Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ------------------------------------------------------------------------- *) | |
(* Jacobian coordinates, (x,y,z) |-> (x/z^2,y/z^3) and (1,1,0) |-> infinity *) | |
(* ------------------------------------------------------------------------- *) | |
needs "EC/weierstrass.ml";; | |
let jacobian_point = define | |
`jacobian_point f (x,y,z) <=> | |
x IN ring_carrier f /\ y IN ring_carrier f /\ z IN ring_carrier f`;; | |
let jacobian_curve = define | |
`jacobian_curve (f,a:A,b) (x,y,z) <=> | |
x IN ring_carrier f /\ | |
y IN ring_carrier f /\ | |
z IN ring_carrier f /\ | |
ring_pow f y 2 = | |
ring_add f (ring_pow f x 3) | |
(ring_add f (ring_mul f a (ring_mul f x (ring_pow f z 4))) | |
(ring_mul f b (ring_pow f z 6)))`;; | |
let weierstrass_of_jacobian = define | |
`weierstrass_of_jacobian (f:A ring) (x,y,z) = | |
if z = ring_0 f then NONE | |
else SOME(ring_div f x (ring_pow f z 2), | |
ring_div f y (ring_pow f z 3))`;; | |
let jacobian_of_weierstrass = define | |
`jacobian_of_weierstrass (f:A ring) NONE = (ring_1 f,ring_1 f,ring_0 f) /\ | |
jacobian_of_weierstrass f (SOME(x,y)) = (x,y,ring_1 f)`;; | |
let jacobian_eq = define | |
`jacobian_eq (f:A ring) (x,y,z) (x',y',z') <=> | |
(z = ring_0 f <=> z' = ring_0 f) /\ | |
ring_mul f x (ring_pow f z' 2) = ring_mul f x' (ring_pow f z 2) /\ | |
ring_mul f y (ring_pow f z' 3) = ring_mul f y' (ring_pow f z 3)`;; | |
let jacobian_0 = new_definition | |
`jacobian_0 (f:A ring,a:A,b:A) = (ring_1 f,ring_1 f,ring_0 f)`;; | |
let jacobian_neg = new_definition | |
`jacobian_neg (f,a:A,b:A) (x,y,z) = (x:A,ring_neg f y:A,z:A)`;; | |
let jacobian_add = new_definition | |
`jacobian_add (f:A ring,a,b) (x1,y1,z1) (x2,y2,z2) = | |
if z1 = ring_0 f then (x2,y2,z2) | |
else if z2 = ring_0 f then (x1,y1,z1) | |
else if jacobian_eq f (x1,y1,z1) (x2,y2,z2) then | |
let v = ring_mul f (ring_of_num f 4) (ring_mul f x1 (ring_pow f y1 2)) | |
and w = | |
ring_add f (ring_mul f (ring_of_num f 3) (ring_pow f x1 2)) | |
(ring_mul f a (ring_pow f z1 4)) in | |
let x3 = | |
ring_add f (ring_mul f (ring_neg f (ring_of_num f 2)) v) | |
(ring_pow f w 2) in | |
x3, | |
ring_add f (ring_mul f (ring_neg f (ring_of_num f 8)) (ring_pow f y1 4)) | |
(ring_mul f (ring_sub f v x3) w), | |
ring_mul f (ring_of_num f 2) (ring_mul f y1 z1) | |
else if jacobian_eq f (jacobian_neg (f,a,b) (x1,y1,z1)) (x2,y2,z2) then | |
jacobian_0 (f,a,b) | |
else | |
let r = ring_mul f x1 (ring_pow f z2 2) | |
and s = ring_mul f x2 (ring_pow f z1 2) | |
and t = ring_mul f y1 (ring_pow f z2 3) | |
and u = ring_mul f y2 (ring_pow f z1 3) in | |
let v = ring_sub f s r | |
and w = ring_sub f u t in | |
let x3 = | |
ring_add f | |
(ring_sub f (ring_neg f (ring_pow f v 3)) | |
(ring_mul f (ring_of_num f 2) (ring_mul f r (ring_pow f v 2)))) | |
(ring_pow f w 2) in | |
x3, | |
ring_add f (ring_mul f (ring_neg f t) (ring_pow f v 3)) | |
(ring_mul f (ring_sub f (ring_mul f r (ring_pow f v 2)) x3) w), | |
ring_mul f v (ring_mul f z1 z2)`;; | |
let JACOBIAN_CURVE_IMP_POINT = prove | |
(`!f a b p. jacobian_curve(f,a,b) p ==> jacobian_point f p`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
SIMP_TAC[jacobian_curve; jacobian_point]);; | |
let JACOBIAN_OF_WEIERSTRASS_POINT_EQ = prove | |
(`!(f:A ring) p. | |
jacobian_point f (jacobian_of_weierstrass f p) <=> | |
weierstrass_point f p`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN | |
REWRITE_TAC[weierstrass_point; jacobian_of_weierstrass] THEN | |
SIMP_TAC[jacobian_point; RING_0; RING_1]);; | |
let JACOBIAN_OF_WEIERSTRASS_POINT = prove | |
(`!(f:A ring) p. | |
weierstrass_point f p | |
==> jacobian_point f (jacobian_of_weierstrass f p)`, | |
REWRITE_TAC[JACOBIAN_OF_WEIERSTRASS_POINT_EQ]);; | |
let WEIERSTRASS_OF_JACOBIAN_POINT = prove | |
(`!(f:A ring) p. | |
jacobian_point f p | |
==> weierstrass_point f (weierstrass_of_jacobian f p)`, | |
SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_jacobian; jacobian_point] THEN | |
REPEAT GEN_TAC THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[weierstrass_point; RING_DIV; RING_POW]);; | |
let JACOBIAN_OF_WEIERSTRASS_EQ = prove | |
(`!(f:A ring) p q. | |
field f | |
==> (jacobian_of_weierstrass f p = jacobian_of_weierstrass f q <=> | |
p = q)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN | |
REWRITE_TAC[jacobian_of_weierstrass; option_DISTINCT; option_INJ] THEN | |
SIMP_TAC[PAIR_EQ]);; | |
let WEIERSTRASS_OF_JACOBIAN_EQ = prove | |
(`!(f:A ring) p q. | |
field f /\ jacobian_point f p /\ jacobian_point f q | |
==> (weierstrass_of_jacobian f p = weierstrass_of_jacobian f q <=> | |
jacobian_eq f p q)`, | |
REWRITE_TAC[FORALL_PAIR_THM; jacobian_point] THEN | |
REWRITE_TAC[weierstrass_of_jacobian; jacobian_eq] THEN | |
REPEAT STRIP_TAC THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[option_INJ; option_DISTINCT]) THEN | |
ASM_SIMP_TAC[RING_MUL_RZERO; PAIR_EQ] THEN | |
FIELD_TAC);; | |
let WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS = prove | |
(`!(f:A ring) p. | |
field f /\ weierstrass_point f p | |
==> weierstrass_of_jacobian f (jacobian_of_weierstrass f p) = p`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN | |
SIMP_TAC[weierstrass_of_jacobian; jacobian_of_weierstrass; | |
weierstrass_point; RING_POW_ONE; RING_DIV_1]);; | |
let JACOBIAN_OF_WEIERSTRASS_OF_JACOBIAN = prove | |
(`!(f:A ring) p. | |
field f /\ jacobian_point f p | |
==> jacobian_eq f | |
(jacobian_of_weierstrass f (weierstrass_of_jacobian f p)) p`, | |
SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; | |
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS; | |
JACOBIAN_OF_WEIERSTRASS_POINT_EQ; | |
WEIERSTRASS_OF_JACOBIAN_POINT]);; | |
let JACOBIAN_OF_WEIERSTRASS_CURVE_EQ = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_point f p | |
==> (jacobian_curve (f,a,b) (jacobian_of_weierstrass f p) <=> | |
weierstrass_curve (f,a,b) p)`, | |
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; weierstrass_point] THEN | |
REWRITE_TAC[weierstrass_curve; jacobian_of_weierstrass] THEN | |
SIMP_TAC[jacobian_curve; RING_0; RING_1] THEN | |
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN | |
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN | |
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
let JACOBIAN_OF_WEIERSTRASS_CURVE = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_curve (f,a,b) p | |
==> jacobian_curve (f,a,b) (jacobian_of_weierstrass f p)`, | |
MESON_TAC[JACOBIAN_OF_WEIERSTRASS_CURVE_EQ; | |
WEIERSTRASS_CURVE_IMP_POINT]);; | |
let WEIERSTRASS_OF_JACOBIAN_CURVE = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_curve (f,a,b) p | |
==> weierstrass_curve (f,a,b) (weierstrass_of_jacobian f p)`, | |
SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_jacobian; jacobian_curve] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_SIMP_TAC[weierstrass_curve; RING_DIV; RING_POW] THEN | |
