Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /EC /jacobian.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.6 kB
(* ------------------------------------------------------------------------- *)
(* Jacobian coordinates, (x,y,z) |-> (x/z^2,y/z^3) and (1,1,0) |-> infinity *)
(* ------------------------------------------------------------------------- *)
needs "EC/weierstrass.ml";;
let jacobian_point = define
`jacobian_point f (x,y,z) <=>
x IN ring_carrier f /\ y IN ring_carrier f /\ z IN ring_carrier f`;;
let jacobian_curve = define
`jacobian_curve (f,a:A,b) (x,y,z) <=>
x IN ring_carrier f /\
y IN ring_carrier f /\
z IN ring_carrier f /\
ring_pow f y 2 =
ring_add f (ring_pow f x 3)
(ring_add f (ring_mul f a (ring_mul f x (ring_pow f z 4)))
(ring_mul f b (ring_pow f z 6)))`;;
let weierstrass_of_jacobian = define
`weierstrass_of_jacobian (f:A ring) (x,y,z) =
if z = ring_0 f then NONE
else SOME(ring_div f x (ring_pow f z 2),
ring_div f y (ring_pow f z 3))`;;
let jacobian_of_weierstrass = define
`jacobian_of_weierstrass (f:A ring) NONE = (ring_1 f,ring_1 f,ring_0 f) /\
jacobian_of_weierstrass f (SOME(x,y)) = (x,y,ring_1 f)`;;
let jacobian_eq = define
`jacobian_eq (f:A ring) (x,y,z) (x',y',z') <=>
(z = ring_0 f <=> z' = ring_0 f) /\
ring_mul f x (ring_pow f z' 2) = ring_mul f x' (ring_pow f z 2) /\
ring_mul f y (ring_pow f z' 3) = ring_mul f y' (ring_pow f z 3)`;;
let jacobian_0 = new_definition
`jacobian_0 (f:A ring,a:A,b:A) = (ring_1 f,ring_1 f,ring_0 f)`;;
let jacobian_neg = new_definition
`jacobian_neg (f,a:A,b:A) (x,y,z) = (x:A,ring_neg f y:A,z:A)`;;
let jacobian_add = new_definition
`jacobian_add (f:A ring,a,b) (x1,y1,z1) (x2,y2,z2) =
if z1 = ring_0 f then (x2,y2,z2)
else if z2 = ring_0 f then (x1,y1,z1)
else if jacobian_eq f (x1,y1,z1) (x2,y2,z2) then
let v = ring_mul f (ring_of_num f 4) (ring_mul f x1 (ring_pow f y1 2))
and w =
ring_add f (ring_mul f (ring_of_num f 3) (ring_pow f x1 2))
(ring_mul f a (ring_pow f z1 4)) in
let x3 =
ring_add f (ring_mul f (ring_neg f (ring_of_num f 2)) v)
(ring_pow f w 2) in
x3,
ring_add f (ring_mul f (ring_neg f (ring_of_num f 8)) (ring_pow f y1 4))
(ring_mul f (ring_sub f v x3) w),
ring_mul f (ring_of_num f 2) (ring_mul f y1 z1)
else if jacobian_eq f (jacobian_neg (f,a,b) (x1,y1,z1)) (x2,y2,z2) then
jacobian_0 (f,a,b)
else
let r = ring_mul f x1 (ring_pow f z2 2)
and s = ring_mul f x2 (ring_pow f z1 2)
and t = ring_mul f y1 (ring_pow f z2 3)
and u = ring_mul f y2 (ring_pow f z1 3) in
let v = ring_sub f s r
and w = ring_sub f u t in
let x3 =
ring_add f
(ring_sub f (ring_neg f (ring_pow f v 3))
(ring_mul f (ring_of_num f 2) (ring_mul f r (ring_pow f v 2))))
(ring_pow f w 2) in
x3,
ring_add f (ring_mul f (ring_neg f t) (ring_pow f v 3))
(ring_mul f (ring_sub f (ring_mul f r (ring_pow f v 2)) x3) w),
ring_mul f v (ring_mul f z1 z2)`;;
let JACOBIAN_CURVE_IMP_POINT = prove
(`!f a b p. jacobian_curve(f,a,b) p ==> jacobian_point f p`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
SIMP_TAC[jacobian_curve; jacobian_point]);;
let JACOBIAN_OF_WEIERSTRASS_POINT_EQ = prove
(`!(f:A ring) p.
