE_TAC[UNIONS_GSPEC; NOT_IN_EMPTY; EMPTY_GSPEC]; | |
STRIP_TAC THEN | |
MP_TAC(ISPEC `u:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN ASM SET_TAC[]]; | |
X_GEN_TAC `t:num->A->bool` THEN STRIP_TAC THEN | |
EXISTS_TAC `{t n:A->bool | n IN (:num)}` THEN | |
ASM_REWRITE_TAC[FORALL_IN_GSPEC] THEN | |
SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; COUNTABLE_SUBSET_NUM]]);; | |
let COUNTABLE_UNION_OF_ASCENDING = prove | |
(`!P s:A->bool. | |
P {} /\ (!t u. P t /\ P u ==> P(t UNION u)) | |
==> ((COUNTABLE UNION_OF P) s <=> | |
?t. (!n. P(t n)) /\ | |
(!n. t n SUBSET t(SUC n)) /\ | |
UNIONS {t n | n IN (:num)} = s)`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[COUNTABLE_UNION_OF_EXPLICIT] THEN | |
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
DISCH_THEN(X_CHOOSE_THEN `t:num->A->bool` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `(\n. UNIONS {t m | m <= n}):num->A->bool` THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[FORALL_IN_IMAGE; IN_UNIV]) THEN | |
REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL | |
[INDUCT_TAC THEN REWRITE_TAC[LE] THEN | |
REWRITE_TAC[SET_RULE `{f x | P x \/ Q x} = {f x | P x} UNION {f x | Q x}`; | |
SET_RULE `{f x | x = a} = {f a}`; UNIONS_UNION] THEN | |
ASM_SIMP_TAC[UNIONS_1]; | |
REWRITE_TAC[UNIONS_GSPEC; LE] THEN SET_TAC[]; | |
FIRST_X_ASSUM(SUBST1_TAC o SYM o last o CONJUNCTS) THEN | |
REWRITE_TAC[UNIONS_GSPEC; IN_ELIM_THM; IN_UNIV] THEN | |
GEN_REWRITE_TAC I [EXTENSION] THEN | |
REWRITE_TAC[UNIONS_IMAGE; IN_ELIM_THM; IN_UNIV] THEN | |
MESON_TAC[LE_REFL]]);; | |
let COUNTABLE_UNION_OF_IDEMPOT = prove | |
(`!P:(A->bool)->bool. | |
COUNTABLE UNION_OF COUNTABLE UNION_OF P = COUNTABLE UNION_OF P`, | |
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `s:A->bool` THEN | |
EQ_TAC THEN REWRITE_TAC[COUNTABLE_UNION_OF_INC] THEN | |
REWRITE_TAC[UNION_OF; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `u:(A->bool)->bool` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM)) THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `f:(A->bool)->(A->bool)->bool` THEN DISCH_TAC THEN | |
EXISTS_TAC | |
`IMAGE SND {s,t | s IN u /\ t IN (f:(A->bool)->(A->bool)->bool) s}` THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_PRODUCT_DEPENDENT] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN | |
CONJ_TAC THENL [ASM SET_TAC[]; REWRITE_TAC[UNIONS_IMAGE]] THEN | |
REWRITE_TAC[EXISTS_IN_GSPEC] THEN ASM SET_TAC[]);; | |
let COUNTABLE_INTERSECTION_OF_IDEMPOT = prove | |
(`!P:(A->bool)->bool. | |
COUNTABLE INTERSECTION_OF COUNTABLE INTERSECTION_OF P = | |
COUNTABLE INTERSECTION_OF P`, | |
REWRITE_TAC[COMPL_COMPL; ETA_AX; REWRITE_RULE[GSYM FUN_EQ_THM; ETA_AX] | |
COUNTABLE_INTERSECTION_OF_COMPLEMENT] THEN | |
REWRITE_TAC[COUNTABLE_UNION_OF_IDEMPOT]);; | |
let COUNTABLE_UNION_OF_UNIONS = prove | |
(`!P u:(A->bool)->bool. | |
COUNTABLE u /\ (!s. s IN u ==> (COUNTABLE UNION_OF P) s) | |
==> (COUNTABLE UNION_OF P) (UNIONS u)`, | |
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM COUNTABLE_UNION_OF_IDEMPOT] THEN | |
ONCE_REWRITE_TAC[UNION_OF] THEN REWRITE_TAC[] THEN | |
EXISTS_TAC `u:(A->bool)->bool` THEN ASM_REWRITE_TAC[]);; | |
let COUNTABLE_UNION_OF_UNION = prove | |
(`!P s t. (COUNTABLE UNION_OF P) s /\ (COUNTABLE UNION_OF P) t | |
==> (COUNTABLE UNION_OF P) (s UNION t)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM UNIONS_2] THEN | |
MATCH_MP_TAC COUNTABLE_UNION_OF_UNIONS THEN | |
ASM_REWRITE_TAC[COUNTABLE_INSERT; FORALL_IN_INSERT] THEN | |
REWRITE_TAC[COUNTABLE_EMPTY; NOT_IN_EMPTY]);; | |
let COUNTABLE_INTERSECTION_OF_INTERS = prove | |
(`!P u:(A->bool)->bool. | |
COUNTABLE u /\ (!s. s IN u ==> (COUNTABLE INTERSECTION_OF P) s) | |
==> (COUNTABLE INTERSECTION_OF P) (INTERS u)`, | |
REPEAT STRIP_TAC THEN | |
ONCE_REWRITE_TAC[GSYM COUNTABLE_INTERSECTION_OF_IDEMPOT] THEN | |
ONCE_REWRITE_TAC[INTERSECTION_OF] THEN REWRITE_TAC[] THEN | |
EXISTS_TAC `u:(A->bool)->bool` THEN ASM_REWRITE_TAC[]);; | |
let COUNTABLE_INTERSECTION_OF_INTER = prove | |
(`!P s t. (COUNTABLE INTERSECTION_OF P) s /\ (COUNTABLE INTERSECTION_OF P) t | |
==> (COUNTABLE INTERSECTION_OF P) (s INTER t)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM INTERS_2] THEN | |
MATCH_MP_TAC COUNTABLE_INTERSECTION_OF_INTERS THEN | |
ASM_REWRITE_TAC[COUNTABLE_INSERT; FORALL_IN_INSERT] THEN | |
REWRITE_TAC[COUNTABLE_EMPTY; NOT_IN_EMPTY]);; | |
let COUNTABLE_UNION_OF_INTER_EQ = prove | |
(`!P:(A->bool)->bool. | |
(!s t. (COUNTABLE UNION_OF P) s /\ (COUNTABLE UNION_OF P) t | |
==> (COUNTABLE UNION_OF P) (s INTER t)) <=> | |
(!s t. P s /\ P t ==> (COUNTABLE UNION_OF P) (s INTER t))`, | |
GEN_TAC THEN | |
EQ_TAC THENL [MESON_TAC[COUNTABLE_UNION_OF_INC]; DISCH_TAC] THEN | |
REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [UNION_OF] THEN | |
REWRITE_TAC[] THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN | |
ASM_REWRITE_TAC[INTER_UNIONS] THEN | |
REPLICATE_TAC 2 | |
(MATCH_MP_TAC COUNTABLE_UNION_OF_UNIONS THEN | |
ASM_SIMP_TAC[SIMPLE_IMAGE; COUNTABLE_IMAGE; FORALL_IN_IMAGE] THEN | |
REPEAT STRIP_TAC));; | |
let COUNTABLE_UNION_OF_INTER = prove | |
(`!P:(A->bool)->bool. | |
(!s t. P s /\ P t ==> P(s INTER t)) | |
==> (!s t. (COUNTABLE UNION_OF P) s /\ (COUNTABLE UNION_OF P) t | |
==> (COUNTABLE UNION_OF P) (s INTER t))`, | |
REWRITE_TAC[COUNTABLE_UNION_OF_INTER_EQ] THEN | |
MESON_TAC[COUNTABLE_UNION_OF_INC]);; | |
let COUNTABLE_INTERSECTION_OF_UNION_EQ = prove | |
(`!P:(A->bool)->bool. | |
(!s t. (COUNTABLE INTERSECTION_OF P) s /\ | |
(COUNTABLE INTERSECTION_OF P) t | |
==> (COUNTABLE INTERSECTION_OF P) (s UNION t)) <=> | |
(!s t. P s /\ P t ==> (COUNTABLE INTERSECTION_OF P) (s UNION t))`, | |
ONCE_REWRITE_TAC[COUNTABLE_INTERSECTION_OF_COMPLEMENT] THEN | |
REWRITE_TAC[SET_RULE | |
`UNIV DIFF (s UNION t) = (UNIV DIFF s) INTER (UNIV DIFF t)`] THEN | |
REWRITE_TAC[MESON[COMPL_COMPL] `(!s. P(UNIV DIFF s)) <=> (!s. P s)`] THEN | |
REWRITE_TAC[COUNTABLE_UNION_OF_INTER_EQ] THEN | |
REWRITE_TAC[SET_RULE | |
`s INTER t = UNIV DIFF ((UNIV DIFF s) UNION (UNIV DIFF t))`] THEN | |
REWRITE_TAC[MESON[COMPL_COMPL] `(!s. P(UNIV DIFF s)) <=> (!s. P s)`] THEN | |
REWRITE_TAC[COMPL_COMPL]);; | |
let COUNTABLE_INTERSECTION_OF_UNION = prove | |
(`!P:(A->bool)->bool. | |
(!s t. P s /\ P t ==> P(s UNION t)) | |
==> (!s t. (COUNTABLE INTERSECTION_OF P) s /\ | |
(COUNTABLE INTERSECTION_OF P) t | |
==> (COUNTABLE INTERSECTION_OF P) (s UNION t))`, | |
REWRITE_TAC[COUNTABLE_INTERSECTION_OF_UNION_EQ] THEN | |
MESON_TAC[COUNTABLE_INTERSECTION_OF_INC]);; | |
let COUNTABLE_INTERSECTION_OF_UNIONS_NONEMPTY = prove | |
(`!P u:(A->bool)->bool. | |
(!s t. P s /\ P t ==> P (s UNION t)) /\ | |
FINITE u /\ ~(u = {}) /\ | |
(!s. s IN u ==> (COUNTABLE INTERSECTION_OF P) s) | |
==> (COUNTABLE INTERSECTION_OF P) (UNIONS u)`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
GEN_TAC THEN DISCH_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM]) THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN | |
MAP_EVERY X_GEN_TAC [`s:A->bool`; `u:(A->bool)->bool`] THEN | |
ASM_CASES_TAC `u:(A->bool)->bool = {}` THEN | |
ASM_SIMP_TAC[UNIONS_1] THEN REWRITE_TAC[UNIONS_INSERT] THEN | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP COUNTABLE_INTERSECTION_OF_UNION) THEN | |
ASM_SIMP_TAC[]);; | |
let COUNTABLE_INTERSECTION_OF_UNIONS = prove | |
(`!P u:(A->bool)->bool. | |
(COUNTABLE INTERSECTION_OF P) {} /\ | |
(!s t. P s /\ P t ==> P (s UNION t)) /\ | |
FINITE u /\ | |
(!s. s IN u ==> (COUNTABLE INTERSECTION_OF P) s) | |
==> (COUNTABLE INTERSECTION_OF P) (UNIONS u)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_CASES_TAC `u:(A->bool)->bool = {}` THEN | |
ASM_REWRITE_TAC[UNIONS_0] THEN STRIP_TAC THEN | |
MATCH_MP_TAC COUNTABLE_INTERSECTION_OF_UNIONS_NONEMPTY THEN | |
ASM_REWRITE_TAC[]);; | |
let COUNTABLE_UNION_OF_INTERS_NONEMPTY = prove | |
(`!P u:(A->bool)->bool. | |
(!s t. P s /\ P t ==> P (s INTER t)) /\ | |
FINITE u /\ ~(u = {}) /\ | |
(!s. s IN u ==> (COUNTABLE UNION_OF P) s) | |
==> (COUNTABLE UNION_OF P) (INTERS u)`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
GEN_TAC THEN DISCH_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[IMP_IMP; RIGHT_IMP_FORALL_THM]) THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_INSERT_EMPTY] THEN | |
