Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
16.6 kB
(* ========================================================================= *)
(* Isabelle Light *)
(* Isabelle/Procedural style additions and other user-friendly shortcuts. *)
(* *)
(* Petros Papapanagiotou, Jacques Fleuriot *)
(* Center of Intelligent Systems and their Applications *)
(* University of Edinburgh *)
(* 2009-2015 *)
(* ========================================================================= *)
(* FILE : new_tactics.ml *)
(* DESCRIPTION : Various tactics to facilitate procedural-style users. *)
(* Mostly inspired by Isabelle's similar tactics. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Small shortcut that I use quite often. *)
(* ------------------------------------------------------------------------- *)
let GEN_ALL_TAC = REPEAT GEN_TAC;;
(* ------------------------------------------------------------------------- *)
(* ----------------------- SIMP TACTICS START HERE!! ----------------------- *)
(* ------------------------------------------------------------------------- *)
(* ------------------------------------------------------------------------- *)
(* GENERAL_ASM_TAC: (thm list -> thm -> thm) -> thm list -> tactic *)
(* General function that uses a rewrite rule to rewrite the assumptions. *)
(* Each assumption is rewritten using the rest of the assumptions and the *)
(* given list of theorems. *)
(* ------------------------------------------------------------------------- *)
let (GENERAL_ASM_TAC:(thm list -> thm -> thm) -> thm list -> tactic) =
let map_asms l = (* Pairs each assumption with all the rest. *)
let chop_map ls n =
let l,r = chop_list n ls in
last l,map snd (butlast l @ r) in
map (chop_map l) (1--(length l)) in
fun rule thl ->
let apply_rule ((s,th),asm) = LABEL_TAC s (rule (asm @ thl) th) in
fun asl,w ->
(POP_ASSUM_LIST(K ALL_TAC) THEN
MAP_EVERY apply_rule (map_asms (rev asl))) (asl,w);; (* rev ensures correct order *)
(* ------------------------------------------------------------------------- *)
(* Using the above GENERAL_ASSUM_TAC, we define 4 tactics to rewrite *)
(* assumptions based on the 4 rewriting rules available in HOL Light. *)
(* ------------------------------------------------------------------------- *)
let REWRITE_ASM_TAC,ONCE_REWRITE_ASM_TAC,PURE_REWRITE_ASM_TAC,
PURE_ONCE_REWRITE_ASM_TAC =
GENERAL_ASM_TAC REWRITE_RULE,
GENERAL_ASM_TAC ONCE_REWRITE_RULE,
GENERAL_ASM_TAC PURE_REWRITE_RULE,
GENERAL_ASM_TAC PURE_ONCE_REWRITE_RULE;;
(* ------------------------------------------------------------------------- *)
(* And for simplification. *)
(* ------------------------------------------------------------------------- *)
let SIMP_ASM_TAC,ONCE_SIMP_ASM_TAC,PURE_SIMP_ASM_TAC =
GENERAL_ASM_TAC SIMP_RULE,
GENERAL_ASM_TAC ONCE_SIMP_RULE,
GENERAL_ASM_TAC PURE_SIMP_RULE;;
(* ------------------------------------------------------------------------- *)
(* FULL_REWRITE_TAC : thm list -> tactic *)
(* simp : thm list -> tactic *)
(* Similar to Isabelle's simp. Rewrites assumptions then rewrites goal *)
(* using the assumptions. *)
(* ------------------------------------------------------------------------- *)
let FULL_REWRITE_TAC thl =
REWRITE_ASM_TAC thl THEN ASM_SIMP_TAC thl;;
let simp = FULL_REWRITE_TAC;;
(* ------------------------------------------------------------------------- *)
(* FULL_SIMP_TAC : thm list -> tactic *)
(* Hybrid simplifier. Uses HOL Light's SIMP_TAC then FULL_REWRITE_TAC. *)
(* ------------------------------------------------------------------------- *)
let FULL_SIMP_TAC thl =
SIMP_TAC thl THEN REWRITE_ASM_TAC thl THEN ASM_REWRITE_TAC thl;;
(* ------------------------------------------------------------------------- *)
(* assumption (tactic): *)
(* Shortcut to match an assumption to the goal as Isabelle's "assumption". *)
(* ------------------------------------------------------------------------- *)
let assumption = FIRST_ASSUM MATCH_ACCEPT_TAC;;
(* ------------------------------------------------------------------------- *)
(* ALL_UNIFY_ACCEPT_TAC (term list -> thm -> tactic): *)
(* Altered UNIFY_ACCEPT_TAC. Uses INSTANTIATE_ALL instead of INSTANTIATE. *)
(* ------------------------------------------------------------------------- *)
(* This allows for some valid instantiations that weren't otherwise allowed. *)
(* eg After using allE, the `a` metavariable can't be instantiated otherwise.*)
(* ------------------------------------------------------------------------- *)
let ALL_UNIFY_ACCEPT_TAC mvs th (asl,w) =
let insts = term_unify mvs (concl th) w in
([],insts),[],
