Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* The general notion of an elliptic curve, in the basic Weierstrass form. *) | |
(* We use the option type to augment it with the "point at infinity" NONE. *) | |
(* Follows Washington "Elliptic Curves, Number Theory and Cryptography" p14. *) | |
(* *) | |
(* y^2 = x^3 + a * x + b over some field F *) | |
(* *) | |
(* This isn't general enough for working over characteristics 2 and 3. *) | |
(* ========================================================================= *) | |
needs "EC/misc.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic definitions and naive cardinality bounds. *) | |
(* ------------------------------------------------------------------------- *) | |
let weierstrass_point = define | |
`(weierstrass_point f NONE <=> T) /\ | |
(weierstrass_point f (SOME(x:A,y)) <=> | |
x IN ring_carrier f /\ y IN ring_carrier f)`;; | |
let weierstrass_curve = define | |
`(weierstrass_curve(f:A ring,a:A,b:A) NONE <=> T) /\ | |
(weierstrass_curve(f:A ring,a:A,b:A) (SOME(x,y)) <=> | |
x IN ring_carrier f /\ y IN ring_carrier f /\ | |
ring_pow f y 2 = | |
ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a x) b))`;; | |
let weierstrass_neg = define | |
`(weierstrass_neg (f:A ring,a:A,b:A) NONE = NONE) /\ | |
(weierstrass_neg (f:A ring,a:A,b:A) (SOME(x:A,y)) = SOME(x,ring_neg f y))`;; | |
let weierstrass_add = define | |
`(!y. weierstrass_add (f:A ring,a:A,b:A) NONE y = y) /\ | |
(!x. weierstrass_add (f:A ring,a:A,b:A) x NONE = x) /\ | |
(!x1 y1 x2 y2. | |
weierstrass_add (f:A ring,a:A,b:A) (SOME(x1,y1)) (SOME(x2,y2)) = | |
if x1 = x2 then | |
if y1 = y2 /\ ~(y1 = ring_0 f) then | |
let m = ring_div f | |
(ring_add f (ring_mul f (ring_of_num f 3) (ring_pow f x1 2)) a) | |
(ring_mul f (ring_of_num f 2) y1) in | |
let x3 = ring_sub f (ring_pow f m 2) | |
(ring_mul f (ring_of_num f 2) x1) in | |
let y3 = ring_sub f (ring_mul f m (ring_sub f x1 x3)) y1 in | |
SOME(x3,y3) | |
else NONE | |
else | |
let m = ring_div f (ring_sub f y2 y1) (ring_sub f x2 x1) in | |
let x3 = ring_sub f (ring_pow f m 2) | |
(ring_add f x1 x2) in | |
let y3 = ring_sub f (ring_mul f m (ring_sub f x1 x3)) y1 in | |
SOME(x3,y3))`;; | |
let weierstrass_nonsingular = define | |
`weierstrass_nonsingular (f:A ring,a:A,b:A) <=> | |
~(ring_add f (ring_mul f (ring_of_num f 4) (ring_pow f a 3)) | |
(ring_mul f (ring_of_num f 27) (ring_pow f b 2)) = | |
ring_0 f)`;; | |
let weierstrass_group = define | |
`weierstrass_group (f:A ring,a:A,b:A) = | |
group(weierstrass_curve(f,a,b), | |
NONE, | |
weierstrass_neg(f,a,b), | |
weierstrass_add(f,a,b))`;; | |
let (FINITE_WEIERSTRASS_CURVE,CARD_BOUND_WEIERSTRASS_CURVE) = | |
(CONJ_PAIR o prove) | |
(`(!f a b:A. field f /\ FINITE(ring_carrier f) | |
==> FINITE(weierstrass_curve(f,a,b))) /\ | |
(!f a b:A. field f /\ FINITE(ring_carrier f) | |
==> CARD(weierstrass_curve(f,a,b)) | |
<= 2 * CARD(ring_carrier f) + 1)`, | |
REWRITE_TAC[AND_FORALL_THM] THEN REPEAT GEN_TAC THEN | |
REWRITE_TAC[TAUT `(p ==> q) /\ (p ==> r) <=> p ==> q /\ r`] THEN | |
STRIP_TAC THEN MATCH_MP_TAC FINITE_CARD_LE_SUBSET THEN EXISTS_TAC | |
`IMAGE SOME | |
{(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f /\ | |
ring_pow f y 2 = | |
ring_add f (ring_pow f x 3) (ring_add f (ring_mul f a x) b)} | |
UNION {NONE}` THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[weierstrass_curve; SUBSET; FORALL_OPTION_THM; | |
IN_UNION; IN_SING; IN_IMAGE; option_INJ; FORALL_PAIR_THM; | |
IN_ELIM_PAIR_THM; UNWIND_THM1] THEN | |
REWRITE_TAC[option_DISTINCT; IN_CROSS] THEN REWRITE_TAC[IN] THEN | |