FIELD_TAC);; | |
let JACOBIAN_POINT_NEG = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_point f p | |
==> jacobian_point f (jacobian_neg (f,a,b) p)`, | |
REWRITE_TAC[FORALL_PAIR_THM; jacobian_neg; jacobian_point] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN | |
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN | |
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
let JACOBIAN_CURVE_NEG = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_curve (f,a,b) p | |
==> jacobian_curve (f,a,b) (jacobian_neg (f,a,b) p)`, | |
REWRITE_TAC[FORALL_PAIR_THM; jacobian_neg; jacobian_curve] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN | |
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN | |
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
let WEIERSTRASS_OF_JACOBIAN_NEG = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_point f p | |
==> weierstrass_of_jacobian f (jacobian_neg (f,a,b) p) = | |
weierstrass_neg (f,a,b) (weierstrass_of_jacobian f p)`, | |
REWRITE_TAC[FORALL_PAIR_THM; jacobian_neg; weierstrass_of_jacobian; | |
jacobian_point] THEN | |
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[weierstrass_neg; option_INJ; PAIR_EQ] THEN | |
FIELD_TAC);; | |
let JACOBIAN_EQ_NEG = prove | |
(`!(f:A ring) a b p p'. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_point f p /\ jacobian_point f p' /\ jacobian_eq f p p' | |
==> jacobian_eq f | |
(jacobian_neg (f,a,b) p) (jacobian_neg (f,a,b) p')`, | |
REPEAT GEN_TAC THEN | |
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; JACOBIAN_POINT_NEG] THEN | |
ASM_SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_NEG]);; | |
let WEIERSTRASS_OF_JACOBIAN_NEG_OF_WEIERSTRASS = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_point f p | |
==> weierstrass_of_jacobian f | |
(jacobian_neg (f,a,b) (jacobian_of_weierstrass f p)) = | |
weierstrass_neg (f,a,b) p`, | |
SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_NEG; | |
JACOBIAN_OF_WEIERSTRASS_POINT; | |
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);; | |
let JACOBIAN_OF_WEIERSTRASS_NEG = prove | |
(`!(f:A ring) a b p. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_point f p | |
==> jacobian_eq f | |
(jacobian_of_weierstrass f (weierstrass_neg (f,a,b) p)) | |
(jacobian_neg (f,a,b) (jacobian_of_weierstrass f p))`, | |
SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; | |
JACOBIAN_OF_WEIERSTRASS_POINT; | |
JACOBIAN_POINT_NEG; WEIERSTRASS_POINT_NEG; | |
WEIERSTRASS_OF_JACOBIAN_NEG; | |
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);; | |
let JACOBIAN_POINT_ADD = prove | |
(`!(f:A ring) a b p q. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_point f p /\ jacobian_point f q | |
==> jacobian_point f (jacobian_add (f,a,b) p q)`, | |
REWRITE_TAC[FORALL_PAIR_THM; jacobian_add; jacobian_point; | |
jacobian_0; jacobian_eq; LET_DEF; LET_END_DEF] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
REPEAT(COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[jacobian_add; jacobian_point; | |
jacobian_eq; LET_DEF; LET_END_DEF]) THEN | |
REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; | |
let JACOBIAN_CURVE_ADD = prove | |
(`!(f:A ring) a b p q. | |
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_curve (f,a,b) p /\ jacobian_curve (f,a,b) q | |
==> jacobian_curve (f,a,b) (jacobian_add (f,a,b) p q)`, | |