MAP_EVERY X_GEN_TAC [`s:A->bool`; `u:(A->bool)->bool`] THEN | |
ASM_CASES_TAC `u:(A->bool)->bool = {}` THEN | |
ASM_SIMP_TAC[INTERS_1] THEN REWRITE_TAC[INTERS_INSERT] THEN | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP COUNTABLE_UNION_OF_INTER) THEN | |
ASM_SIMP_TAC[]);; | |
let COUNTABLE_UNION_OF_INTERS = prove | |
(`!P u:(A->bool)->bool. | |
(COUNTABLE UNION_OF P) (:A) /\ | |
(!s t. P s /\ P t ==> P (s INTER t)) /\ | |
FINITE u /\ | |
(!s. s IN u ==> (COUNTABLE UNION_OF P) s) | |
==> (COUNTABLE UNION_OF P) (INTERS u)`, | |
REPEAT GEN_TAC THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
ASM_CASES_TAC `u:(A->bool)->bool = {}` THEN | |
ASM_REWRITE_TAC[INTERS_0] THEN STRIP_TAC THEN | |
MATCH_MP_TAC COUNTABLE_UNION_OF_INTERS_NONEMPTY THEN | |
ASM_REWRITE_TAC[]);; | |
let COUNTABLE_DISJOINT_UNION_OF_IDEMPOT = prove | |
(`!P:(A->bool)->bool. | |
((COUNTABLE INTER pairwise DISJOINT) UNION_OF | |
(COUNTABLE INTER pairwise DISJOINT) UNION_OF P) = | |
(COUNTABLE INTER pairwise DISJOINT) UNION_OF P`, | |
GEN_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `s:A->bool` THEN | |
EQ_TAC THENL | |
[REWRITE_TAC[SET_RULE `s INTER t = \x. s x /\ t x`]; | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] UNION_OF_INC) THEN | |
REWRITE_TAC[INTER; IN_ELIM_THM] THEN REWRITE_TAC[IN] THEN | |
REWRITE_TAC[COUNTABLE_SING; PAIRWISE_SING]] THEN | |
REWRITE_TAC[UNION_OF; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `u:(A->bool)->bool` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 MP_TAC (SUBST1_TAC o SYM)) THEN | |
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `f:(A->bool)->(A->bool)->bool` THEN DISCH_TAC THEN | |
EXISTS_TAC | |
`IMAGE SND {s,t | s IN u /\ t IN (f:(A->bool)->(A->bool)->bool) s}` THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_PRODUCT_DEPENDENT] THEN | |
REWRITE_TAC[FORALL_IN_IMAGE; FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[UNIONS_IMAGE; EXISTS_IN_GSPEC; PAIRWISE_IMAGE] THEN | |
CONJ_TAC THENL [REWRITE_TAC[pairwise]; ASM SET_TAC[]] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_GSPEC] THEN | |
MAP_EVERY (fun x -> X_GEN_TAC x THEN DISCH_TAC) | |
[`s1:A->bool`; `t1:A->bool`; `s2:A->bool`; `t2:A->bool`] THEN | |
DISCH_THEN(K ALL_TAC) THEN ASM_CASES_TAC `s2:A->bool = s1` THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[pairwise]) THENL | |
[ASM_MESON_TAC[]; ASM SET_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* A countable chain has an "equivalent" omega-chain. *) | |
(* ------------------------------------------------------------------------- *) | |
let COUNTABLE_ASCENDING_CHAIN = prove | |
(`!f:(A->bool)->bool. | |
COUNTABLE f /\ ~(f = {}) /\ | |
(!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s) | |
==> ?u. (!n. u(n) IN f) /\ (!n. u(n) SUBSET u(SUC n)) /\ | |
UNIONS {u n | n IN (:num)} = UNIONS f`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPEC `f:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `b:num->A->bool` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
EXISTS_TAC `\n. UNIONS(IMAGE (b:num->A->bool) (0..n))` THEN | |
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL | |
[INDUCT_TAC THEN | |
ASM_REWRITE_TAC[NUMSEG_CLAUSES; LE_0; IMAGE_CLAUSES] THEN | |
REWRITE_TAC[UNIONS_0; UNIONS_INSERT; UNION_EMPTY] THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC(MESON[] | |
`a IN f /\ b IN f /\ (a UNION b = a \/ a UNION b = b) | |
==> (a UNION b) IN f`) THEN | |
ASM_REWRITE_TAC[SET_RULE `a UNION b = a <=> b SUBSET a`; | |
SET_RULE `a UNION b = b <=> a SUBSET b`] THEN | |
ASM SET_TAC[]; | |
GEN_TAC THEN REWRITE_TAC[NUMSEG_CLAUSES; LE_0] THEN SET_TAC[]; | |
EXPAND_TAC "f" THEN REWRITE_TAC[UNIONS_GSPEC; UNIONS_IMAGE] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV; IN_NUMSEG; LE_0] THEN | |
MESON_TAC[LE_REFL]]);; | |
let COUNTABLE_DESCENDING_CHAIN = prove | |
(`!f:(A->bool)->bool. | |
COUNTABLE f /\ ~(f = {}) /\ | |
(!s t. s IN f /\ t IN f ==> s SUBSET t \/ t SUBSET s) | |
==> ?u. (!n. u(n) IN f) /\ (!n. u(SUC n) SUBSET u(n)) /\ | |
INTERS {u n | n IN (:num)} = INTERS f`, | |
REPEAT STRIP_TAC THEN | |
MP_TAC(ISPEC `f:(A->bool)->bool` COUNTABLE_AS_IMAGE) THEN | |
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `b:num->A->bool` THEN DISCH_THEN(ASSUME_TAC o SYM) THEN | |
EXISTS_TAC `\n. INTERS(IMAGE (b:num->A->bool) (0..n))` THEN | |
ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL | |
[INDUCT_TAC THEN | |
ASM_REWRITE_TAC[NUMSEG_CLAUSES; LE_0; IMAGE_CLAUSES] THEN | |
REWRITE_TAC[INTERS_0; INTERS_INSERT; INTER_UNIV] THENL | |
[ASM SET_TAC[]; ALL_TAC] THEN | |
MATCH_MP_TAC(MESON[] | |
`a IN f /\ b IN f /\ (a INTER b = a \/ a INTER b = b) | |
==> (a INTER b) IN f`) THEN | |
ASM_REWRITE_TAC[SET_RULE `a INTER b = a <=> a SUBSET b`; | |
SET_RULE `a INTER b = b <=> b SUBSET a`] THEN | |
ASM SET_TAC[]; | |
GEN_TAC THEN REWRITE_TAC[NUMSEG_CLAUSES; LE_0] THEN SET_TAC[]; | |
EXPAND_TAC "f" THEN REWRITE_TAC[INTERS_GSPEC; INTERS_IMAGE] THEN | |
REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_UNIV; IN_NUMSEG; LE_0] THEN | |
MESON_TAC[LE_REFL]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Cardinality of infinite list and cartesian product types. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_EQ_LIST_GEN = prove | |
(`!s:A->bool. INFINITE(s) ==> {l | !x. MEM x l ==> x IN s} =_c s`, | |
GEN_TAC THEN DISCH_TAC THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[le_c; IN_UNIV] THEN | |
EXISTS_TAC `\x:A. [x]` THEN SIMP_TAC[CONS_11; IN_ELIM_THM; MEM]] THEN | |
TRANS_TAC CARD_LE_TRANS `(:num) *_c (s:A->bool)` THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC CARD_MUL2_ABSORB_LE THEN | |
ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE; CARD_LE_REFL]] THEN | |
SUBGOAL_THEN `s *_c s <=_c (s:A->bool)` MP_TAC THENL | |
[MATCH_MP_TAC CARD_MUL2_ABSORB_LE THEN ASM_REWRITE_TAC[CARD_LE_REFL]; | |
ALL_TAC] THEN | |
REWRITE_TAC[le_c; mul_c; FORALL_PAIR_THM; IN_ELIM_PAIR_THM; PAIR_EQ] THEN | |
REWRITE_TAC[IN_UNIV; LEFT_IMP_EXISTS_THM] THEN | |
GEN_REWRITE_TAC I [FORALL_CURRY] THEN | |
X_GEN_TAC `pair:A->A->A` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN | |
SUBGOAL_THEN `?b:A. b IN s` CHOOSE_TAC THENL | |
[ASM_MESON_TAC[INFINITE; FINITE_EMPTY; MEMBER_NOT_EMPTY]; ALL_TAC] THEN | |
EXISTS_TAC `\l. LENGTH l,ITLIST (pair:A->A->A) l b` THEN | |
REWRITE_TAC[PAIR_EQ; RIGHT_EXISTS_AND_THM; GSYM EXISTS_REFL] THEN | |
SUBGOAL_THEN | |
`!l:A list. (!x. MEM x l ==> x IN s) ==> (ITLIST pair l b) IN s` | |
ASSUME_TAC THENL | |
[LIST_INDUCT_TAC THEN ASM_REWRITE_TAC[MEM; ITLIST] THEN ASM_MESON_TAC[]; | |
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
LIST_INDUCT_TAC THEN SIMP_TAC[LENGTH_EQ_NIL; LENGTH] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[LENGTH; NOT_SUC] THEN | |
REWRITE_TAC[ITLIST; SUC_INJ; MEM; CONS_11] THEN | |
REPEAT STRIP_TAC THENL [ALL_TAC; FIRST_X_ASSUM MATCH_MP_TAC] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_EQ_LIST = prove | |
(`INFINITE(:A) ==> (:A list) =_c (:A)`, | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_LIST_GEN) THEN | |
REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`]);; | |
let CARD_EQ_CART = prove | |
(`INFINITE(:A) ==> (:A^N) =_c (:A)`, | |
DISCH_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[le_c; IN_UNIV] THEN | |
EXISTS_TAC `(\x. lambda i. x):A->A^N` THEN | |
SIMP_TAC[CART_EQ; LAMBDA_BETA] THEN | |
MESON_TAC[LE_REFL; DIMINDEX_GE_1]] THEN | |
TRANS_TAC CARD_LE_TRANS `(:A list)` THEN | |
ASM_SIMP_TAC[CARD_EQ_LIST; CARD_EQ_IMP_LE] THEN REWRITE_TAC[LE_C] THEN | |
EXISTS_TAC `(\l. lambda i. EL i l):(A)list->A^N` THEN | |
ASM_SIMP_TAC[CART_EQ; IN_UNIV; LAMBDA_BETA] THEN X_GEN_TAC `x:A^N` THEN | |
SUBGOAL_THEN `!n f. ?l. !i. i < n ==> EL i l:A = f i` MP_TAC THENL | |
[INDUCT_TAC THEN REWRITE_TAC[CONJUNCT1 LT] THEN X_GEN_TAC `f:num->A` THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `\i. (f:num->A)(SUC i)`) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `l:A list` THEN | |
DISCH_TAC THEN EXISTS_TAC `CONS ((f:num->A) 0) l` THEN | |
INDUCT_TAC THEN ASM_SIMP_TAC[EL; HD; TL; LT_SUC]; | |