jacobian_point f (jacobian_of_weierstrass f p) <=>
weierstrass_point f p`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN
REWRITE_TAC[weierstrass_point; jacobian_of_weierstrass] THEN
SIMP_TAC[jacobian_point; RING_0; RING_1]);;
let JACOBIAN_OF_WEIERSTRASS_POINT = prove
(`!(f:A ring) p.
weierstrass_point f p
==> jacobian_point f (jacobian_of_weierstrass f p)`,
REWRITE_TAC[JACOBIAN_OF_WEIERSTRASS_POINT_EQ]);;
let WEIERSTRASS_OF_JACOBIAN_POINT = prove
(`!(f:A ring) p.
jacobian_point f p
==> weierstrass_point f (weierstrass_of_jacobian f p)`,
SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_jacobian; jacobian_point] THEN
REPEAT GEN_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[weierstrass_point; RING_DIV; RING_POW]);;
let JACOBIAN_OF_WEIERSTRASS_EQ = prove
(`!(f:A ring) p q.
field f
==> (jacobian_of_weierstrass f p = jacobian_of_weierstrass f q <=>
p = q)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN
REWRITE_TAC[jacobian_of_weierstrass; option_DISTINCT; option_INJ] THEN
SIMP_TAC[PAIR_EQ]);;
let WEIERSTRASS_OF_JACOBIAN_EQ = prove
(`!(f:A ring) p q.
field f /\ jacobian_point f p /\ jacobian_point f q
==> (weierstrass_of_jacobian f p = weierstrass_of_jacobian f q <=>
jacobian_eq f p q)`,
REWRITE_TAC[FORALL_PAIR_THM; jacobian_point] THEN
REWRITE_TAC[weierstrass_of_jacobian; jacobian_eq] THEN
REPEAT STRIP_TAC THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[option_INJ; option_DISTINCT]) THEN
ASM_SIMP_TAC[RING_MUL_RZERO; PAIR_EQ] THEN
FIELD_TAC);;
let WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS = prove
(`!(f:A ring) p.
field f /\ weierstrass_point f p
==> weierstrass_of_jacobian f (jacobian_of_weierstrass f p) = p`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; field] THEN
SIMP_TAC[weierstrass_of_jacobian; jacobian_of_weierstrass;
weierstrass_point; RING_POW_ONE; RING_DIV_1]);;
let JACOBIAN_OF_WEIERSTRASS_OF_JACOBIAN = prove
(`!(f:A ring) p.
