Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Isabelle Light *) | |
(* Isabelle/Procedural style additions and other user-friendly shortcuts. *) | |
(* *) | |
(* Petros Papapanagiotou, Jacques Fleuriot *) | |
(* Center of Intelligent Systems and their Applications *) | |
(* University of Edinburgh *) | |
(* 2009-2015 *) | |
(* ========================================================================= *) | |
(* FILE : new_tactics.ml *) | |
(* DESCRIPTION : Various tactics to facilitate procedural-style users. *) | |
(* Mostly inspired by Isabelle's similar tactics. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Small shortcut that I use quite often. *) | |
(* ------------------------------------------------------------------------- *) | |
let GEN_ALL_TAC = REPEAT GEN_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* ----------------------- SIMP TACTICS START HERE!! ----------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* ------------------------------------------------------------------------- *) | |
(* GENERAL_ASM_TAC: (thm list -> thm -> thm) -> thm list -> tactic *) | |
(* General function that uses a rewrite rule to rewrite the assumptions. *) | |
(* Each assumption is rewritten using the rest of the assumptions and the *) | |
(* given list of theorems. *) | |
(* ------------------------------------------------------------------------- *) | |
let (GENERAL_ASM_TAC:(thm list -> thm -> thm) -> thm list -> tactic) = | |
let map_asms l = (* Pairs each assumption with all the rest. *) | |
let chop_map ls n = | |
let l,r = chop_list n ls in | |
last l,map snd (butlast l @ r) in | |
map (chop_map l) (1--(length l)) in | |
fun rule thl -> | |
let apply_rule ((s,th),asm) = LABEL_TAC s (rule (asm @ thl) th) in | |
fun asl,w -> | |
(POP_ASSUM_LIST(K ALL_TAC) THEN | |
MAP_EVERY apply_rule (map_asms (rev asl))) (asl,w);; (* rev ensures correct order *) | |
(* ------------------------------------------------------------------------- *) | |
(* Using the above GENERAL_ASSUM_TAC, we define 4 tactics to rewrite *) | |
(* assumptions based on the 4 rewriting rules available in HOL Light. *) | |
(* ------------------------------------------------------------------------- *) | |
let REWRITE_ASM_TAC,ONCE_REWRITE_ASM_TAC,PURE_REWRITE_ASM_TAC, | |
PURE_ONCE_REWRITE_ASM_TAC = | |
GENERAL_ASM_TAC REWRITE_RULE, | |
GENERAL_ASM_TAC ONCE_REWRITE_RULE, | |
GENERAL_ASM_TAC PURE_REWRITE_RULE, | |
GENERAL_ASM_TAC PURE_ONCE_REWRITE_RULE;; | |
(* ------------------------------------------------------------------------- *) | |
(* And for simplification. *) | |
(* ------------------------------------------------------------------------- *) | |
let SIMP_ASM_TAC,ONCE_SIMP_ASM_TAC,PURE_SIMP_ASM_TAC = | |
GENERAL_ASM_TAC SIMP_RULE, | |
GENERAL_ASM_TAC ONCE_SIMP_RULE, | |
GENERAL_ASM_TAC PURE_SIMP_RULE;; | |
(* ------------------------------------------------------------------------- *) | |
(* FULL_REWRITE_TAC : thm list -> tactic *) | |
(* simp : thm list -> tactic *) | |
(* Similar to Isabelle's simp. Rewrites assumptions then rewrites goal *) | |
(* using the assumptions. *) | |
(* ------------------------------------------------------------------------- *) | |
let FULL_REWRITE_TAC thl = | |
REWRITE_ASM_TAC thl THEN ASM_SIMP_TAC thl;; | |
let simp = FULL_REWRITE_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* FULL_SIMP_TAC : thm list -> tactic *) | |
(* Hybrid simplifier. Uses HOL Light's SIMP_TAC then FULL_REWRITE_TAC. *) | |
(* ------------------------------------------------------------------------- *) | |
let FULL_SIMP_TAC thl = | |
SIMP_TAC thl THEN REWRITE_ASM_TAC thl THEN ASM_REWRITE_TAC thl;; | |
(* ------------------------------------------------------------------------- *) | |
(* assumption (tactic): *) | |
(* Shortcut to match an assumption to the goal as Isabelle's "assumption". *) | |
(* ------------------------------------------------------------------------- *) | |
let assumption = FIRST_ASSUM MATCH_ACCEPT_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* ALL_UNIFY_ACCEPT_TAC (term list -> thm -> tactic): *) | |
(* Altered UNIFY_ACCEPT_TAC. Uses INSTANTIATE_ALL instead of INSTANTIATE. *) | |
(* ------------------------------------------------------------------------- *) | |
(* This allows for some valid instantiations that weren't otherwise allowed. *) | |
(* eg After using allE, the `a` metavariable can't be instantiated otherwise.*) | |
(* ------------------------------------------------------------------------- *) | |
let ALL_UNIFY_ACCEPT_TAC mvs th (asl,w) = | |
let insts = term_unify mvs (concl th) w in | |
([],insts),[], | |
let th' = INSTANTIATE_ALL insts th in | |
fun i [] -> INSTANTIATE_ALL i th';; | |
(* ------------------------------------------------------------------------- *) | |