DISCH_THEN(MP_TAC o SPECL [`dimindex(:N)+1`; `\i. (x:A^N)$i`]) THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM; ARITH_RULE `i < n + 1 <=> i <= n`] THEN | |
MESON_TAC[]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Cardinality of the reals. This is done in a rather laborious way to avoid *) | |
(* any dependence on the theories of analysis. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_EQ_REAL = prove | |
(`(:real) =_c (:num->bool)`, | |
let lemma = prove | |
(`!s m n. sum (s INTER (m..n)) (\i. inv(&3 pow i)) < &3 / &2 / &3 pow m`, | |
REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_LET_TRANS THEN | |
EXISTS_TAC `sum (m..n) (\i. inv(&3 pow i))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN | |
SIMP_TAC[FINITE_NUMSEG; INTER_SUBSET; REAL_LE_INV_EQ; | |
REAL_POW_LE; REAL_POS]; | |
WF_INDUCT_TAC `n - m:num` THEN | |
ASM_CASES_TAC `m:num <= n` THENL | |
[ASM_SIMP_TAC[SUM_CLAUSES_LEFT] THEN ASM_CASES_TAC `m + 1 <= n` THENL | |
[FIRST_X_ASSUM(MP_TAC o SPECL [`n:num`; `SUC m`]) THEN | |
ANTS_TAC THENL [ASM_ARITH_TAC; REWRITE_TAC[ADD1; REAL_POW_ADD]] THEN | |
MATCH_MP_TAC(REAL_ARITH | |
`a + j:real <= k ==> x < j ==> a + x < k`) THEN | |
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_POW_1] THEN REAL_ARITH_TAC; | |
ALL_TAC]; | |
ALL_TAC] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LE; GSYM NUMSEG_EMPTY]) THEN | |
ASM_REWRITE_TAC[SUM_CLAUSES; REAL_ADD_RID] THEN | |
REWRITE_TAC[REAL_ARITH `inv x < &3 / &2 / x <=> &0 < inv x`] THEN | |
SIMP_TAC[REAL_LT_INV_EQ; REAL_LT_DIV; REAL_POW_LT; REAL_OF_NUM_LT; | |
ARITH]]) in | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL | |
[TRANS_TAC CARD_LE_TRANS `(:num) *_c (:num->bool)` THEN CONJ_TAC THENL | |
[ALL_TAC; | |
MATCH_MP_TAC CARD_MUL2_ABSORB_LE THEN REWRITE_TAC[INFINITE_CARD_LE] THEN | |
SIMP_TAC[CANTOR_THM_UNIV; CARD_LT_IMP_LE; CARD_LE_REFL]] THEN | |
TRANS_TAC CARD_LE_TRANS `(:num) *_c {x:real | &0 <= x}` THEN CONJ_TAC THENL | |
[REWRITE_TAC[LE_C; mul_c; EXISTS_PAIR_THM; IN_ELIM_PAIR_THM; IN_UNIV] THEN | |
EXISTS_TAC `\(n,x:real). --(&1) pow n * x` THEN X_GEN_TAC `x:real` THEN | |
MATCH_MP_TAC(MESON[] `P 0 \/ P 1 ==> ?n. P n`) THEN | |
REWRITE_TAC[OR_EXISTS_THM] THEN EXISTS_TAC `abs x` THEN | |
REWRITE_TAC[IN_ELIM_THM] THEN REAL_ARITH_TAC; | |
ALL_TAC] THEN | |
MATCH_MP_TAC CARD_LE_MUL THEN REWRITE_TAC[CARD_LE_REFL] THEN | |
MP_TAC(ISPECL [`(:num)`; `(:num)`] CARD_MUL_ABSORB_LE) THEN | |
REWRITE_TAC[CARD_LE_REFL; num_INFINITE] THEN | |
REWRITE_TAC[le_c; mul_c; IN_UNIV; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[GSYM FORALL_PAIR_THM; INJECTIVE_LEFT_INVERSE] THEN | |
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN | |
MAP_EVERY X_GEN_TAC [`pair:num#num->num`; `unpair:num->num#num`] THEN | |
DISCH_TAC THEN | |
EXISTS_TAC `\x:real n:num. &(FST(unpair n)) * x <= &(SND(unpair n))` THEN | |
MATCH_MP_TAC REAL_WLOG_LT THEN REWRITE_TAC[IN_ELIM_THM; FUN_EQ_THM] THEN | |
CONJ_TAC THENL [REWRITE_TAC[EQ_SYM_EQ; CONJ_ACI]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`x:real`; `y:real`] THEN REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GENL [`p:num`; `q:num`] o | |
SPEC `(pair:num#num->num) (p,q)`) THEN | |
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN | |
MP_TAC(SPEC `y - x:real` REAL_ARCH) THEN | |
ASM_REWRITE_TAC[REAL_SUB_LT; NOT_FORALL_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `&2`) THEN MATCH_MP_TAC MONO_EXISTS THEN | |
X_GEN_TAC `p:num` THEN DISCH_TAC THEN | |
MP_TAC(ISPEC `&p * x:real` REAL_ARCH_LT) THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN MATCH_MP_TAC MONO_EXISTS THEN | |
MATCH_MP_TAC num_INDUCTION THEN | |
ASM_SIMP_TAC[REAL_LE_MUL; REAL_POS; | |
REAL_ARITH `x:real < &0 <=> ~(&0 <= x)`] THEN | |
X_GEN_TAC `q:num` THEN REWRITE_TAC[GSYM REAL_OF_NUM_SUC] THEN | |
DISCH_THEN(K ALL_TAC) THEN STRIP_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN | |
REWRITE_TAC[LT] THEN ASM_REAL_ARITH_TAC; | |
REWRITE_TAC[le_c; IN_UNIV] THEN | |
EXISTS_TAC `\s:num->bool. sup { sum (s INTER (0..n)) (\i. inv(&3 pow i)) | | |
n IN (:num) }` THEN | |
MAP_EVERY X_GEN_TAC [`x:num->bool`; `y:num->bool`] THEN | |
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[EXTENSION; NOT_FORALL_THM] THEN | |
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN | |
MAP_EVERY (fun w -> SPEC_TAC(w,w)) [`y:num->bool`; `x:num->bool`] THEN | |
MATCH_MP_TAC(MESON[IN] | |
`((!P Q n. R P Q n <=> R Q P n) /\ (!P Q. S P Q <=> S Q P)) /\ | |
(!P Q. (?n. n IN P /\ ~(n IN Q) /\ R P Q n) ==> S P Q) | |
==> !P Q. (?n:num. ~(n IN P <=> n IN Q) /\ R P Q n) ==> S P Q`) THEN | |
CONJ_TAC THENL [REWRITE_TAC[EQ_SYM_EQ]; REWRITE_TAC[]] THEN | |
MAP_EVERY X_GEN_TAC [`x:num->bool`; `y:num->bool`] THEN | |
DISCH_THEN(X_CHOOSE_THEN `n:num` STRIP_ASSUME_TAC) THEN | |
MATCH_MP_TAC(REAL_ARITH `!z:real. y < z /\ z <= x ==> ~(x = y)`) THEN | |
EXISTS_TAC `sum (x INTER (0..n)) (\i. inv(&3 pow i))` THEN CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC | |
`sum (y INTER (0..n)) (\i. inv(&3 pow i)) + | |
&3 / &2 / &3 pow (SUC n)` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC REAL_SUP_LE THEN | |
CONJ_TAC THENL [SET_TAC[]; REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV]] THEN | |
X_GEN_TAC `p:num` THEN ASM_CASES_TAC `n:num <= p` THENL | |
[MATCH_MP_TAC(REAL_ARITH | |
`!d. s:real = t + d /\ d <= e ==> s <= t + e`) THEN | |
EXISTS_TAC `sum(y INTER (n+1..p)) (\i. inv (&3 pow i))` THEN | |
CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[INTER_COMM] THEN | |
REWRITE_TAC[INTER; SUM_RESTRICT_SET] THEN | |
ASM_SIMP_TAC[SUM_COMBINE_R; LE_0]; | |
SIMP_TAC[ADD1; lemma; REAL_LT_IMP_LE]]; | |
MATCH_MP_TAC(REAL_ARITH `y:real <= x /\ &0 <= d ==> y <= x + d`) THEN | |
SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_POW_LE] THEN | |
MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN | |
SIMP_TAC[REAL_LE_INV_EQ; REAL_POW_LE; REAL_POS] THEN | |
SIMP_TAC[FINITE_INTER; FINITE_NUMSEG] THEN MATCH_MP_TAC | |
(SET_RULE `s SUBSET t ==> u INTER s SUBSET u INTER t`) THEN | |
REWRITE_TAC[SUBSET_NUMSEG] THEN ASM_ARITH_TAC]; | |
ONCE_REWRITE_TAC[INTER_COMM] THEN | |
REWRITE_TAC[INTER; SUM_RESTRICT_SET] THEN ASM_CASES_TAC `n = 0` THENL | |
[FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
ASM_REWRITE_TAC[SUM_SING; NUMSEG_SING; real_pow] THEN REAL_ARITH_TAC; | |
ASM_SIMP_TAC[SUM_CLAUSES_RIGHT; LE_1; LE_0; REAL_ADD_RID] THEN | |
MATCH_MP_TAC(REAL_ARITH `s:real = t /\ d < e ==> s + d < t + e`) THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC SUM_EQ_NUMSEG THEN | |
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) /\ m <= n - 1 ==> m < n`]; | |
REWRITE_TAC[real_pow; real_div; REAL_INV_MUL; REAL_MUL_ASSOC] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
REWRITE_TAC[REAL_ARITH `&1 / &2 * x < x <=> &0 < x`] THEN | |
SIMP_TAC[REAL_LT_INV_EQ; REAL_POW_LT; REAL_OF_NUM_LT; ARITH]]]]; | |
MP_TAC(ISPEC `{ sum (x INTER (0..n)) (\i. inv(&3 pow i)) | n IN (:num) }` | |
SUP) THEN REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN | |
ANTS_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN | |
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN | |
EXISTS_TAC `&3 / &2 / &3 pow 0` THEN | |
SIMP_TAC[lemma; REAL_LT_IMP_LE]]]);; | |
let UNCOUNTABLE_REAL = prove | |
(`~COUNTABLE(:real)`, | |
REWRITE_TAC[COUNTABLE; CARD_NOT_LE; ge_c] THEN | |
TRANS_TAC CARD_LTE_TRANS `(:num->bool)` THEN | |
REWRITE_TAC[CANTOR_THM_UNIV] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EQ_REAL]);; | |
let CARD_EQ_REAL_IMP_UNCOUNTABLE = prove | |
(`!s. s =_c (:real) ==> ~COUNTABLE s`, | |
GEN_TAC THEN STRIP_TAC THEN | |
DISCH_THEN(MP_TAC o ISPEC `(:real)` o MATCH_MP | |
(REWRITE_RULE[IMP_CONJ] CARD_EQ_COUNTABLE)) THEN | |
REWRITE_TAC[UNCOUNTABLE_REAL] THEN ASM_MESON_TAC[CARD_EQ_SYM]);; | |
let COUNTABLE_IMP_CARD_LT_REAL = prove | |
(`!s:A->bool. COUNTABLE s ==> s <_c (:real)`, | |
REWRITE_TAC[GSYM CARD_NOT_LE] THEN | |
ASM_MESON_TAC[CARD_LE_COUNTABLE; UNCOUNTABLE_REAL]);; | |
let CARD_LT_NUM_REAL = prove | |
(`(:num) <_c (:real)`, | |
SIMP_TAC[COUNTABLE_IMP_CARD_LT_REAL; NUM_COUNTABLE]);; | |
let CARD_EQ_REAL_SUBSET = prove | |
(`!s a b:real. | |
a < b /\ (!x. a < x /\ x < b ==> x IN s) ==> s =_c (:real)`, | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_UNIV] THEN | |
