Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Twisted Edwards curves in general, a * x^2 + y^2 = 1 + d * x^2 * y^2. *) | |
(* ========================================================================= *) | |
needs "EC/misc.ml";; | |
(* ------------------------------------------------------------------------- *) | |
(* Basic definitions and naive cardinality bounds. *) | |
(* ------------------------------------------------------------------------- *) | |
let edwards_point = define | |
`edwards_point f (x:A,y) <=> | |
x IN ring_carrier f /\ y IN ring_carrier f`;; | |
let edwards_curve = define | |
`edwards_curve(f:A ring,a:A,d:A) (x,y) <=> | |
x IN ring_carrier f /\ y IN ring_carrier f /\ | |
ring_add f (ring_mul f a (ring_pow f x 2)) (ring_pow f y 2) = | |
ring_add f (ring_1 f) | |
(ring_mul f d (ring_mul f (ring_pow f x 2) (ring_pow f y 2)))`;; | |
let edwards_nonsingular = define | |
`edwards_nonsingular (f:A ring,a:A,d:A) <=> | |
(?b. b IN ring_carrier f /\ ring_pow f b 2 = a) /\ | |
(d = ring_0 f \/ ~(?c. c IN ring_carrier f /\ ring_pow f c 2 = d))`;; | |
let edwards_0 = define | |
`edwards_0 (f:A ring,a:A,d:A) = (ring_0 f,ring_1 f)`;; | |
let edwards_neg = define | |
`edwards_neg (f:A ring,a:A,d:A) (x,y:A) = (ring_neg f x,y)`;; | |
let edwards_add = define | |
`edwards_add (f:A ring,a:A,d:A) (x1,y1) (x2,y2) = | |
ring_div f (ring_add f (ring_mul f x1 y2) (ring_mul f y1 x2)) | |
(ring_add f (ring_1 f) | |
(ring_mul f d (ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2))))), | |
ring_div f | |
(ring_sub f (ring_mul f y1 y2) (ring_mul f a (ring_mul f x1 x2))) | |
(ring_sub f (ring_1 f) | |
(ring_mul f d (ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2)))))`;; | |
let edwards_group = define | |
`edwards_group (f:A ring,a:A,d:A) = | |
group(edwards_curve(f,a,d), | |
edwards_0(f,a,d), | |
edwards_neg(f,a,d), | |
edwards_add(f,a,d))`;; | |
let EDWARD_NONSINGULAR_ALT = prove | |
(`!f a (d:A). | |
field f /\ a IN ring_carrier f /\ d IN ring_carrier f | |
==> (edwards_nonsingular (f,a,d) <=> | |
(?b. b IN ring_carrier f /\ ring_pow f b 2 = a) /\ | |
~(?c. c IN ring_carrier f /\ ~(c = ring_0 f) /\ ring_pow f c 2 = d))`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[edwards_nonsingular] THEN AP_TERM_TAC THEN | |
ASM_CASES_TAC `d:A = ring_0 f` THEN ASM_REWRITE_TAC[] THENL | |
[FIELD_TAC; AP_TERM_TAC THEN AP_TERM_TAC THEN ABS_TAC] THEN | |
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN FIELD_TAC);; | |
let FINITE_EDWARDS_CURVE = prove | |
(`!f a d:A. field f /\ FINITE(ring_carrier f) | |
==> FINITE(edwards_curve(f,a,d))`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC | |
`{(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f}` THEN | |
ASM_SIMP_TAC[FINITE_PRODUCT] THEN | |
REWRITE_TAC[edwards_curve; SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
SIMP_TAC[edwards_curve; IN]);; | |
let CARD_BOUND_EDWARDS_CURVE = prove | |
(`!f a d:A. field f /\ FINITE(ring_carrier f) /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular(f,a,d) | |
==> CARD(edwards_curve(f,a,d)) <= 2 * CARD(ring_carrier f)`, | |
REPEAT STRIP_TAC THEN | |
MATCH_MP_TAC(MESON[FINITE_SUBSET; CARD_SUBSET; LE_TRANS] | |
`!s. t SUBSET s /\ FINITE s /\ CARD s <= n ==> CARD t <= n`) THEN | |
EXISTS_TAC | |