REWRITE_TAC[weierstrass_curve] THEN SIMP_TAC[IN]; | |
MATCH_MP_TAC FINITE_CARD_LE_UNION] THEN | |
REWRITE_TAC[FINITE_SING; CARD_SING; LE_REFL] THEN | |
MATCH_MP_TAC FINITE_CARD_LE_IMAGE THEN | |
MATCH_MP_TAC FINITE_QUADRATIC_CURVE THEN | |
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Proof of the group properties. This is just done by algebraic brute *) | |
(* force except for the use of ASSOCIATIVITY_LEMMA to reduce the explosion *) | |
(* of case distinctions. *) | |
(* ------------------------------------------------------------------------- *) | |
let WEIERSTRASS_CURVE_IMP_POINT = prove | |
(`!f a b p. weierstrass_curve(f,a,b) p ==> weierstrass_point f p`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
SIMP_TAC[weierstrass_curve; weierstrass_point]);; | |
let WEIERSTRASS_POINT_NEG = prove | |
(`!(f:A ring) a b p. | |
weierstrass_point f p | |
==> weierstrass_point f (weierstrass_neg (f,a,b) p)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
SIMP_TAC[weierstrass_neg; weierstrass_point; RING_NEG]);; | |
let WEIERSTRASS_POINT_ADD = prove | |
(`!(f:A ring) a b p q. | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_point f p /\ weierstrass_point f q | |
==> weierstrass_point f (weierstrass_add (f,a,b) p q)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
SIMP_TAC[weierstrass_add; weierstrass_point; LET_DEF; LET_END_DEF] THEN | |
REPEAT STRIP_TAC THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_point]) THEN | |
REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; | |
let WEIERSTRASS_CURVE_0 = prove | |
(`!f a b:A. weierstrass_curve(f,a,b) NONE`, | |
REWRITE_TAC[weierstrass_curve]);; | |
let WEIERSTRASS_CURVE_NEG = prove | |
(`!f a (b:A) p. | |
integral_domain f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve(f,a,b) p | |
==> weierstrass_curve(f,a,b) (weierstrass_neg (f,a,b) p)`, | |
SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_NEG; | |
weierstrass_curve; weierstrass_neg] THEN | |
REPEAT GEN_TAC THEN CONV_TAC INTEGRAL_DOMAIN_RULE);; | |
let WEIERSTRASS_CURVE_ADD = prove | |
(`!f a (b:A) p q. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve(f,a,b) p /\ weierstrass_curve(f,a,b) q | |
==> weierstrass_curve(f,a,b) (weierstrass_add (f,a,b) p q)`, | |
REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPLICATE_TAC 3 GEN_TAC THEN | |
SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; | |
weierstrass_curve; weierstrass_add] THEN | |
MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN | |
REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THENL | |
[CONV_TAC(TOP_DEPTH_CONV let_CONV) THEN | |
REWRITE_TAC[weierstrass_curve] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
SUBGOAL_THEN `~(ring_of_num f 2:A = ring_0 f)` ASSUME_TAC THENL | |
[FIELD_TAC; RING_PULL_DIV_TAC THEN RING_TAC]; | |
ALL_TAC; ALL_TAC; ALL_TAC] THEN | |
REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_curve] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let WEIERSTRASS_ADD_LNEG = prove | |
(`!f a (b:A) p. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve(f,a,b) p | |
==> weierstrass_add(f,a,b) (weierstrass_neg (f,a,b) p) p = NONE`, | |
REWRITE_TAC[FIELD_CHAR_NOT2] THEN REPLICATE_TAC 3 GEN_TAC THEN | |
SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; | |
weierstrass_curve; weierstrass_neg; weierstrass_add] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN | |
REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN | |
REPEAT LET_TAC THEN REWRITE_TAC[option_DISTINCT] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC);; | |