REWRITE_TAC[le_c; IN_UNIV] THEN | |
EXISTS_TAC `\x. (a + b) / &2 + (b - a) / &2 * x / (&1 + abs x)` THEN | |
REWRITE_TAC[REAL_EQ_ADD_LCANCEL; REAL_EQ_MUL_LCANCEL] THEN | |
REWRITE_TAC[REAL_SHRINK_EQ] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN | |
X_GEN_TAC `x:real` THEN FIRST_X_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[REAL_ARITH | |
`(a < (a + b) / &2 + (b - a) / &2 * x <=> | |
(b - a) * -- &1 < (b - a) * x) /\ | |
((a + b) / &2 + (b - a) / &2 * x < b <=> | |
(b - a) * x < (b - a) * &1)`] THEN | |
ASM_SIMP_TAC[REAL_LT_LMUL_EQ; REAL_SUB_LT; REAL_BOUNDS_LT] THEN | |
REWRITE_TAC[REAL_SHRINK_RANGE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Cardinal exponentiation. *) | |
(* ------------------------------------------------------------------------- *) | |
parse_as_infix("^_c",(24,"left"));; | |
let exp_c = new_definition | |
`s ^_c t = {f:B->A | (!x. x IN t ==> f x IN s) /\ | |
(!x. ~(x IN t) ==> f x = @y. F)}`;; | |
let EXP_C = prove | |
(`!(s:A->bool) (t:B->bool). | |
s ^_c t = {f:B->A | IMAGE f t SUBSET s /\ EXTENSIONAL t f}`, | |
REWRITE_TAC[EXTENSIONAL; ARB; IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE] THEN | |
REWRITE_TAC[exp_c]);; | |
let CARD_EXP_UNIV = prove | |
(`(:A) ^_c (:B) = (:B->A)`, | |
REWRITE_TAC[exp_c; IN_UNIV] THEN SET_TAC[]);; | |
let CARD_EXP_GRAPH = prove | |
(`!s:A->bool t:B->bool. | |
(s ^_c t) =_c {R:B->A->bool | (!x y. R x y ==> x IN t /\ y IN s) /\ | |
(!x. x IN t ==> ?!y. R x y)}`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS; exp_c; FORALL_IN_GSPEC] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\f:B->A x y. x IN t /\ f x = y`; | |
`\(R:B->A->bool) x. if x IN t then @y. R x y else @y. F`] THEN | |
SIMP_TAC[IN_ELIM_THM; FUN_EQ_THM] THEN MESON_TAC[]);; | |
let CARD_EXP_GRAPH_PAIRED = prove | |
(`!s:A->bool t:B->bool. | |
(s ^_c t) =_c {R:B#A->bool | (!x y. R(x,y) ==> x IN t /\ y IN s) /\ | |
(!x. x IN t ==> ?!y. R(x,y))}`, | |
MP_TAC CARD_EXP_GRAPH THEN | |
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN | |
REWRITE_TAC[EQ_C_BIJECTIONS; FORALL_IN_GSPEC] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\(R:B->A->bool) (x,y). R x y`; | |
`\(R:B#A->bool) x y. R(x,y)`] THEN | |
REWRITE_TAC[IN_ELIM_THM; FORALL_PAIR_THM; FUN_EQ_THM]);; | |
let CARD_EXP_0 = prove | |
(`!s c:C. (s:A->bool) ^_c ({}:B->bool) =_c {c}`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[exp_c; NOT_IN_EMPTY] THEN | |
ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN | |
REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN | |
SIMP_TAC[CARD_EQ_CARD; FINITE_SING; CARD_SING]);; | |
let CARD_EXP_ZERO = prove | |
(`!s:B->bool c:C. ({}:A->bool) ^_c s =_c if s = {} then {c} else {}`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[exp_c] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN | |
ASM_SIMP_TAC[SET_RULE `~(s = {}) ==> ~(!x. ~(x IN s))`] THEN | |
REWRITE_TAC[CARD_EQ_EMPTY; EMPTY_GSPEC] THEN | |
ONCE_REWRITE_TAC[GSYM FUN_EQ_THM] THEN | |
REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN | |
SIMP_TAC[CARD_EQ_CARD; FINITE_SING; CARD_SING]);; | |
let CARD_EXP_ADD = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s ^_c (t +_c u) =_c (s ^_c t) *_c (s ^_c u)`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[add_c; mul_c; exp_c; EQ_C_BIJECTIONS] THEN | |
REWRITE_TAC[FORALL_IN_UNION; FORALL_IN_GSPEC] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\f:B+C->A. (\x. if x IN t then f(INL x) else @x. F), | |
(\x. if x IN u then f(INR x) else @x. F)`; | |
`\(g:B->A,h:C->A) z. if ?x. x IN t /\ INL x = z | |
then g(@x. x IN t /\ INL x = z) | |
else if ?y. y IN u /\ INR y = z | |
then h(@y. y IN u /\ INR y = z) | |
else @y. F`] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_UNION] THEN | |
REWRITE_TAC[injectivity "sum"; distinctness "sum"; PAIR_EQ] THEN | |
REWRITE_TAC[ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1; CONJ_ASSOC] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN CONJ_TAC THENL [SIMP_TAC[]; MESON_TAC[]] THEN | |
GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC sum_INDUCT THEN | |
REWRITE_TAC[injectivity "sum"; distinctness "sum"; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
CONV_TAC SYM_CONV THEN TRY(FIRST_X_ASSUM MATCH_MP_TAC) THEN | |
ASM_MESON_TAC[injectivity "sum"; distinctness "sum"]);; | |
let CARD_EXP_MUL = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s ^_c (t *_c u) =_c (s ^_c t) ^_c u`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[mul_c; exp_c; EQ_C_BIJECTIONS] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\f:B#C->A y. if y IN u then \x. f(x,y) else @x. F`; | |
`\f:C->B->A (x,y). if x IN t /\ y IN u then f y x else @x. F`] THEN | |
REWRITE_TAC[FORALL_IN_GSPEC; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
REWRITE_TAC[FUN_EQ_THM; IN_ELIM_THM; FORALL_PAIR_THM; DE_MORGAN_THM] THEN | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]);; | |
let CARD_MUL_EXP = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
(s *_c t) ^_c u =_c (s ^_c u) *_c (t ^_c u)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[mul_c; exp_c; EQ_C_BIJECTIONS] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\f:C->A#B. (\x. if x IN u then FST(f x) else @x. F), | |
(\x. if x IN u then SND(f x) else @x. F)`; | |
`\(g:C->A,h:C->B) x. if x IN u then (g x,h x) else @x. F`] THEN | |
REWRITE_TAC[FUN_EQ_THM; FORALL_IN_GSPEC] THEN | |
REWRITE_TAC[IN_ELIM_THM; FORALL_PAIR_THM; PAIR_EQ] THEN | |
REWRITE_TAC[ONCE_REWRITE_RULE[CONJ_SYM] UNWIND_THM1; CONJ_ASSOC] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN MESON_TAC[PAIR; PAIR_EQ]);; | |
let CARD_EXP_SING = prove | |
(`!s:A->bool b:B. (s ^_c {b}) =_c s`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[exp_c; EQ_C_BIJECTIONS] THEN | |
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_SING] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\f:(B->A). f b`; `\x:A y:B. if y = b then x else @y. F`] THEN | |
SIMP_TAC[FUN_EQ_THM] THEN MESON_TAC[]);; | |
let CARD_LE_EXP_LEFT = prove | |
(`!s:A->bool s':B->bool t:C->bool. s <=_c s' ==> s ^_c t <=_c s' ^_c t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c; exp_c] THEN | |
DISCH_THEN(X_CHOOSE_TAC `f:A->B`) THEN | |
EXISTS_TAC `\(g:C->A) z:C. if z IN t then f(g z):B else @x. F` THEN | |
SIMP_TAC[IN_ELIM_THM; FUN_EQ_THM] THEN ASM_MESON_TAC[]);; | |
let CARD_LE_EXP_RIGHT = prove | |
(`!s:A->bool t:B->bool t':C->bool. | |
~(s = {}) /\ t <=_c t' ==> s ^_c t <=_c s ^_c t'`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c; exp_c; GSYM MEMBER_NOT_EMPTY] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 (X_CHOOSE_TAC `a:A`) | |
(X_CHOOSE_THEN `f:B->C` STRIP_ASSUME_TAC)) THEN | |
FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INJECTIVE_ON_LEFT_INVERSE]) THEN | |
DISCH_THEN(X_CHOOSE_TAC `h:C->B`) THEN | |
EXISTS_TAC `\g:(B->A) c:C. if c IN t' then if h c IN t then g(h c) else a | |
else @x:A. F` THEN | |
SIMP_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN | |
MAP_EVERY X_GEN_TAC [`k:B->A`; `l:B->A`] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN STRIP_TAC THEN X_GEN_TAC `b:B` THEN | |
ASM_CASES_TAC `(b:B) IN t` THEN ASM_SIMP_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o SPEC `(f:B->C) b`) THEN ASM_MESON_TAC[]);; | |
let CARD_LE_EXP = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
~(s = {}) /\ s <=_c s' /\ t <=_c t' ==> s ^_c t <=_c s' ^_c t'`, | |
REPEAT STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `(s:A->bool) ^_c (t':D->bool)` THEN | |
ASM_SIMP_TAC[CARD_LE_EXP_RIGHT; CARD_LE_EXP_LEFT]);; | |
let CARD_EXP_CONG = prove | |
(`!s:A->bool s':B->bool t:C->bool t':D->bool. | |
s =_c s' /\ t =_c t' ==> s ^_c t =_c s' ^_c t'`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `t':D->bool = {}` THEN | |
ASM_SIMP_TAC[CARD_EQ_EMPTY] THENL | |
[REPEAT STRIP_TAC THEN TRANS_TAC CARD_EQ_TRANS `{0}` THEN | |
REWRITE_TAC[CARD_EXP_0; ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EXP_0]; | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
ASM_CASES_TAC `t:C->bool = {}` THEN | |
ASM_REWRITE_TAC[CARD_EQ_EMPTY]] THEN | |
ASM_CASES_TAC `s:A->bool = {}` THEN ASM_SIMP_TAC[CARD_EQ_EMPTY] THENL | |