let th' = INSTANTIATE_ALL insts th in
fun i [] -> INSTANTIATE_ALL i th';;
(* ------------------------------------------------------------------------- *)
(* meta_assumption (term list -> tactic): *)
(* Shortcut to match an assumption to the goal as Isabelle's "assumption". *)
(* This version also tries unification by instantiation of meta-variables *)
(* which, unfortunately, need to be given manually in a list. *)
(* ------------------------------------------------------------------------- *)
(* Invalid instantiations may be produced. *)
(* eg g `!x:num. (?a:num. R a x) ==> (?y. R y x)`;; *)
(* e (GEN_TAC THEN DISCH_TAC);; *)
(* e (X_META_EXISTS_TAC `c:num`);; *)
(* e (FIRST_X_ASSUM (X_CHOOSE_TAC `b:num`));; *)
(* e (meta_assumption [`c:num`]);; *)
(* This succeeds but top_thm() is unable to reconstruct the theorem. *)
(* b is not free in the goal when X_CHOOSE_TAC is applied but it is during *)
(* justification because the free c has been instantiated to b. *)
(* ------------------------------------------------------------------------- *)
let meta_assumption mvs = (FIRST_ASSUM MATCH_ACCEPT_TAC) ORELSE
(FIRST_ASSUM (ALL_UNIFY_ACCEPT_TAC mvs));;
(* ------------------------------------------------------------------------- *)
(* Shortcut for interactive proofs so that you don't have to enumerate *)
(* metavariables. *)
(* ------------------------------------------------------------------------- *)
let ema () = (e o meta_assumption o top_metas o p) () ;;
(* ------------------------------------------------------------------------- *)
(* X_MATCH_GEN_TAC : (term -> tactic) *)
(* X_MATCH_CHOOSE_TAC : (term -> thm_tactic) *)
(* MATCH_EXISTS_TAC : (term -> tactic) *)
(* Versions of X_GEN_TAC, X_CHOOSE_TAC, and EXISTS_TAC with type matching. *)
(* ------------------------------------------------------------------------- *)
(* If the variable given as an argument has a vartype then its type is *)
(* instantiated to the type of the existentially quantified variable. *)
(* Usefull so that the user need not specify the type for the given variable.*)
(* It is still acceptable if the user does specify it. *)
(* ------------------------------------------------------------------------- *)
let (X_MATCH_GEN_TAC: term -> tactic),
(X_MATCH_CHOOSE_TAC: term -> thm_tactic),
(MATCH_EXISTS_TAC: term -> tactic) =
let tactic_type_compatibility_check pfx e g =
let et = type_of e in
let g' = try_type et g in
let gt = type_of g' in
if et = gt then g'
else failwith(pfx ^ ": expected type :"^string_of_type et^" but got :"^
string_of_type gt) in
let X_MATCH_GEN_TAC x' =
if not(is_var x') then failwith "X_GEN_TAC: not a variable" else
fun (asl,w) ->
let x,bod = try dest_forall w
with Failure _ -> failwith "X_GEN_TAC: Not universally quantified" in
let x'' = tactic_type_compatibility_check "X_GEN_TAC" x x' in
let avoids = itlist (union o thm_frees o snd) asl (frees w) in
if mem x'' avoids then failwith "X_GEN_TAC: invalid variable" else
let afn = CONV_RULE(GEN_ALPHA_CONV x) in
null_meta,[asl,vsubst[x'',x] bod],
fun i [th] -> afn (GEN x'' th)
and X_MATCH_CHOOSE_TAC x' xth =
let xtm = concl xth in
let x,bod = try dest_exists xtm
with Failure _ -> failwith "X_CHOOSE_TAC: not existential" in
let x'' = tactic_type_compatibility_check "X_CHOOSE_TAC" x x' in
let pat = vsubst[x'',x] bod in
let xth' = ASSUME pat in
fun (asl,w) ->
let avoids = itlist (union o frees o concl o snd) asl
(union (frees w) (thm_frees xth)) in
if mem x'' avoids then failwith "X_CHOOSE_TAC: invalid variable" else
null_meta,[("",xth')::asl,w],
fun i [th] -> CHOOSE(x'',INSTANTIATE_ALL i xth) th
and MATCH_EXISTS_TAC t (asl,w) =
let v,bod = try dest_exists w with Failure _ ->
failwith "EXISTS_TAC: Goal not existentially quantified" in
let t' = tactic_type_compatibility_check "EXISTS_TAC" v t in
null_meta,[asl,vsubst[t',v] bod],
fun i [th] -> EXISTS (instantiate i w,instantiate i t') th in
X_MATCH_GEN_TAC,X_MATCH_CHOOSE_TAC,MATCH_EXISTS_TAC;;
(* ------------------------------------------------------------------------- *)
(* exE : (term -> tactic) *)
(* Existential elimination tactic (since we are unable to accommodate *)
(* erule exE with the current meta_rule system because of lack of meta-level *)
(* quantification). *)
(* ------------------------------------------------------------------------- *)
let exE = FIRST_X_ASSUM o X_MATCH_CHOOSE_TAC;;
(* ------------------------------------------------------------------------- *)
(* allI : (term -> tactic) *)
(* Universal introduction tactic (since we are unable to accommodate *)
(* rule allI with the current meta_rule system because of lack of meta-level *)