`{(x,y) | (x:A) IN ring_carrier f /\ y IN ring_carrier f /\ | |
ring_pow f y 2 = | |
ring_div f (ring_sub f (ring_1 f) | |
(ring_mul f a (ring_pow f x 2))) | |
(ring_sub f (ring_1 f) | |
(ring_mul f d (ring_pow f x 2)))}`THEN | |
ASM_SIMP_TAC[FINITE_QUADRATIC_CURVE; FIELD_IMP_INTEGRAL_DOMAIN] THEN | |
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ELIM_PAIR_THM] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN GEN_REWRITE_TAC LAND_CONV [IN] THEN | |
REWRITE_TAC[edwards_curve] THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(MP_TAC o SYM o SYM) THEN | |
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN | |
REWRITE_TAC[NOT_EXISTS_THM; RIGHT_OR_FORALL_THM] THEN | |
DISCH_THEN(MP_TAC o SPEC `ring_inv f x:A` o CONJUNCT2) THEN | |
ASM_SIMP_TAC[RING_INV] THEN FIELD_TAC);; | |
(* ------------------------------------------------------------------------- *) | |
(* Proof of the group properties by algebraic brute force. We do use a bit *) | |
(* more delicacy than calling FIELD_TAC in order to avoid assuming anything *) | |
(* about the characteristic of the field. *) | |
(* ------------------------------------------------------------------------- *) | |
let EDWARDS_NONSINGULAR_DENOMINATORS = prove | |
(`!f a (d:A) x1 y1 x2 y2. | |
field f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular(f,a,d) /\ | |
edwards_curve(f,a,d) (x1,y1) /\ edwards_curve(f,a,d) (x2,y2) | |
==> ~(ring_add f (ring_1 f) | |
(ring_mul f d | |
(ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2)))) = | |
ring_0 f) /\ | |
~(ring_sub f (ring_1 f) | |
(ring_mul f d | |
(ring_mul f x1 (ring_mul f y1 (ring_mul f x2 y2)))) = | |
ring_0 f)`, | |
REPEAT GEN_TAC THEN REWRITE_TAC[edwards_curve; GSYM DE_MORGAN_THM] THEN | |
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN ASSUME_TAC) THEN DISCH_TAC THEN | |
UNDISCH_TAC `edwards_nonsingular(f,a:A,d)` THEN | |
ASM_SIMP_TAC[EDWARD_NONSINGULAR_ALT] THEN | |
REWRITE_TAC[TAUT `~(p /\ ~q) <=> p ==> q`; LEFT_IMP_EXISTS_THM] THEN | |
X_GEN_TAC `e:A` THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (SUBST_ALL_TAC o SYM)) THEN | |
MATCH_MP_TAC(MESON[] `!a b. P a \/ P b ==> ?x. P x`) THEN | |
EXISTS_TAC `ring_inv f (ring_mul f x1 y2):A` THEN | |
EXISTS_TAC `ring_inv f (ring_mul f e (ring_mul f x1 x2)):A` THEN | |
ASM_SIMP_TAC[RING_INV; RING_MUL] THEN FIELD_TAC);; | |
let EDWARDS_NONSINGULAR_DENOMINATORS_POINTS = | |
GEN_REWRITE_RULE (funpow 4 BINDER_CONV) [FORALL_UNPAIR_THM] | |
(GEN_REWRITE_RULE (funpow 3 BINDER_CONV) [FORALL_UNPAIR_THM] | |
EDWARDS_NONSINGULAR_DENOMINATORS);; | |
let EDWARDS_CURVE_IMP_POINT = prove | |
(`!f a d p. edwards_curve(f,a,d) p ==> edwards_point f p`, | |
REWRITE_TAC[FORALL_PAIR_THM] THEN SIMP_TAC[edwards_curve; edwards_point]);; | |
let EDWARDS_POINT_NEG = prove | |
(`!(f:A ring) a d p. | |
edwards_point f p | |
==> edwards_point f (edwards_neg (f,a,d) p)`, | |
REWRITE_TAC[FORALL_PAIR_THM] THEN | |
SIMP_TAC[edwards_neg; edwards_point; RING_NEG]);; | |
let EDWARDS_POINT_ADD = prove | |
(`!(f:A ring) a d p q. | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_point f p /\ edwards_point f q | |
==> edwards_point f (edwards_add (f,a,d) p q)`, | |
REWRITE_TAC[FORALL_PAIR_THM] THEN | |
SIMP_TAC[edwards_add; edwards_point; LET_DEF; LET_END_DEF] THEN | |
REPEAT STRIP_TAC THEN | |
REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[edwards_point]) THEN | |
REPEAT STRIP_TAC THEN RING_CARRIER_TAC);; | |
let EDWARDS_CURVE_0 = prove | |
(`!f a d:A. | |
a IN ring_carrier f /\ d IN ring_carrier f | |
==> edwards_curve(f,a,d) (edwards_0(f,a,d))`, | |
REWRITE_TAC[edwards_curve; edwards_0] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN RING_TAC);; | |
let EDWARDS_CURVE_NEG = prove | |
(`!f a (d:A) p. | |
integral_domain f /\ a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_curve(f,a,d) p | |
==> edwards_curve(f,a,d) (edwards_neg (f,a,d) p)`, | |
SIMP_TAC[FORALL_PAIR_THM; RING_NEG; edwards_curve; edwards_neg] THEN | |
REPEAT GEN_TAC THEN CONV_TAC INTEGRAL_DOMAIN_RULE);; | |
let EDWARDS_CURVE_ADD = prove | |
(`!f a (d:A) p q. | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q | |
==> edwards_curve(f,a,d) (edwards_add (f,a,d) p q)`, | |
REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC | |
[`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN | |
FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
RING_PULL_DIV_TAC THEN RING_TAC);; | |
let EDWARDS_ADD_LID = prove | |
(`!f a (d:A) p. | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_curve(f,a,d) p | |
==> edwards_add(f,a,d) (edwards_0 (f,a,d)) p = p`, | |
REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; | |
edwards_0; PAIR_EQ] THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC);; | |
let EDWARDS_ADD_LNEG = prove | |
(`!f a (d:A) p. | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
edwards_curve(f,a,d) p | |
==> edwards_add(f,a,d) (edwards_neg (f,a,d) p) p = edwards_0(f,a,d)`, | |
REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; | |
edwards_neg; edwards_0; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`] THEN | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; | |
`edwards_neg (f,a,d) (x,y):A#A`; `(x,y):A#A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS_POINTS) THEN | |
ASM_REWRITE_TAC[edwards_curve; edwards_neg] THEN | |
FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN | |
ANTS_TAC THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
FIELD_TAC);; | |
let EDWARDS_ADD_SYM = prove | |
(`!f a (d:A) p q. | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q | |
==> edwards_add (f,a,d) p q = edwards_add (f,a,d) q p`, | |
REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC | |
[`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] THEN | |
STRIP_TAC THEN | |
MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; `x2:A`; `y2:A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS) THEN | |
MP_TAC(SPECL [`f:A ring`; `a:A`; `d:A`; `x2:A`; `y2:A`; `x1:A`; `y1:A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN | |
FIRST_X_ASSUM(K ALL_TAC o GEN_REWRITE_RULE I [edwards_nonsingular]) THEN | |
REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN | |
RING_PULL_DIV_TAC THEN RING_TAC);; | |
let EDWARDS_ADD_ASSOC = prove | |
(`!f a (d:A) p q r. | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
edwards_curve(f,a,d) p /\ edwards_curve(f,a,d) q /\ | |
edwards_curve(f,a,d) r | |
==> edwards_add (f,a,d) p (edwards_add (f,a,d) q r) = | |
edwards_add (f,a,d) (edwards_add (f,a,d) p q) r`, | |
let lemma = prove | |
(`field f /\ | |
x1 IN ring_carrier f /\ y1 IN ring_carrier f /\ | |