[STRIP_TAC THEN MP_TAC(ISPECL [`t:C->bool`; `0`] CARD_EXP_ZERO) THEN | |
ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [CARD_EQ_SYM] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_EQ_TRANS) THEN | |
MP_TAC(INST_TYPE [`:B`,`:A`] | |
(ISPECL [`t':D->bool`; `0`] CARD_EXP_ZERO)) THEN | |
ASM_REWRITE_TAC[]; | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
ASM_CASES_TAC `s':B->bool = {}` THEN | |
ASM_REWRITE_TAC[CARD_EQ_EMPTY] THEN | |
ASM_SIMP_TAC[CARD_LE_EXP; GSYM CARD_LE_ANTISYM]]);; | |
let CARD_EXP_FINITE = prove | |
(`!s:A->bool t:B->bool. FINITE s /\ FINITE t ==> FINITE(s ^_c t)`, | |
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[CONJ_SYM] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP FINITE_POWERSET o MATCH_MP FINITE_CROSS) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_FINITE) THEN | |
MP_TAC(ISPECL [`s:A->bool`; `t:B->bool`] CARD_EXP_GRAPH_PAIRED) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_IMP_LE) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_LE_SUBSET THEN | |
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_CROSS] THEN SET_TAC[]);; | |
let CARD_EXP_C = prove | |
(`!s:A->bool t:B->bool. | |
FINITE s /\ FINITE t ==> CARD(s ^_c t) = (CARD s) EXP (CARD t)`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN CONJ_TAC THENL | |
[ONCE_REWRITE_TAC[GSYM(ISPEC `0` CARD_SING)] THEN | |
MATCH_MP_TAC CARD_EQ_CARD_IMP THEN SIMP_TAC[CARD_EXP_0; FINITE_SING]; | |
MAP_EVERY X_GEN_TAC [`b:B`; `t:B->bool`] THEN STRIP_TAC] THEN | |
TRANS_TAC EQ_TRANS `CARD((s:A->bool) ^_c ({b:B} +_c (t:B->bool)))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_EQ_CARD_IMP THEN | |
ASM_SIMP_TAC[CARD_EXP_FINITE; CARD_ADD_FINITE; FINITE_SING] THEN | |
MATCH_MP_TAC CARD_EXP_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN | |
ASM_SIMP_TAC[CARD_EQ_CARD; FINITE_INSERT; CARD_ADD_FINITE; FINITE_EMPTY; | |
CARD_ADD_C; CARD_SING; CARD_CLAUSES] THEN | |
ARITH_TAC; | |
ALL_TAC] THEN | |
TRANS_TAC EQ_TRANS | |
`CARD(((s:A->bool) ^_c {b:B}) *_c (s ^_c (t:B->bool)))` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_EQ_CARD_IMP THEN REWRITE_TAC[CARD_EXP_ADD] THEN | |
ASM_SIMP_TAC[CARD_EXP_FINITE; CARD_MUL_FINITE; FINITE_SING]; | |
ASM_SIMP_TAC[CARD_MUL_C; CARD_EXP_FINITE; FINITE_SING]] THEN | |
AP_THM_TAC THEN AP_TERM_TAC THEN | |
MATCH_MP_TAC CARD_EQ_CARD_IMP THEN | |
ASM_SIMP_TAC[CARD_EXP_SING]);; | |
let CARD_EXP_POWERSET = prove | |
(`!s:A->bool. (:bool) ^_c s =_c {t | t SUBSET s}`, | |
GEN_TAC THEN REWRITE_TAC[exp_c; EQ_C_BIJECTIONS; IN_UNIV] THEN | |
MAP_EVERY EXISTS_TAC | |
[`\P:A->bool. {x | x IN s /\ P x}`; | |
`\t x:A. if x IN s then x IN t else @b. F`] THEN | |
SIMP_TAC[IN_ELIM_THM] THEN SET_TAC[]);; | |
let CARD_EXP_CANTOR = prove | |
(`!s:A->bool. s <_c (:bool) ^_c s`, | |
GEN_TAC THEN | |
TRANS_TAC CARD_LTE_TRANS `{t:A->bool | t SUBSET s}` THEN | |
REWRITE_TAC[CANTOR_THM] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN REWRITE_TAC[CARD_EXP_POWERSET]);; | |
let CARD_EXP_ABSORB = prove | |
(`!s:A->bool t:B->bool. | |
INFINITE t /\ (:bool) <=_c s /\ s <=_c (:bool) ^_c t | |
==> s ^_c t =_c (:bool) ^_c t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
ASM_SIMP_TAC[CARD_LE_EXP_LEFT; CARD_LE_REFL] THEN | |
TRANS_TAC CARD_LE_TRANS `((:bool) ^_c t) ^_c (t:B->bool)` THEN | |
ASM_SIMP_TAC[CARD_LE_EXP_LEFT] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
TRANS_TAC CARD_EQ_TRANS `(:bool) ^_c ((t:B->bool) *_c t)` THEN | |
SIMP_TAC[ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EXP_MUL] THEN | |
MATCH_MP_TAC CARD_EXP_CONG THEN | |
ASM_SIMP_TAC[CARD_SQUARE_INFINITE; CARD_EQ_REFL]);; | |
let CARD_EXP_LE_REAL = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c (:real) /\ COUNTABLE t ==> s ^_c t <=_c (:real)`, | |
REWRITE_TAC[COUNTABLE; ge_c] THEN REPEAT STRIP_TAC THEN | |
ASM_CASES_TAC `s:A->bool = {}` THEN ASM_REWRITE_TAC[] THENL | |
[W(MP_TAC o PART_MATCH lhand CARD_EXP_ZERO o lhand o snd) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_IMP_LE) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
COND_CASES_TAC THEN | |
REWRITE_TAC[CARD_EMPTY_LE; CARD_SING_LE; UNIV_NOT_EMPTY]; | |
ALL_TAC] THEN | |
TRANS_TAC CARD_LE_TRANS `(:num->num->bool)` THEN CONJ_TAC THENL | |
[REWRITE_TAC[GSYM CARD_EXP_UNIV] THEN | |
MATCH_MP_TAC CARD_LE_EXP THEN ASM_REWRITE_TAC[] THEN | |
TRANS_TAC CARD_LE_TRANS `(:real)` THEN ASM_REWRITE_TAC[] THEN | |
SIMP_TAC[CARD_EXP_UNIV; CARD_EQ_IMP_LE; CARD_EQ_REAL]; | |
TRANS_TAC CARD_LE_TRANS `(:num#num->bool)` THEN | |
SIMP_TAC[CARD_FUNSPACE_CURRY; CARD_EQ_IMP_LE] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
TRANS_TAC CARD_EQ_TRANS `(:num->bool)` THEN REWRITE_TAC[CARD_EQ_REAL] THEN | |
MATCH_MP_TAC CARD_FUNSPACE_CONG THEN REWRITE_TAC[CARD_EQ_REFL] THEN | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN | |
REWRITE_TAC[GSYM MUL_C_UNIV; CARD_SQUARE_NUM]]);; | |
let CARD_EXP_EQ_REAL = prove | |
(`!s:A->bool. COUNTABLE s /\ ~(s = {}) ==> (:real) ^_c s =_c (:real)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
ASM_SIMP_TAC[CARD_EXP_LE_REAL; CARD_LE_REFL] THEN | |
TRANS_TAC CARD_LE_TRANS `(:real) ^_c {a:A}` THEN | |
SIMP_TAC[ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EXP_SING; CARD_EQ_IMP_LE] THEN | |
MATCH_MP_TAC CARD_LE_EXP THEN | |
ASM_REWRITE_TAC[UNIV_NOT_EMPTY; CARD_LE_REFL; CARD_SING_LE]);; | |
let CARD_EQ_RESTRICTED_POWERSET,CARD_EQ_LIMITED_POWERSET = (CONJ_PAIR o prove) | |
(`(!s:A->bool t:B->bool. | |
INFINITE s | |
==> { k | k SUBSET s /\ k =_c t} =_c | |
(if t <=_c s then s ^_c t else {})) /\ | |
(!s:A->bool t:B->bool. | |
INFINITE s | |
==> if t <=_c s then { k | k SUBSET s /\ k <=_c t} =_c s ^_c t | |
else { k | k SUBSET s /\ k <=_c t} =_c (:bool) ^_c s)`, | |
let lemma = prove | |
(`!s:A->bool t:B->bool u:C->bool. | |
s <=_c t /\ t <=_c u /\ u <=_c s | |
==> s =_c u /\ t =_c u`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM] THEN REPEAT STRIP_TAC THENL | |
[TRANS_TAC CARD_LE_TRANS `t:B->bool`; | |
TRANS_TAC CARD_LE_TRANS `s:A->bool`] THEN | |
ASM_SIMP_TAC[]) in | |
REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `INFINITE(s:A->bool)` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THENL | |
[ALL_TAC; | |
CONJ_TAC THENL | |
[REWRITE_TAC[CARD_EQ_EMPTY; EXTENSION; NOT_IN_EMPTY; IN_ELIM_THM] THEN | |
X_GEN_TAC `k:A->bool` THEN | |
FIRST_X_ASSUM(MP_TAC o check(is_neg o concl)) THEN | |
REWRITE_TAC[CONTRAPOS_THM] THEN STRIP_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `k:A->bool` THEN | |
ASM_SIMP_TAC[CARD_LE_SUBSET] THEN MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
ONCE_REWRITE_TAC[CARD_EQ_SYM] THEN FIRST_ASSUM ACCEPT_TAC; | |
TRANS_TAC CARD_EQ_TRANS `{k:A->bool | k SUBSET s}` THEN | |
REWRITE_TAC[ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EXP_POWERSET] THEN | |
MATCH_MP_TAC CARD_EQ_REFL_IMP THEN | |
REWRITE_TAC[SET_RULE | |
`{x | P x /\ Q x} = {x | P x} <=> !x. P x ==> Q x`] THEN | |
X_GEN_TAC `k:A->bool` THEN DISCH_TAC THEN | |
TRANS_TAC CARD_LE_TRANS `s:A->bool` THEN | |
ASM_SIMP_TAC[CARD_LE_SUBSET] THEN | |
ASM_MESON_TAC[CARD_LE_TOTAL]]] THEN | |
MATCH_MP_TAC lemma THEN REPEAT CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_LE_SUBSET THEN | |
SIMP_TAC[SUBSET; IN_ELIM_THM; CARD_EQ_IMP_LE]; | |
ASM_CASES_TAC `t:B->bool = {}` THENL | |
[ASM_REWRITE_TAC[CARD_LE_EMPTY; SING_GSPEC; SET_RULE | |
`k SUBSET s /\ k = {} <=> k = {}`] THEN | |
MATCH_MP_TAC(ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_IMP_LE) THEN | |
REWRITE_TAC[CARD_EXP_0]; | |
ALL_TAC] THEN | |
TRANS_TAC CARD_LE_TRANS | |
`{k:A->bool | k SUBSET s /\ ~(k = {}) /\ k <=_c (t:B->bool)}` THEN | |
CONJ_TAC THENL | |
[ALL_TAC; | |
GEN_REWRITE_TAC I [LE_C] THEN | |
SIMP_TAC[FORALL_IN_GSPEC; IMP_CONJ; LE_C_IMAGE] THEN | |
EXISTS_TAC `\f:B->A. IMAGE f t` THEN | |
X_GEN_TAC `k:A->bool` THEN STRIP_TAC THEN STRIP_TAC THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:B->A` (SUBST_ALL_TAC o SYM)) THEN | |
EXISTS_TAC `\y. if y IN t then (f:B->A) y else @y. F` THEN | |
ASM_SIMP_TAC[exp_c; IN_ELIM_THM] THEN ASM SET_TAC[]] THEN | |
TRANS_TAC CARD_LE_TRANS | |
`{{}} UNION | |
{k:A->bool | k SUBSET s /\ ~(k = {}) /\ k <=_c (t:B->bool)}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_LE_SUBSET THEN GEN_REWRITE_TAC I [SUBSET] THEN | |