(* meta_assumption (term list -> tactic): *) | |
(* Shortcut to match an assumption to the goal as Isabelle's "assumption". *) | |
(* This version also tries unification by instantiation of meta-variables *) | |
(* which, unfortunately, need to be given manually in a list. *) | |
(* ------------------------------------------------------------------------- *) | |
(* Invalid instantiations may be produced. *) | |
(* eg g `!x:num. (?a:num. R a x) ==> (?y. R y x)`;; *) | |
(* e (GEN_TAC THEN DISCH_TAC);; *) | |
(* e (X_META_EXISTS_TAC `c:num`);; *) | |
(* e (FIRST_X_ASSUM (X_CHOOSE_TAC `b:num`));; *) | |
(* e (meta_assumption [`c:num`]);; *) | |
(* This succeeds but top_thm() is unable to reconstruct the theorem. *) | |
(* b is not free in the goal when X_CHOOSE_TAC is applied but it is during *) | |
(* justification because the free c has been instantiated to b. *) | |
(* ------------------------------------------------------------------------- *) | |
let meta_assumption mvs = (FIRST_ASSUM MATCH_ACCEPT_TAC) ORELSE | |
(FIRST_ASSUM (ALL_UNIFY_ACCEPT_TAC mvs));; | |
(* ------------------------------------------------------------------------- *) | |
(* Shortcut for interactive proofs so that you don't have to enumerate *) | |
(* metavariables. *) | |
(* ------------------------------------------------------------------------- *) | |
let ema () = (e o meta_assumption o top_metas o p) () ;; | |
(* ------------------------------------------------------------------------- *) | |
(* X_MATCH_GEN_TAC : (term -> tactic) *) | |
(* X_MATCH_CHOOSE_TAC : (term -> thm_tactic) *) | |
(* MATCH_EXISTS_TAC : (term -> tactic) *) | |
(* Versions of X_GEN_TAC, X_CHOOSE_TAC, and EXISTS_TAC with type matching. *) | |
(* ------------------------------------------------------------------------- *) | |
(* If the variable given as an argument has a vartype then its type is *) | |
(* instantiated to the type of the existentially quantified variable. *) | |
(* Usefull so that the user need not specify the type for the given variable.*) | |
(* It is still acceptable if the user does specify it. *) | |
(* ------------------------------------------------------------------------- *) | |
let (X_MATCH_GEN_TAC: term -> tactic), | |
(X_MATCH_CHOOSE_TAC: term -> thm_tactic), | |
(MATCH_EXISTS_TAC: term -> tactic) = | |
let tactic_type_compatibility_check pfx e g = | |
let et = type_of e in | |
let g' = try_type et g in | |
let gt = type_of g' in | |
if et = gt then g' | |
else failwith(pfx ^ ": expected type :"^string_of_type et^" but got :"^ | |
string_of_type gt) in | |
let X_MATCH_GEN_TAC x' = | |
if not(is_var x') then failwith "X_GEN_TAC: not a variable" else | |
fun (asl,w) -> | |
let x,bod = try dest_forall w | |
with Failure _ -> failwith "X_GEN_TAC: Not universally quantified" in | |
let x'' = tactic_type_compatibility_check "X_GEN_TAC" x x' in | |
let avoids = itlist (union o thm_frees o snd) asl (frees w) in | |
if mem x'' avoids then failwith "X_GEN_TAC: invalid variable" else | |
let afn = CONV_RULE(GEN_ALPHA_CONV x) in | |
null_meta,[asl,vsubst[x'',x] bod], | |
fun i [th] -> afn (GEN x'' th) | |
and X_MATCH_CHOOSE_TAC x' xth = | |
let xtm = concl xth in | |
let x,bod = try dest_exists xtm | |
with Failure _ -> failwith "X_CHOOSE_TAC: not existential" in | |
let x'' = tactic_type_compatibility_check "X_CHOOSE_TAC" x x' in | |
let pat = vsubst[x'',x] bod in | |
let xth' = ASSUME pat in | |
fun (asl,w) -> | |
let avoids = itlist (union o frees o concl o snd) asl | |
(union (frees w) (thm_frees xth)) in | |
if mem x'' avoids then failwith "X_CHOOSE_TAC: invalid variable" else | |
null_meta,[("",xth')::asl,w], | |
fun i [th] -> CHOOSE(x'',INSTANTIATE_ALL i xth) th | |
and MATCH_EXISTS_TAC t (asl,w) = | |
let v,bod = try dest_exists w with Failure _ -> | |
failwith "EXISTS_TAC: Goal not existentially quantified" in | |
let t' = tactic_type_compatibility_check "EXISTS_TAC" v t in | |
null_meta,[asl,vsubst[t',v] bod], | |
fun i [th] -> EXISTS (instantiate i w,instantiate i t') th in | |
X_MATCH_GEN_TAC,X_MATCH_CHOOSE_TAC,MATCH_EXISTS_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* exE : (term -> tactic) *) | |
(* Existential elimination tactic (since we are unable to accommodate *) | |
(* erule exE with the current meta_rule system because of lack of meta-level *) | |
(* quantification). *) | |
(* ------------------------------------------------------------------------- *) | |
let exE = FIRST_X_ASSUM o X_MATCH_CHOOSE_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* allI : (term -> tactic) *) | |
(* Universal introduction tactic (since we are unable to accommodate *) | |
(* rule allI with the current meta_rule system because of lack of meta-level *) | |