field f /\ jacobian_point f p
==> jacobian_eq f
(jacobian_of_weierstrass f (weierstrass_of_jacobian f p)) p`,
SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ;
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS;
JACOBIAN_OF_WEIERSTRASS_POINT_EQ;
WEIERSTRASS_OF_JACOBIAN_POINT]);;
let JACOBIAN_OF_WEIERSTRASS_CURVE_EQ = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p
==> (jacobian_curve (f,a,b) (jacobian_of_weierstrass f p) <=>
weierstrass_curve (f,a,b) p)`,
REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM; weierstrass_point] THEN
REWRITE_TAC[weierstrass_curve; jacobian_of_weierstrass] THEN
SIMP_TAC[jacobian_curve; RING_0; RING_1] THEN
REPEAT STRIP_TAC THEN REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let JACOBIAN_OF_WEIERSTRASS_CURVE = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_curve (f,a,b) p
==> jacobian_curve (f,a,b) (jacobian_of_weierstrass f p)`,
MESON_TAC[JACOBIAN_OF_WEIERSTRASS_CURVE_EQ;
WEIERSTRASS_CURVE_IMP_POINT]);;
let WEIERSTRASS_OF_JACOBIAN_CURVE = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_curve (f,a,b) p
==> weierstrass_curve (f,a,b) (weierstrass_of_jacobian f p)`,
SIMP_TAC[FORALL_PAIR_THM; weierstrass_of_jacobian; jacobian_curve] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_SIMP_TAC[weierstrass_curve; RING_DIV; RING_POW] THEN
FIELD_TAC);;
let JACOBIAN_POINT_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f p
==> jacobian_point f (jacobian_neg (f,a,b) p)`,
REWRITE_TAC[FORALL_PAIR_THM; jacobian_neg; jacobian_point] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let JACOBIAN_CURVE_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_curve (f,a,b) p
==> jacobian_curve (f,a,b) (jacobian_neg (f,a,b) p)`,
REWRITE_TAC[FORALL_PAIR_THM; jacobian_neg; jacobian_curve] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let WEIERSTRASS_OF_JACOBIAN_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f p
==> weierstrass_of_jacobian f (jacobian_neg (f,a,b) p) =
weierstrass_neg (f,a,b) (weierstrass_of_jacobian f p)`,
REWRITE_TAC[FORALL_PAIR_THM; jacobian_neg; weierstrass_of_jacobian;
jacobian_point] THEN
REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
ASM_REWRITE_TAC[weierstrass_neg; option_INJ; PAIR_EQ] THEN
FIELD_TAC);;
let JACOBIAN_EQ_NEG = prove
(`!(f:A ring) a b p p'.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f p /\ jacobian_point f p' /\ jacobian_eq f p p'
==> jacobian_eq f
(jacobian_neg (f,a,b) p) (jacobian_neg (f,a,b) p')`,
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; JACOBIAN_POINT_NEG] THEN
ASM_SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_NEG]);;
let WEIERSTRASS_OF_JACOBIAN_NEG_OF_WEIERSTRASS = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p
==> weierstrass_of_jacobian f
(jacobian_neg (f,a,b) (jacobian_of_weierstrass f p)) =
weierstrass_neg (f,a,b) p`,
SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_NEG;
JACOBIAN_OF_WEIERSTRASS_POINT;
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);;
let JACOBIAN_OF_WEIERSTRASS_NEG = prove
(`!(f:A ring) a b p.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p
==> jacobian_eq f
(jacobian_of_weierstrass f (weierstrass_neg (f,a,b) p))
(jacobian_neg (f,a,b) (jacobian_of_weierstrass f p))`,
SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ;
JACOBIAN_OF_WEIERSTRASS_POINT;
JACOBIAN_POINT_NEG; WEIERSTRASS_POINT_NEG;
WEIERSTRASS_OF_JACOBIAN_NEG;
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);;
let JACOBIAN_POINT_ADD = prove
(`!(f:A ring) a b p q.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f p /\ jacobian_point f q
==> jacobian_point f (jacobian_add (f,a,b) p q)`,
REWRITE_TAC[FORALL_PAIR_THM; jacobian_add; jacobian_point;
jacobian_0; jacobian_eq; LET_DEF; LET_END_DEF] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_point;
jacobian_eq; LET_DEF; LET_END_DEF]) THEN
REPEAT STRIP_TAC THEN RING_CARRIER_TAC);;
let JACOBIAN_CURVE_ADD = prove
(`!(f:A ring) a b p q.