REWRITE_TAC[IN_ELIM_THM; IN_UNION; IN_SING] THEN | |
X_GEN_TAC `k:A->bool` THEN ASM_CASES_TAC `k:A->bool = {}` THEN | |
ASM_REWRITE_TAC[CARD_EMPTY_LE]; | |
ALL_TAC] THEN | |
W(MP_TAC o PART_MATCH lhand UNION_LE_ADD_C o lhand o snd) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN MATCH_MP_TAC CARD_ADD_ABSORB_LEFT THEN | |
MATCH_MP_TAC(TAUT `(p ==> q) /\ p ==> p /\ q`) THEN CONJ_TAC THENL | |
[DISCH_TAC THEN MATCH_MP_TAC CARD_LE_FINITE_INFINITE THEN | |
ASM_REWRITE_TAC[FINITE_SING]; | |
ALL_TAC] THEN | |
UNDISCH_TAC `INFINITE(s:A->bool)` THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_INFINITE) THEN | |
ONCE_REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. {x}` THEN | |
SIMP_TAC[SET_RULE `{a} = {b} <=> a = b`; IN_ELIM_THM] THEN | |
ASM_SIMP_TAC[SING_SUBSET; NOT_INSERT_EMPTY; CARD_SING_LE]; | |
TRANS_TAC CARD_LE_TRANS | |
`{k | k SUBSET ((t:B->bool) *_c (s:A->bool)) /\ k =_c t}` THEN | |
CONJ_TAC THENL | |
[MP_TAC(ISPECL [`s:A->bool`; `t:B->bool`] CARD_EXP_GRAPH_PAIRED) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_EQ_IMP_LE) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_LE_SUBSET THEN | |
REWRITE_TAC[SUBSET; mul_c; IN_ELIM_THM] THEN | |
X_GEN_TAC `R:B#A->bool` THEN REWRITE_TAC[FORALL_PAIR_THM] THEN | |
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
REWRITE_TAC[eq_c] THEN EXISTS_TAC `FST:B#A->B` THEN | |
REWRITE_TAC[EXISTS_UNIQUE_DEF; FORALL_PAIR_THM; EXISTS_PAIR_THM] THEN | |
ASM_MESON_TAC[PAIR_EQ; IN]; | |
SUBGOAL_THEN `(t:B->bool) *_c (s:A->bool) <=_c s` MP_TAC THENL | |
[ASM_SIMP_TAC[CARD_MUL_ABSORB_LE]; ALL_TAC] THEN | |
REWRITE_TAC[le_c] THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:B#A->A` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `IMAGE (p:B#A->A)` THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
CONJ_TAC THENL [X_GEN_TAC `u:B#A->bool`; ASM SET_TAC[]] THEN | |
REPEAT STRIP_TAC THENL [ASM SET_TAC[]; ALL_TAC] THEN | |
TRANS_TAC CARD_EQ_TRANS `u:B#A->bool` THEN | |
ASM_SIMP_TAC[] THEN MATCH_MP_TAC CARD_EQ_IMAGE THEN ASM SET_TAC[]]]);; | |
let CARD_EQ_FULLSIZE_POWERSET = prove | |
(`!s:A->bool. | |
INFINITE s ==> {t | t SUBSET s /\ t =_c s} =_c {t | t SUBSET s}`, | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o ISPEC `s:A->bool` o MATCH_MP | |
CARD_EQ_RESTRICTED_POWERSET) THEN | |
REWRITE_TAC[CARD_LE_REFL] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN | |
TRANS_TAC CARD_EQ_TRANS `(:bool) ^_c (s:A->bool)` THEN | |
ASM_REWRITE_TAC[CARD_EXP_POWERSET] THEN | |
MATCH_MP_TAC CARD_EXP_ABSORB THEN | |
ASM_SIMP_TAC[CARD_LT_IMP_LE; CARD_EXP_CANTOR] THEN | |
MATCH_MP_TAC CARD_LE_FINITE_INFINITE THEN | |
ASM_REWRITE_TAC[FINITE_BOOL]);; | |
let CARD_EQ_EXP_INFINITE_FINITE = prove | |
(`!(s:A->bool) (t:B->bool). | |
INFINITE s /\ FINITE t /\ ~(t = {}) ==> s ^_c t =_c s`, | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN | |
REWRITE_TAC[NOT_INSERT_EMPTY] THEN | |
MAP_EVERY X_GEN_TAC [`b:B`; `t:B->bool`] THEN | |
ASM_CASES_TAC `t:B->bool = {}` THEN ASM_REWRITE_TAC[CARD_EXP_SING] THEN | |
STRIP_TAC THEN TRANS_TAC CARD_EQ_TRANS `(s:A->bool) *_c s` THEN | |
ASM_SIMP_TAC[CARD_SQUARE_INFINITE] THEN | |
ONCE_REWRITE_TAC[SET_RULE `a INSERT s = {a} UNION s`] THEN | |
TRANS_TAC CARD_EQ_TRANS `(s:A->bool) ^_c ({b:B} +_c (t:B->bool))` THEN | |
ASM_SIMP_TAC[CARD_EXP_CONG; CARD_EQ_REFL; CARD_DISJOINT_UNION; | |
GSYM DISJOINT; DISJOINT_SING] THEN | |
W(MP_TAC o PART_MATCH lhand CARD_EXP_ADD o lhand o snd) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN | |
ASM_SIMP_TAC[CARD_MUL_CONG; CARD_EQ_REFL; CARD_EXP_SING]);; | |
(* ------------------------------------------------------------------------- *) | |
(* More about cardinality of lists and restricted powersets etc. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARD_EQ_FINITE_SUBSETS = prove | |
(`!s:A->bool. INFINITE(s) ==> {t | t SUBSET s /\ FINITE t} =_c s`, | |
GEN_TAC THEN DISCH_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN | |
CONJ_TAC THENL | |
[TRANS_TAC CARD_LE_TRANS `{l:A list | !x. MEM x l ==> x IN s}` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[LE_C; IN_ELIM_THM] THEN | |
EXISTS_TAC `set_of_list:A list->(A->bool)` THEN | |
X_GEN_TAC `t:A->bool` THEN STRIP_TAC THEN | |
EXISTS_TAC `list_of_set(t:A->bool)` THEN | |
ASM_SIMP_TAC[MEM_LIST_OF_SET; GSYM SUBSET; SET_OF_LIST_OF_SET]; | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
MATCH_MP_TAC CARD_EQ_LIST_GEN THEN ASM_REWRITE_TAC[]]; | |
REWRITE_TAC[le_c] THEN EXISTS_TAC `\x:A. {x}` THEN | |
REWRITE_TAC[IN_ELIM_THM; FINITE_SING] THEN SET_TAC[]]);; | |
let CARD_LE_LIST = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c t | |
==> {l | !x. MEM x l ==> x IN s} <=_c {l | !x. MEM x l ==> x IN t}`, | |
GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[le_c; IN_ELIM_THM] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `MAP (f:A->B)` THEN | |
MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL | |
[REWRITE_TAC[MEM_MAP] THEN ASM_MESON_TAC[]; DISCH_TAC] THEN | |
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN | |
LIST_INDUCT_TAC THEN SIMP_TAC[MAP_EQ_NIL; MAP] THEN | |
LIST_INDUCT_TAC THEN REWRITE_TAC[MAP; NOT_CONS_NIL; MEM; CONS_11] THEN | |
ASM_MESON_TAC[]);; | |
let CARD_LE_SUBPOWERSET = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c t /\ (!f s. P s ==> Q(IMAGE f s)) | |
==> {u | u SUBSET s /\ P u} <=_c {v | v SUBSET t /\ Q v}`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c; IN_ELIM_THM] THEN DISCH_THEN | |
(CONJUNCTS_THEN2 (X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) ASSUME_TAC) THEN | |
EXISTS_TAC `IMAGE (f:A->B)` THEN ASM_SIMP_TAC[] THEN ASM SET_TAC[]);; | |
let CARD_LE_FINITE_SUBSETS = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c t | |
==> {u | u SUBSET s /\ FINITE u} <=_c {v | v SUBSET t /\ FINITE v}`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_LE_SUBPOWERSET THEN | |
ASM_SIMP_TAC[FINITE_IMAGE]);; | |
let CARD_LE_COUNTABLE_SUBSETS = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c t | |
==> {u | u SUBSET s /\ COUNTABLE u} <=_c {v | v SUBSET t /\ COUNTABLE v}`, | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CARD_LE_SUBPOWERSET THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE]);; | |
let CARD_LE_POWERSET = prove | |
(`!s:A->bool t:B->bool. | |
s <=_c t ==> {u | u SUBSET s} <=_c {v | v SUBSET t}`, | |
REPEAT STRIP_TAC THEN PURE_ONCE_REWRITE_TAC[SET_RULE | |
`{x | x SUBSET y} = {x | x SUBSET y /\ T}`] THEN | |
MATCH_MP_TAC CARD_LE_SUBPOWERSET THEN | |
ASM_SIMP_TAC[]);; | |
let CARD_POWERSET_CONG = prove | |
(`!s:A->bool t:B->bool. | |
s =_c t ==> {u | u SUBSET s} =_c {v | v SUBSET t}`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_POWERSET]);; | |
let COUNTABLE_LIST_GEN = prove | |
(`!s:A->bool. COUNTABLE s ==> COUNTABLE {l | !x. MEM x l ==> x IN s}`, | |
GEN_TAC THEN REWRITE_TAC[COUNTABLE; ge_c] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_LIST) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`] THEN | |
SIMP_TAC[CARD_EQ_LIST; num_INFINITE]);; | |
let COUNTABLE_LIST = prove | |
(`COUNTABLE(:A) ==> COUNTABLE(:A list)`, | |
MP_TAC(ISPEC `(:A)` COUNTABLE_LIST_GEN) THEN | |
REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`]);; | |
let COUNTABLE_FINITE_SUBSETS = prove | |
(`!s:A->bool. COUNTABLE(s) ==> COUNTABLE {t | t SUBSET s /\ FINITE t}`, | |
GEN_TAC THEN REWRITE_TAC[COUNTABLE; ge_c] THEN | |
DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_FINITE_SUBSETS) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
REWRITE_TAC[IN_UNIV; SET_RULE `{x | T} = UNIV`] THEN | |
SIMP_TAC[CARD_EQ_FINITE_SUBSETS; num_INFINITE]);; | |
let CARD_EQ_REAL_SEQUENCES = prove | |
(`(:num->real) =_c (:real)`, | |
TRANS_TAC CARD_EQ_TRANS `(:num->num->bool)` THEN | |
ASM_SIMP_TAC[CARD_FUNSPACE_CONG; CARD_EQ_REFL; CARD_EQ_REAL] THEN | |
TRANS_TAC CARD_EQ_TRANS `(:num#num->bool)` THEN | |
ASM_SIMP_TAC[CARD_FUNSPACE_CURRY] THEN | |
TRANS_TAC CARD_EQ_TRANS `(:num->bool)` THEN | |
ASM_SIMP_TAC[CARD_FUNSPACE_CONG; CARD_EQ_REFL; | |
ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_REAL; | |
REWRITE_RULE[MUL_C_UNIV] CARD_SQUARE_NUM]);; | |