(* quantification). *) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) We can use X_GEN_TAC to allow the user to give their own term, but *) | |
(* this is rarely useful in procedural style proofs. *) | |
(* ------------------------------------------------------------------------- *) | |
let allI = GEN_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* qed : (unit -> thm) *) | |
(* Reconstructs the theorem at the end of an interactive proof. *) | |
(* May fail if an incorrect metavariable instantiation has occured during the*) | |
(* proof. *) | |
(* ------------------------------------------------------------------------- *) | |
(* (+) There are plans to upgrade this for better accommodation of proofs *) | |
(* containing meta-level implication (see meta_rules.ml and gmm). *) | |
(* ------------------------------------------------------------------------- *) | |
let qed = top_thm;; | |
(* ------------------------------------------------------------------------- *) | |
(* ASM_STRUCT_CASES_TAC : (thm_tactic) *) | |
(* Replacement/fix of STRUCT_CASES_TAC where each case is added as an *) | |
(* assumption like ASM_CASES_TAC does for booleans. *) | |
(* ------------------------------------------------------------------------- *) | |
(* John Harrison adapted the HOL Light version as well now so this is *) | |
(* redundant, but left here for historical reasons. *) | |
(* ------------------------------------------------------------------------- *) | |
let ASM_STRUCT_CASES_TAC = | |
REPEAT_TCL STRIP_THM_THEN ASSUME_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* case_tac : (term -> tactic) *) | |
(* Isabelle's case_tac for splitting cases. *) | |
(* ------------------------------------------------------------------------- *) | |
(* We instantiate type variables in the given term in an attempt to match *) | |
(* free variables in the term with free variables of the same name in the *) | |
(* goal. This helps so that the user does not need to give explicit types. *) | |
(* ------------------------------------------------------------------------- *) | |
let (case_tac:term->tactic) = | |
let trymatch = fun v1 v2 -> | |
match (term_match [v2] v1 v2) with | |
[],[],ti -> ti | |
| _ -> failwith "" in | |
fun tm ((_,w) as g) -> | |
let gvs = gl_frees g | |
and tvs = frees tm in | |
let subs = mapfilter (fun x -> tryfind (trymatch x) gvs) tvs in | |
let tm' = inst (flat subs) tm in | |
let ty = (fst o dest_type o type_of) tm' in | |
let thm = try (cases ty) | |
with Failure _ -> failwith ("case_tac: Failed to find cases theorem for type \"" ^ ty ^ "\".") in | |
ASM_STRUCT_CASES_TAC (ISPEC tm' thm) g;; | |
(* ------------------------------------------------------------------------- *) | |
(* gen_case_tac : tactic *) | |
(* Case split on the leading universal quantifier of the goal. *) | |
(* ------------------------------------------------------------------------- *) | |
let (gen_case_tac:tactic) = | |
fun ((_,w) as g) -> | |
case_tac ((fst o dest_forall) w) g;; | |
(* ------------------------------------------------------------------------- *) | |
(* induct_tac : tactic *) | |
(* Induction over any inductive type. *) | |
(* ------------------------------------------------------------------------- *) | |
(* John Harrison introduces custom induction tactics for each type (such as *) | |
(* LIST_INDUCT_TAC). This is because of the inconvenient, automated naming *) | |
(* of variables in the induction theorems generated by define_type and *) | |
(* because you can select to get rid of universal quantifiers of constructor *) | |
(* parameters automatically. This function is useful if such a custom tactic *) | |
(* does not exist. *) | |
(* ------------------------------------------------------------------------- *) | |
let (induct_tac:tactic) = | |
fun ((_,w) as g) -> | |
let tyname = (fst o dest_type o type_of o fst o dest_forall) w in | |
let thm = try (snd3 (assoc tyname (!inductive_type_store))) | |
with Failure _ -> failwith ("induct_tac: Type " ^ tyname ^ " is not inductive.") in | |
(MATCH_MP_TAC thm THEN REPEAT CONJ_TAC) g;; | |
(* ------------------------------------------------------------------------- *) | |
(* subgoal_tac : (term -> tactic) *) | |
(* Introduces a new subgoal which gets added as an assumption. *) | |
(* Isabelle's subgoal_tac. *) | |
(* ------------------------------------------------------------------------- *) | |
let subgoal_tac = fun tm -> SUBGOAL_THEN tm ASSUME_TAC;; | |
(* ------------------------------------------------------------------------- *) | |
(* meson : (thm list -> tactic) *) | |
(* Lower-case shortcut for ASM_MESON_TAC *) | |
(* ------------------------------------------------------------------------- *) | |
let meson = ASM_MESON_TAC;; | |