(* quantification). *)
(* ------------------------------------------------------------------------- *)
(* (+) We can use X_GEN_TAC to allow the user to give their own term, but *)
(* this is rarely useful in procedural style proofs. *)
(* ------------------------------------------------------------------------- *)
let allI = GEN_TAC;;
(* ------------------------------------------------------------------------- *)
(* qed : (unit -> thm) *)
(* Reconstructs the theorem at the end of an interactive proof. *)
(* May fail if an incorrect metavariable instantiation has occured during the*)
(* proof. *)
(* ------------------------------------------------------------------------- *)
(* (+) There are plans to upgrade this for better accommodation of proofs *)
(* containing meta-level implication (see meta_rules.ml and gmm). *)
(* ------------------------------------------------------------------------- *)
let qed = top_thm;;
(* ------------------------------------------------------------------------- *)
(* ASM_STRUCT_CASES_TAC : (thm_tactic) *)
(* Replacement/fix of STRUCT_CASES_TAC where each case is added as an *)
(* assumption like ASM_CASES_TAC does for booleans. *)
(* ------------------------------------------------------------------------- *)
(* John Harrison adapted the HOL Light version as well now so this is *)
(* redundant, but left here for historical reasons. *)
(* ------------------------------------------------------------------------- *)
let ASM_STRUCT_CASES_TAC =
REPEAT_TCL STRIP_THM_THEN ASSUME_TAC;;
(* ------------------------------------------------------------------------- *)
(* case_tac : (term -> tactic) *)
(* Isabelle's case_tac for splitting cases. *)
(* ------------------------------------------------------------------------- *)
(* We instantiate type variables in the given term in an attempt to match *)
(* free variables in the term with free variables of the same name in the *)
(* goal. This helps so that the user does not need to give explicit types. *)
(* ------------------------------------------------------------------------- *)
let (case_tac:term->tactic) =
let trymatch = fun v1 v2 ->
match (term_match [v2] v1 v2) with
[],[],ti -> ti
| _ -> failwith "" in
fun tm ((_,w) as g) ->
let gvs = gl_frees g
and tvs = frees tm in
let subs = mapfilter (fun x -> tryfind (trymatch x) gvs) tvs in
let tm' = inst (flat subs) tm in
let ty = (fst o dest_type o type_of) tm' in
let thm = try (cases ty)
with Failure _ -> failwith ("case_tac: Failed to find cases theorem for type \"" ^ ty ^ "\".") in
ASM_STRUCT_CASES_TAC (ISPEC tm' thm) g;;
(* ------------------------------------------------------------------------- *)
(* gen_case_tac : tactic *)
(* Case split on the leading universal quantifier of the goal. *)
(* ------------------------------------------------------------------------- *)
let (gen_case_tac:tactic) =
fun ((_,w) as g) ->
case_tac ((fst o dest_forall) w) g;;
(* ------------------------------------------------------------------------- *)
(* induct_tac : tactic *)
(* Induction over any inductive type. *)
(* ------------------------------------------------------------------------- *)
(* John Harrison introduces custom induction tactics for each type (such as *)
(* LIST_INDUCT_TAC). This is because of the inconvenient, automated naming *)
(* of variables in the induction theorems generated by define_type and *)
(* because you can select to get rid of universal quantifiers of constructor *)
(* parameters automatically. This function is useful if such a custom tactic *)
(* does not exist. *)
(* ------------------------------------------------------------------------- *)
let (induct_tac:tactic) =
fun ((_,w) as g) ->
let tyname = (fst o dest_type o type_of o fst o dest_forall) w in
let thm = try (snd3 (assoc tyname (!inductive_type_store)))
with Failure _ -> failwith ("induct_tac: Type " ^ tyname ^ " is not inductive.") in
(MATCH_MP_TAC thm THEN REPEAT CONJ_TAC) g;;
(* ------------------------------------------------------------------------- *)
(* subgoal_tac : (term -> tactic) *)
(* Introduces a new subgoal which gets added as an assumption. *)
(* Isabelle's subgoal_tac. *)
(* ------------------------------------------------------------------------- *)
let subgoal_tac = fun tm -> SUBGOAL_THEN tm ASSUME_TAC;;
(* ------------------------------------------------------------------------- *)
(* meson : (thm list -> tactic) *)
(* Lower-case shortcut for ASM_MESON_TAC *)
(* ------------------------------------------------------------------------- *)
let meson = ASM_MESON_TAC;;