let CARD_EQ_COUNTABLE_SUBSETS_SUBREAL = prove | |
(`!s:A->bool. INFINITE s /\ s <=_c (:real) | |
==> {t | t SUBSET s /\ COUNTABLE t} =_c (:real)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[COUNTABLE; ge_c] THEN | |
FIRST_ASSUM(MP_TAC o ISPEC `(:num)` o MATCH_MP | |
CARD_EQ_LIMITED_POWERSET) THEN | |
ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE] THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_EQ_TRANS) THEN | |
TRANS_TAC CARD_EQ_TRANS `(:num->bool)` THEN | |
REWRITE_TAC[ONCE_REWRITE_RULE[CARD_EQ_SYM] CARD_EQ_REAL] THEN | |
REWRITE_TAC[GSYM CARD_EXP_UNIV] THEN MATCH_MP_TAC CARD_EXP_ABSORB THEN | |
REWRITE_TAC[num_INFINITE] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_LE_FINITE_INFINITE THEN | |
ASM_REWRITE_TAC[FINITE_BOOL]; | |
TRANS_TAC CARD_LE_TRANS `(:real)` THEN ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN | |
TRANS_TAC CARD_EQ_TRANS `(:num->bool)` THEN | |
REWRITE_TAC[CARD_EQ_REAL; CARD_EXP_UNIV; CARD_EQ_REFL]]);; | |
let CARD_EQ_COUNTABLE_SUBSETS_REAL = prove | |
(`{s:real->bool | COUNTABLE s} =_c (:real)`, | |
MP_TAC(ISPEC `(:real)` CARD_EQ_COUNTABLE_SUBSETS_SUBREAL) THEN | |
REWRITE_TAC[SUBSET_UNIV; CARD_LE_REFL; real_INFINITE]);; | |
let CARD_LE_RESTRICTED_FUNSPACE = prove | |
(`!s:A->bool t:B->bool k. | |
{f | IMAGE f s SUBSET t /\ | |
{x | ~(f x = k x)} SUBSET s /\ | |
FINITE {x | ~(f x = k x)}} | |
<=_c {u | u SUBSET (s CROSS t) /\ FINITE u}`, | |
let lemma = prove | |
(`!(f:A->B) s t. t SUBSET IMAGE f s ==> t <=_c s`, | |
REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP CARD_LE_SUBSET) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
REWRITE_TAC[CARD_LE_IMAGE]) in | |
REPEAT GEN_TAC THEN MATCH_MP_TAC lemma THEN EXISTS_TAC | |
`\u:(A#B)->bool x. if ?y. (x,y) IN u then @y. (x,y) IN u else k x` THEN | |
GEN_REWRITE_TAC I [SUBSET] THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN | |
X_GEN_TAC `f:A->B` THEN STRIP_TAC THEN | |
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN | |
EXISTS_TAC `IMAGE (\x. x,(f:A->B) x) {x | ~(f x = k x)}` THEN | |
ASM_SIMP_TAC[FINITE_IMAGE] THEN CONJ_TAC THENL | |
[ALL_TAC; | |
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_CROSS] THEN | |
ASM SET_TAC[]] THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:A` THEN | |
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; PAIR_EQ] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; UNWIND_THM1; UNWIND_THM2] THEN | |
ASM_CASES_TAC `(f:A->B) x = k x` THEN ASM_REWRITE_TAC[]);; | |
let COUNTABLE_RESTRICTED_FUNSPACE = prove | |
(`!s:A->bool t:B->bool k. | |
COUNTABLE s /\ COUNTABLE t | |
==> COUNTABLE {f | IMAGE f s SUBSET t /\ | |
{x | ~(f x = k x)} SUBSET s /\ | |
FINITE {x | ~(f x = k x)}}`, | |
REPEAT STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH lhand CARD_LE_RESTRICTED_FUNSPACE o rand o snd) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_COUNTABLE) THEN | |
ASM_SIMP_TAC[COUNTABLE_FINITE_SUBSETS; COUNTABLE_CROSS; COUNTABLE_IMAGE]);; | |
let CARD_LE_RESTRICTED_FUNSPACE_INFINITE = prove | |
(`!(s:A->bool) (t:B->bool) k. | |
INFINITE s /\ ~(t = {}) | |
==> {f | IMAGE f s SUBSET t /\ | |
{x | ~(f x = k x)} SUBSET s /\ | |
FINITE {x | ~(f x = k x)}} <=_c | |
s *_c t`, | |
REPEAT STRIP_TAC THEN | |
W(MP_TAC o PART_MATCH lhand CARD_LE_RESTRICTED_FUNSPACE o lhand o snd) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] CARD_LE_TRANS) THEN | |
MATCH_MP_TAC CARD_EQ_IMP_LE THEN REWRITE_TAC[mul_c; GSYM CROSS] THEN | |
MATCH_MP_TAC CARD_EQ_FINITE_SUBSETS THEN | |
ASM_REWRITE_TAC[INFINITE_CROSS_EQ]);; | |
let CARD_EQ_RESTRICTED_FUNSPACE_INFINITE = prove | |
(`!(s:A->bool) (t:B->bool) k. | |
INFINITE s /\ ~(?a. t SUBSET {a}) /\ IMAGE k s SUBSET t | |
==> {f | IMAGE f s SUBSET t /\ | |
{x | ~(f x = k x)} SUBSET s /\ | |
FINITE {x | ~(f x = k x)}} =_c | |
s *_c t`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[GSYM CARD_LE_ANTISYM] THEN CONJ_TAC THENL | |
[MATCH_MP_TAC CARD_LE_RESTRICTED_FUNSPACE_INFINITE THEN ASM SET_TAC[]; | |
MATCH_MP_TAC CARD_MUL2_ABSORB_LE_ALT THEN ASM_REWRITE_TAC[]] THEN | |
CONJ_TAC THENL | |
[SUBGOAL_THEN `!x:A. ?y:B. y IN t /\ ~(k x = y)` MP_TAC THENL | |
[ASM SET_TAC[]; REWRITE_TAC[FORALL_AND_THM; le_c; SKOLEM_THM]] THEN | |
DISCH_THEN(X_CHOOSE_THEN `f:A->B` STRIP_ASSUME_TAC) THEN | |
EXISTS_TAC `\a x. if x = a then (f:A->B) x else k x` THEN | |
REWRITE_TAC[IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE] THEN | |
CONJ_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN X_GEN_TAC `a:A`; | |
SUBGOAL_THEN `?a:A. a IN s` STRIP_ASSUME_TAC THENL | |
[ASM_MESON_TAC[MEMBER_NOT_EMPTY; FINITE_EMPTY; INFINITE]; ALL_TAC] THEN | |
REWRITE_TAC[le_c] THEN | |
EXISTS_TAC `\b x. if x = a then b else (k:A->B) x` THEN | |
REWRITE_TAC[IN_ELIM_THM; SUBSET; FORALL_IN_IMAGE] THEN | |
CONJ_TAC THENL [X_GEN_TAC `b:B`; ASM SET_TAC[]]] THEN | |
(STRIP_TAC THEN | |
REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{a:A}` THEN | |
REWRITE_TAC[FINITE_SING] THEN ASM SET_TAC[]));; | |
let CARD_EQ_FUNSPACE = prove | |
(`!(s:A->bool) (t:B->bool) k. | |
{f | IMAGE f s SUBSET t /\ {x | ~(f x = k x)} SUBSET s} =_c | |
t ^_c s`, | |
REWRITE_TAC[exp_c; SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
EXISTS_TAC `\f x. if x IN s then (f:A->B) x else ARB` THEN | |
EXISTS_TAC `\f x. if x IN s then (f:A->B) x else k x` THEN | |
REWRITE_TAC[IN_ELIM_THM; ARB] THEN REWRITE_TAC[FUN_EQ_THM] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Cardinality properties of Cartesian products. *) | |
(* ------------------------------------------------------------------------- *) | |
let CARTESIAN_PRODUCT_CONST = prove | |
(`!(s:A->bool) (t:B->bool). | |
cartesian_product t (\i. s) = s ^_c t`, | |
REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM; cartesian_product; exp_c; ARB] THEN | |
SET_TAC[]);; | |
let CARD_LE_CARTESIAN_PRODUCT = prove | |
(`!(s:K->A->bool) (t:K->B->bool) k. | |
(!i. i IN k ==> s i <=_c t i) | |
==> cartesian_product k s <=_c cartesian_product k t`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[le_c] THEN | |
GEN_REWRITE_TAC (LAND_CONV o BINDER_CONV) [RIGHT_IMP_EXISTS_THM] THEN | |
REWRITE_TAC[SKOLEM_THM; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `f:K->A->B` THEN DISCH_TAC THEN | |
EXISTS_TAC `\g i. if i IN k then (f:K->A->B) i ((g:K->A) i) else ARB` THEN | |
REWRITE_TAC[] THEN CONJ_TAC THENL | |
[REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN | |
ASM_MESON_TAC[]; | |
REPEAT STRIP_TAC THEN MATCH_MP_TAC CARTESIAN_PRODUCT_EQ_MEMBERS THEN | |
MAP_EVERY EXISTS_TAC [`k:K->bool`; `s:K->A->bool`] THEN | |
ASM_REWRITE_TAC[] THEN X_GEN_TAC `i:K` THEN DISCH_TAC THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `i:K`)) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[cartesian_product; IN_ELIM_THM]) THEN | |
ASM_MESON_TAC[]]);; | |
let CARD_EQ_CARTESIAN_PRODUCT = prove | |
(`!(s:K->A->bool) (t:K->B->bool) k. | |
(!i. i IN k ==> s i =_c t i) | |
==> cartesian_product k s =_c cartesian_product k t`, | |
SIMP_TAC[GSYM CARD_LE_ANTISYM; CARD_LE_CARTESIAN_PRODUCT]);; | |
let CARD_LE_CARTESIAN_PRODUCT_SUBINDEX = prove | |
(`!(s:K->A->bool) k l. | |
k SUBSET l /\ ~(cartesian_product l s = {}) | |
==> cartesian_product k s <=_c cartesian_product l s`, | |
REPEAT STRIP_TAC THEN TRANS_TAC CARD_LE_TRANS | |
`IMAGE (\(f:K->A) i. if i IN k then f i else ARB) | |
(cartesian_product l s)` THEN | |
REWRITE_TAC[CARD_LE_IMAGE] THEN MATCH_MP_TAC CARD_LE_SUBSET THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[cartesian_product; SUBSET; IN_ELIM_THM; IN_IMAGE; | |
EXTENSIONAL; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `z:K->A` THEN STRIP_TAC THEN | |
X_GEN_TAC `x:K->A` THEN STRIP_TAC THEN | |
EXISTS_TAC `\i. if i IN k then (x:K->A) i else z i` THEN | |
REWRITE_TAC[FUN_EQ_THM] THEN ASM SET_TAC[]);; | |
let FINITE_CARTESIAN_PRODUCT = prove | |
(`!(s:K->A->bool) k. | |
FINITE(cartesian_product k s) <=> | |
cartesian_product k s = {} \/ | |
FINITE {i | i IN k /\ ~(?a. s i SUBSET {a})} /\ | |
(!i. i IN k ==> FINITE(s i))`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `cartesian_product k (s:K->A->bool) = {}` THEN | |
ASM_REWRITE_TAC[FINITE_EMPTY] THEN EQ_TAC THENL | |
[DISCH_TAC THEN CONJ_TAC THENL | |