REWRITE_TAC[FORALL_PAIR_THM; jacobian_add; jacobian_curve; | |
jacobian_0; jacobian_eq; LET_DEF; LET_END_DEF] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
REPEAT(COND_CASES_TAC THEN | |
ASM_REWRITE_TAC[jacobian_add; jacobian_curve; | |
jacobian_eq; LET_DEF; LET_END_DEF]) THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN | |
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN | |
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);; | |
let WEIERSTRASS_OF_JACOBIAN_ADD = prove | |
(`!(f:A ring) a b p q. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_point f p /\ jacobian_point f q | |
==> weierstrass_of_jacobian f (jacobian_add (f,a,b) p q) = | |
weierstrass_add (f,a,b) | |
(weierstrass_of_jacobian f p) | |
(weierstrass_of_jacobian f q)`, | |
REWRITE_TAC[FIELD_CHAR_NOT23; FORALL_PAIR_THM; jacobian_point] THEN | |
MAP_EVERY X_GEN_TAC | |
[`f:A ring`; `a:A`; `b:A`; `x1:A`; `y1:A`; `z1:A`; | |
`x2:A`; `y2:A`; `z2:A`] THEN | |
STRIP_TAC THEN REWRITE_TAC[weierstrass_of_jacobian; jacobian_add] THEN | |
MAP_EVERY ASM_CASES_TAC [`z1:A = ring_0 f`; `z2:A = ring_0 f`] THEN | |
ASM_REWRITE_TAC[weierstrass_of_jacobian; weierstrass_add] THEN | |
ASM_REWRITE_TAC[jacobian_eq; jacobian_neg; jacobian_0] THEN | |
ASM_SIMP_TAC[ring_div; RING_INV_POW] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN | |
REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_of_jacobian] THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN | |
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN | |
REPEAT(FIRST_X_ASSUM(DISJ_CASES_TAC) ORELSE | |
FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN | |
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; | |
let JACOBIAN_EQ_ADD = prove | |
(`!(f:A ring) a b p p' q q'. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
jacobian_point f p /\ jacobian_point f p' /\ | |
jacobian_point f q /\ jacobian_point f q' /\ | |
jacobian_eq f p p' /\ jacobian_eq f q q' | |
==> jacobian_eq f | |
(jacobian_add (f,a,b) p q) (jacobian_add (f,a,b) p' q')`, | |
REPEAT GEN_TAC THEN | |
REPLICATE_TAC 9 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN | |
ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; JACOBIAN_POINT_ADD] THEN | |
ASM_SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_ADD]);; | |
let WEIERSTRASS_OF_JACOBIAN_ADD_OF_WEIERSTRASS = prove | |
(`!(f:A ring) a b p q. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_point f p /\ weierstrass_point f q | |
==> weierstrass_of_jacobian f | |
(jacobian_add (f,a,b) | |
(jacobian_of_weierstrass f p) | |
(jacobian_of_weierstrass f q)) = | |
weierstrass_add (f,a,b) p q`, | |
SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_ADD; | |
JACOBIAN_OF_WEIERSTRASS_POINT; | |
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);; | |
let JACOBIAN_OF_WEIERSTRASS_ADD = prove | |
(`!(f:A ring) a b p q. | |
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ | |
a IN ring_carrier f /\ b IN ring_carrier f /\ | |
weierstrass_point f p /\ weierstrass_point f q | |
==> jacobian_eq f | |
(jacobian_of_weierstrass f (weierstrass_add (f,a,b) p q)) | |
(jacobian_add (f,a,b) | |
(jacobian_of_weierstrass f p) | |
(jacobian_of_weierstrass f q))`, | |
SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; | |
JACOBIAN_OF_WEIERSTRASS_POINT; | |
JACOBIAN_POINT_ADD; WEIERSTRASS_POINT_ADD; | |
WEIERSTRASS_OF_JACOBIAN_ADD; | |
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);; | |