let WEIERSTRASS_ADD_SYM = prove | |
(`!f a (b:A) p q. | |
field f /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve(f,a,b) p /\ weierstrass_curve(f,a,b) q | |
==> weierstrass_add (f,a,b) p q = weierstrass_add (f,a,b) q p`, | |
REPLICATE_TAC 3 GEN_TAC THEN | |
SIMP_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; RING_ADD; | |
weierstrass_curve; weierstrass_add] THEN | |
MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN | |
REPEAT(FIRST_X_ASSUM(DISJ_CASES_THEN ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN | |
REPEAT LET_TAC THEN | |
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC);; | |
let WEIERSTRASS_ADD_ASSOC = prove | |
(`!f a (b:A) p q r. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
weierstrass_nonsingular(f,a,b) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve(f,a,b) p /\ | |
weierstrass_curve(f,a,b) q /\ | |
weierstrass_curve(f,a,b) r | |
==> weierstrass_add (f,a,b) p (weierstrass_add (f,a,b) q r) = | |
weierstrass_add (f,a,b) (weierstrass_add (f,a,b) p q) r`, | |
let assoclemma = prove | |
(`!f (a:A) b x1 y1 x2 y2. | |
field f /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve(f,a,b) (SOME(x1,y1)) /\ | |
weierstrass_curve(f,a,b) (SOME(x2,y2)) | |
==> (~(SOME(x2,y2) = SOME(x1,y1)) /\ | |
~(SOME(x2,y2) = weierstrass_neg (f,a,b) (SOME(x1,y1))) <=> | |
~(x1 = x2))`, | |
REWRITE_TAC[weierstrass_curve; weierstrass_neg; option_INJ; PAIR_EQ] THEN | |
FIELD_TAC) in | |
REWRITE_TAC[FIELD_CHAR_NOT23] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN | |
X_GEN_TAC `f:A ring` THEN REPEAT DISCH_TAC THEN | |
MAP_EVERY X_GEN_TAC [`a:A`; `b:A`] THEN REPEAT DISCH_TAC THEN | |
REWRITE_TAC[IMP_IMP; GSYM CONJ_ASSOC; RIGHT_IMP_FORALL_THM] THEN | |
MATCH_MP_TAC ASSOCIATIVITY_LEMMA THEN | |
MAP_EVERY EXISTS_TAC [`weierstrass_neg(f,a:A,b)`; `NONE:(A#A)option`] THEN | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC(CONJUNCT1 weierstrass_curve :: CONJUNCT1 weierstrass_neg :: | |
fst(chop_list 2 (CONJUNCTS weierstrass_add))) THEN | |
REWRITE_TAC[CONJ_ASSOC] THEN CONJ_TAC THEN REWRITE_TAC[GSYM CONJ_ASSOC] THENL | |
[REPEAT CONJ_TAC THEN | |
MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`] THEN | |
TRY(MAP_EVERY X_GEN_TAC [`x2:A`; `y2:A`]) THEN | |
TRY(MAP_EVERY X_GEN_TAC [`x3:A`; `y3:A`]); | |
MAP_EVERY X_GEN_TAC [`x1:A`; `y1:A`; `x2:A`; `y2:A`; `x3:A`; `y3:A`] THEN | |
ASM_SIMP_TAC[assoclemma; DE_MORGAN_THM] THEN | |
REWRITE_TAC[option_DISTINCT] THEN | |
REPEAT GEN_TAC THEN REWRITE_TAC[weierstrass_curve] THEN | |
STRIP_TAC THEN STRIP_TAC THEN | |
ASM_REWRITE_TAC[weierstrass_add]] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_add; weierstrass_neg] THEN | |
REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REPEAT LET_TAC THEN | |
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_add; weierstrass_neg] THEN | |
REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REPEAT LET_TAC THEN | |
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN | |
REPEAT(FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN | |
REPEAT(FIRST_X_ASSUM(SUBST_ALL_TAC o SYM o check | |
(fun th -> is_eq(concl th) && is_var(lhand(concl th)) && | |
is_var(rand(concl th))))) THEN | |
TRY RING_CARRIER_TAC THEN | |
(FIELD_TAC ORELSE | |
(RULE_ASSUM_TAC(REWRITE_RULE[weierstrass_nonsingular]) THEN FIELD_TAC)) THEN | |
NOT_RING_CHAR_DIVIDES_TAC);; | |
let WEIERSTRASS_GROUP = prove | |
(`!f a (b:A). | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_nonsingular(f,a,b) | |
==> group_carrier(weierstrass_group(f,a,b)) = weierstrass_curve(f,a,b) /\ | |
group_id(weierstrass_group(f,a,b)) = NONE /\ | |