field f /\ a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_curve (f,a,b) p /\ jacobian_curve (f,a,b) q
==> jacobian_curve (f,a,b) (jacobian_add (f,a,b) p q)`,
REWRITE_TAC[FORALL_PAIR_THM; jacobian_add; jacobian_curve;
jacobian_0; jacobian_eq; LET_DEF; LET_END_DEF] THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(COND_CASES_TAC THEN
ASM_REWRITE_TAC[jacobian_add; jacobian_curve;
jacobian_eq; LET_DEF; LET_END_DEF]) THEN
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o SYM)) THEN
W(MATCH_MP_TAC o INTEGRAL_DOMAIN_RULE o snd) THEN
ASM_SIMP_TAC[FIELD_IMP_INTEGRAL_DOMAIN]);;
let WEIERSTRASS_OF_JACOBIAN_ADD = prove
(`!(f:A ring) a b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f p /\ jacobian_point f q
==> weierstrass_of_jacobian f (jacobian_add (f,a,b) p q) =
weierstrass_add (f,a,b)
(weierstrass_of_jacobian f p)
(weierstrass_of_jacobian f q)`,
REWRITE_TAC[FIELD_CHAR_NOT23; FORALL_PAIR_THM; jacobian_point] THEN
MAP_EVERY X_GEN_TAC
[`f:A ring`; `a:A`; `b:A`; `x1:A`; `y1:A`; `z1:A`;
`x2:A`; `y2:A`; `z2:A`] THEN
STRIP_TAC THEN REWRITE_TAC[weierstrass_of_jacobian; jacobian_add] THEN
MAP_EVERY ASM_CASES_TAC [`z1:A = ring_0 f`; `z2:A = ring_0 f`] THEN
ASM_REWRITE_TAC[weierstrass_of_jacobian; weierstrass_add] THEN
ASM_REWRITE_TAC[jacobian_eq; jacobian_neg; jacobian_0] THEN
ASM_SIMP_TAC[ring_div; RING_INV_POW] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[LET_DEF; LET_END_DEF] THEN
REPEAT LET_TAC THEN REWRITE_TAC[weierstrass_of_jacobian] THEN
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[option_DISTINCT; option_INJ; PAIR_EQ] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN
REPEAT(FIRST_X_ASSUM(DISJ_CASES_TAC) ORELSE
FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC)) THEN
FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);;
let JACOBIAN_EQ_ADD = prove
(`!(f:A ring) a b p p' q q'.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
jacobian_point f p /\ jacobian_point f p' /\
jacobian_point f q /\ jacobian_point f q' /\
jacobian_eq f p p' /\ jacobian_eq f q q'
==> jacobian_eq f
(jacobian_add (f,a,b) p q) (jacobian_add (f,a,b) p' q')`,
REPEAT GEN_TAC THEN
REPLICATE_TAC 9 (DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ; JACOBIAN_POINT_ADD] THEN
ASM_SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_ADD]);;
let WEIERSTRASS_OF_JACOBIAN_ADD_OF_WEIERSTRASS = prove
(`!(f:A ring) a b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p /\ weierstrass_point f q
==> weierstrass_of_jacobian f
(jacobian_add (f,a,b)
(jacobian_of_weierstrass f p)
(jacobian_of_weierstrass f q)) =
weierstrass_add (f,a,b) p q`,
SIMP_TAC[WEIERSTRASS_OF_JACOBIAN_ADD;
JACOBIAN_OF_WEIERSTRASS_POINT;
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);;
let JACOBIAN_OF_WEIERSTRASS_ADD = prove
(`!(f:A ring) a b p q.
field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\
a IN ring_carrier f /\ b IN ring_carrier f /\
weierstrass_point f p /\ weierstrass_point f q
==> jacobian_eq f
(jacobian_of_weierstrass f (weierstrass_add (f,a,b) p q))
(jacobian_add (f,a,b)
(jacobian_of_weierstrass f p)
(jacobian_of_weierstrass f q))`,
SIMP_TAC[GSYM WEIERSTRASS_OF_JACOBIAN_EQ;
JACOBIAN_OF_WEIERSTRASS_POINT;
JACOBIAN_POINT_ADD; WEIERSTRASS_POINT_ADD;
WEIERSTRASS_OF_JACOBIAN_ADD;
WEIERSTRASS_OF_JACOBIAN_OF_WEIERSTRASS]);;