[UNDISCH_TAC `FINITE (cartesian_product k (s:K->A->bool))` THEN | |
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[GSYM INFINITE] THEN DISCH_TAC THEN | |
ABBREV_TAC `l = {i | i IN k /\ ~(?a. (s:K->A->bool) i SUBSET {a})}` THEN | |
REWRITE_TAC[INFINITE_CARD_LE] THEN | |
TRANS_TAC CARD_LE_TRANS `cartesian_product l (s:K->A->bool)` THEN | |
EXPAND_TAC "l" THEN | |
ASM_SIMP_TAC[CARD_LE_CARTESIAN_PRODUCT_SUBINDEX; SUBSET_RESTRICT] THEN | |
TRANS_TAC CARD_LE_TRANS `cartesian_product l (\i:K. (:bool))` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[CARTESIAN_PRODUCT_CONST] THEN | |
TRANS_TAC CARD_LE_TRANS `(:real)` THEN | |
SIMP_TAC[CARD_LT_NUM_REAL; CARD_LT_IMP_LE] THEN | |
TRANS_TAC CARD_LE_TRANS `(:num->bool)` THEN | |
SIMP_TAC[CARD_EQ_REAL; CARD_EQ_IMP_LE] THEN | |
REWRITE_TAC[GSYM CARD_EXP_UNIV] THEN | |
MATCH_MP_TAC CARD_LE_EXP_RIGHT THEN | |
ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE; UNIV_NOT_EMPTY]; | |
MATCH_MP_TAC CARD_LE_CARTESIAN_PRODUCT THEN | |
EXPAND_TAC "l" THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
REWRITE_TAC[GSYM CARD_LE_SING; CARD_NOT_LE] THEN | |
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC | |
(MP_TAC o ISPEC `T` o MATCH_MP CARD_LT_IMP_SUC_LE)) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_TRANS) THEN | |
SIMP_TAC[CARD_LE_CARD; FINITE_BOOL; CARD_ADD_FINITE_EQ; FINITE_SING; | |
CARD_ADD_C; CARD_SING; CARD_BOOL] THEN | |
CONV_TAC NUM_REDUCE_CONV]; | |
X_GEN_TAC `i:K` THEN DISCH_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC `IMAGE (\x:K->A. x i) (cartesian_product k s)` THEN | |
ASM_SIMP_TAC[FINITE_IMAGE; SUBSET; IN_IMAGE] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[cartesian_product; SUBSET; IN_ELIM_THM; IN_IMAGE; | |
EXTENSIONAL; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `z:K->A` THEN STRIP_TAC THEN | |
X_GEN_TAC `x:A` THEN STRIP_TAC THEN | |
EXISTS_TAC `\j. if j = i then x else (z:K->A) j` THEN | |
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]]; | |
STRIP_TAC THEN | |
ABBREV_TAC `l = {i | i IN k /\ ~(?a. (s:K->A->bool) i SUBSET {a})}` THEN | |
SUBGOAL_THEN `?a. !i. i IN k DIFF l ==> (s:K->A->bool) i = {a i}` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM SKOLEM_THM; RIGHT_EXISTS_IMP_THM] THEN | |
X_GEN_TAC `i:K` THEN EXPAND_TAC "l" THEN | |
SIMP_TAC[IN_DIFF; IN_ELIM_THM; IMP_CONJ] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV | |
[CARTESIAN_PRODUCT_EQ_EMPTY]) THEN | |
ASM SET_TAC[]; | |
MATCH_MP_TAC FINITE_SUBSET THEN | |
EXISTS_TAC | |
`{f | IMAGE f l SUBSET UNIONS {(s:K->A->bool) i | i IN l} /\ | |
{i | ~(f i = if i IN k then a i else ARB)} SUBSET l}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC FINITE_RESTRICTED_FUNSPACE THEN | |
ASM_REWRITE_TAC[FINITE_UNIONS; FORALL_IN_GSPEC] THEN | |
ASM_SIMP_TAC[SIMPLE_IMAGE; FINITE_IMAGE] THEN ASM SET_TAC[]; | |
GEN_REWRITE_TAC I [SUBSET] THEN X_GEN_TAC `f:K->A` THEN | |
REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN | |
ASM SET_TAC[]]]]);; | |
let COUNTABLE_CARTESIAN_PRODUCT = prove | |
(`!(s:K->A->bool) k. | |
COUNTABLE(cartesian_product k s) <=> | |
cartesian_product k s = {} \/ | |
FINITE {i | i IN k /\ ~(?a. s i SUBSET {a})} /\ | |
(!i. i IN k ==> COUNTABLE(s i))`, | |
REPEAT GEN_TAC THEN | |
ASM_CASES_TAC `cartesian_product k (s:K->A->bool) = {}` THEN | |
ASM_REWRITE_TAC[COUNTABLE_EMPTY] THEN EQ_TAC THENL | |
[DISCH_TAC THEN CONJ_TAC THENL | |
[UNDISCH_TAC `COUNTABLE(cartesian_product k (s:K->A->bool))` THEN | |
GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN | |
REWRITE_TAC[GSYM INFINITE] THEN DISCH_TAC THEN | |
ABBREV_TAC `l = {i | i IN k /\ ~(?a. (s:K->A->bool) i SUBSET {a})}` THEN | |
REWRITE_TAC[COUNTABLE; ge_c; CARD_NOT_LE] THEN | |
TRANS_TAC CARD_LTE_TRANS `cartesian_product l (s:K->A->bool)` THEN | |
EXPAND_TAC "l" THEN | |
ASM_SIMP_TAC[CARD_LE_CARTESIAN_PRODUCT_SUBINDEX; SUBSET_RESTRICT] THEN | |
TRANS_TAC CARD_LTE_TRANS `cartesian_product l (\i:K. (:bool))` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[CARTESIAN_PRODUCT_CONST] THEN | |
TRANS_TAC CARD_LTE_TRANS `(:real)` THEN | |
REWRITE_TAC[CARD_LT_NUM_REAL] THEN | |
TRANS_TAC CARD_LE_TRANS `(:num->bool)` THEN | |
SIMP_TAC[CARD_EQ_REAL; CARD_EQ_IMP_LE] THEN | |
REWRITE_TAC[GSYM CARD_EXP_UNIV] THEN | |
MATCH_MP_TAC CARD_LE_EXP_RIGHT THEN | |
ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE; UNIV_NOT_EMPTY]; | |
MATCH_MP_TAC CARD_LE_CARTESIAN_PRODUCT THEN | |
EXPAND_TAC "l" THEN REWRITE_TAC[IN_ELIM_THM] THEN | |
REWRITE_TAC[GSYM CARD_LE_SING; CARD_NOT_LE] THEN | |
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC | |
(MP_TAC o ISPEC `T` o MATCH_MP CARD_LT_IMP_SUC_LE)) THEN | |
MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] CARD_LE_TRANS) THEN | |
SIMP_TAC[CARD_LE_CARD; FINITE_BOOL; CARD_ADD_FINITE_EQ; FINITE_SING; | |
CARD_ADD_C; CARD_SING; CARD_BOOL] THEN | |
CONV_TAC NUM_REDUCE_CONV]; | |
X_GEN_TAC `i:K` THEN DISCH_TAC THEN | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC `IMAGE (\x:K->A. x i) (cartesian_product k s)` THEN | |
ASM_SIMP_TAC[COUNTABLE_IMAGE; SUBSET; IN_IMAGE] THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN | |
REWRITE_TAC[cartesian_product; SUBSET; IN_ELIM_THM; IN_IMAGE; | |
EXTENSIONAL; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `z:K->A` THEN STRIP_TAC THEN | |
X_GEN_TAC `x:A` THEN STRIP_TAC THEN | |
EXISTS_TAC `\j. if j = i then x else (z:K->A) j` THEN | |
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[]]; | |
STRIP_TAC THEN | |
ABBREV_TAC `l = {i | i IN k /\ ~(?a. (s:K->A->bool) i SUBSET {a})}` THEN | |
SUBGOAL_THEN `?a. !i. i IN k DIFF l ==> (s:K->A->bool) i = {a i}` | |
STRIP_ASSUME_TAC THENL | |
[REWRITE_TAC[GSYM SKOLEM_THM; RIGHT_EXISTS_IMP_THM] THEN | |
X_GEN_TAC `i:K` THEN EXPAND_TAC "l" THEN | |
SIMP_TAC[IN_DIFF; IN_ELIM_THM; IMP_CONJ] THEN DISCH_TAC THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV | |
[CARTESIAN_PRODUCT_EQ_EMPTY]) THEN | |
ASM SET_TAC[]; | |
MATCH_MP_TAC COUNTABLE_SUBSET THEN | |
EXISTS_TAC | |
`{f | IMAGE f l SUBSET UNIONS {(s:K->A->bool) i | i IN l} /\ | |
{i | ~(f i = if i IN k then a i else ARB)} SUBSET l /\ | |
FINITE {i | ~(f i = if i IN k then a i else ARB)}}` THEN | |
CONJ_TAC THENL | |
[MATCH_MP_TAC COUNTABLE_RESTRICTED_FUNSPACE THEN | |
ASM_SIMP_TAC[FINITE_IMP_COUNTABLE] THEN | |
MATCH_MP_TAC COUNTABLE_UNIONS THEN | |
ASM_SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; FINITE_IMP_COUNTABLE; | |
COUNTABLE_IMAGE] THEN | |
ASM SET_TAC[]; | |
GEN_REWRITE_TAC I [SUBSET] THEN X_GEN_TAC `f:K->A` THEN | |
REWRITE_TAC[cartesian_product; IN_ELIM_THM; EXTENSIONAL] THEN | |
ASM_SIMP_TAC[MESON[FINITE_SUBSET] | |
`FINITE t ==> (s SUBSET t /\ FINITE s <=> s SUBSET t)`] THEN | |
ASM SET_TAC[]]]]);; | |
let CARD_EXP_FINITE_EQ = prove | |
(`!(s:A->bool) (t:B->bool). | |
FINITE(s ^_c t) <=> | |
(?a. s SUBSET {a}) \/ t = {} \/ FINITE s /\ FINITE t`, | |
REPEAT GEN_TAC THEN | |
REWRITE_TAC[GSYM CARTESIAN_PRODUCT_CONST; FINITE_CARTESIAN_PRODUCT] THEN | |
REWRITE_TAC[CARTESIAN_PRODUCT_EQ_EMPTY] THEN | |
ASM_CASES_TAC `t:B->bool = {}` THEN | |
ASM_REWRITE_TAC[NOT_IN_EMPTY; EMPTY_GSPEC; FINITE_EMPTY] THEN | |
ASM_CASES_TAC `?a:A. s SUBSET {a}` THEN | |
ASM_REWRITE_TAC[EMPTY_GSPEC; FINITE_EMPTY; IN_GSPEC] THEN | |
REWRITE_TAC[MESON[] `(?x. P x /\ Q x) <=> ~(!x. P x ==> ~Q x)`] THEN | |
ASM_SIMP_TAC[SET_RULE `~(t = {}) ==> ((!a. a IN t ==> P) <=> P)`] THEN | |
ASM_MESON_TAC[FINITE_SUBSET; FINITE_SING; EMPTY_SUBSET]);; | |
let CARD_EQ_CARTESIAN_PRODUCT_DISJOINT_UNION = prove | |
(`!(f:K->A->bool) k l. | |
DISJOINT k l | |
==> cartesian_product (k UNION l) f =_c | |
cartesian_product k f CROSS cartesian_product l f`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[EQ_C_BIJECTIONS] THEN | |
EXISTS_TAC `\(f:K->A). RESTRICTION k f,RESTRICTION l f` THEN | |
EXISTS_TAC `\((f:K->A),g) x. if x IN k then f x else g x` THEN | |
REWRITE_TAC[FORALL_PAIR_THM; IN_CROSS; PAIR_EQ] THEN | |
REWRITE_TAC[RESTRICTION_IN_CARTESIAN_PRODUCT] THEN | |
REWRITE_TAC[RESTRICTION_UNIQUE; IN_CARTESIAN_PRODUCT] THEN | |
SIMP_TAC[FORALL_IN_UNION] THEN | |
REWRITE_TAC[EXTENSIONAL; IN_ELIM_THM] THEN | |
REWRITE_TAC[FUN_EQ_THM; RESTRICTION] THEN ASM SET_TAC[]);; | |