group_inv(weierstrass_group(f,a,b)) = weierstrass_neg(f,a,b) /\ | |
group_mul(weierstrass_group(f,a,b)) = weierstrass_add(f,a,b)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[group_carrier; group_id; group_inv; group_mul; GSYM PAIR_EQ] THEN | |
REWRITE_TAC[weierstrass_group; GSYM(CONJUNCT2 group_tybij)] THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[IN; weierstrass_curve]; | |
REWRITE_TAC[IN] THEN | |
ASM_SIMP_TAC[WEIERSTRASS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]; | |
REWRITE_TAC[IN] THEN ASM_SIMP_TAC[WEIERSTRASS_CURVE_ADD]; | |
REWRITE_TAC[IN] THEN ASM_SIMP_TAC[WEIERSTRASS_ADD_ASSOC]; | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; weierstrass_add]; | |
REWRITE_TAC[IN] THEN GEN_TAC THEN STRIP_TAC THEN MATCH_MP_TAC(MESON[] | |
`x = a /\ x = y ==> x = a /\ y = a`) THEN | |
CONJ_TAC THENL | |
[ASM_SIMP_TAC[WEIERSTRASS_ADD_LNEG]; | |
MATCH_MP_TAC WEIERSTRASS_ADD_SYM THEN | |
ASM_SIMP_TAC[WEIERSTRASS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Easily computable endomorphisms in some special Weierstrass curves. *) | |
(* (x,y) |-> (c * x,y) where c^3 = 1 for curves y^2 = x^3 + b. *) | |
(* (x,y) |-> (-x, c * y) where c^4 = 1 for curves y^2 = x^3 + a * x. *) | |
(* ------------------------------------------------------------------------- *) | |
let weierstrass_triplex = define | |
`weierstrass_triplex f (c:A) NONE = NONE /\ | |
weierstrass_triplex f c (SOME(x:A,y:A)) = SOME(ring_mul f c x,y)`;; | |
let GROUP_ENDOMORPHISM_TRIPLEX = prove | |
(`!f a b c:A. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_nonsingular (f,a,b) /\ | |
c IN ring_carrier f /\ ring_pow f c 3 = ring_1 f /\ a = ring_0 f | |
==> group_endomorphism (weierstrass_group(f,a,b)) | |
(weierstrass_triplex f c)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:A = ring_0 f` THEN | |
ASM_SIMP_TAC[group_endomorphism; GROUP_HOMOMORPHISM] THEN | |
SIMP_TAC[SUBSET; FORALL_IN_IMAGE; WEIERSTRASS_GROUP; GROUP_ID] THEN | |
POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN STRIP_TAC THEN | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; IN] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_triplex; weierstrass_add] THEN | |
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_triplex] THEN | |
TRY RING_CARRIER_TAC THEN | |
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[weierstrass_nonsingular]) THEN FIELD_TAC);; | |
let weierstrass_quady = define | |
`weierstrass_quady f (c:A) NONE = NONE /\ | |
weierstrass_quady f c (SOME(x:A,y:A)) = SOME(ring_neg f x,ring_mul f c y)`;; | |
let GROUP_ENDOMORPHISM_QUADY = prove | |
(`!f a b c:A. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_nonsingular (f,a,b) /\ | |
c IN ring_carrier f /\ b = ring_0 f /\ | |
ring_pow f c 4 = ring_1 f /\ ~(ring_pow f c 2 = ring_1 f) | |
==> group_endomorphism (weierstrass_group(f,a,b)) | |
(weierstrass_quady f c)`, | |
REPEAT GEN_TAC THEN ASM_CASES_TAC `b:A = ring_0 f` THEN | |
ASM_SIMP_TAC[group_endomorphism; GROUP_HOMOMORPHISM] THEN | |
SIMP_TAC[SUBSET; FORALL_IN_IMAGE; WEIERSTRASS_GROUP; GROUP_ID] THEN | |
POP_ASSUM(K ALL_TAC) THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN STRIP_TAC THEN | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; IN] THEN | |
REWRITE_TAC[weierstrass_curve; weierstrass_quady; weierstrass_add] THEN | |
REPEAT STRIP_TAC THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_quady] THEN | |
TRY RING_CARRIER_TAC THEN | |
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[weierstrass_nonsingular]) THEN FIELD_TAC THEN | |
NOT_RING_CHAR_DIVIDES_TAC);; | |