x2 IN ring_carrier f /\ y2 IN ring_carrier f /\ | |
~(y1 = ring_0 f \/ y2 = ring_0 f) /\ | |
ring_mul f x1 y2 = ring_mul f x2 y1 | |
==> ring_div f x1 y1 = ring_div f x2 y2`, | |
FIELD_TAC) in | |
REWRITE_TAC[FORALL_PAIR_THM; edwards_curve; edwards_add; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC | |
[`f:A ring`; `a:A`; `d:A`; `x1:A`; `y1:A`; | |
`x2:A`; `y2:A`; `x3:A`; `y3:A`] THEN | |
STRIP_TAC THEN CONJ_TAC THEN MATCH_MP_TAC lemma THEN | |
ASM_REWRITE_TAC[] THEN | |
REPLICATE_TAC 4 (CONJ_TAC THENL [RING_CARRIER_TAC; ALL_TAC]) THEN | |
CONJ_TAC THENL | |
[REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN | |
W(MP_TAC o PART_MATCH (lhand o rand) EDWARDS_NONSINGULAR_DENOMINATORS o | |
snd) THEN | |
(ANTS_TAC THENL [ALL_TAC; DISCH_THEN(ACCEPT_TAC o CONJUNCT1)]) THEN | |
REWRITE_TAC[GSYM edwards_add] THEN ASM_REWRITE_TAC[] THEN | |
REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC EDWARDS_CURVE_ADD) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN ASM_MESON_TAC[DIVIDES_REFL]; | |
ALL_TAC; | |
REWRITE_TAC[DE_MORGAN_THM] THEN CONJ_TAC THEN | |
W(MP_TAC o PART_MATCH (rand o rand) EDWARDS_NONSINGULAR_DENOMINATORS o | |
snd) THEN | |
(ANTS_TAC THENL [ALL_TAC; DISCH_THEN(ACCEPT_TAC o CONJUNCT2)]) THEN | |
REWRITE_TAC[GSYM edwards_add] THEN ASM_REWRITE_TAC[] THEN | |
REPEAT CONJ_TAC THEN TRY(MATCH_MP_TAC EDWARDS_CURVE_ADD) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN ASM_MESON_TAC[DIVIDES_REFL]; | |
ALL_TAC] THEN | |
MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `(x1,y1):A#A`; `(x2,y2):A#A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS_POINTS) THEN | |
MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `(x2,y2):A#A`; `(x3,y3):A#A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS_POINTS) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN STRIP_TAC THEN STRIP_TAC THEN | |
RING_PULL_DIV_TAC THEN RING_TAC);; | |
let EDWARDS_GROUP = prove | |
(`!f a (d:A). | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular(f,a,d) | |
==> group_carrier(edwards_group(f,a,d)) = edwards_curve(f,a,d) /\ | |
group_id(edwards_group(f,a,d)) = edwards_0(f,a,d) /\ | |
group_inv(edwards_group(f,a,d)) = edwards_neg(f,a,d) /\ | |
group_mul(edwards_group(f,a,d)) = edwards_add(f,a,d)`, | |
REPEAT GEN_TAC THEN STRIP_TAC THEN | |
REWRITE_TAC[group_carrier; group_id; group_inv; group_mul; GSYM PAIR_EQ] THEN | |
REWRITE_TAC[edwards_group; GSYM(CONJUNCT2 group_tybij)] THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[IN] THEN REWRITE_TAC[edwards_curve; edwards_0] THEN | |
REWRITE_TAC[RING_0; RING_1] THEN RING_TAC; | |
REWRITE_TAC[IN] THEN | |
ASM_SIMP_TAC[EDWARDS_CURVE_NEG; FIELD_IMP_INTEGRAL_DOMAIN]; | |
REWRITE_TAC[IN] THEN ASM_SIMP_TAC[EDWARDS_CURVE_ADD]; | |
REWRITE_TAC[IN] THEN ASM_SIMP_TAC[EDWARDS_ADD_ASSOC]; | |
REWRITE_TAC[IN] THEN | |
ASM_MESON_TAC[EDWARDS_ADD_LID; EDWARDS_ADD_SYM; EDWARDS_CURVE_0]; | |
REWRITE_TAC[IN] THEN | |
ASM_MESON_TAC[EDWARDS_ADD_LNEG; EDWARDS_ADD_SYM; EDWARDS_CURVE_NEG; | |
FIELD_IMP_INTEGRAL_DOMAIN]]);; | |
let ABELIAN_EDWARDS_GROUP = prove | |
(`!f a (d:A). | |
field f /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular(f,a,d) | |
==> abelian_group(edwards_group(f,a,d))`, | |
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[abelian_group; EDWARDS_GROUP] THEN | |
REWRITE_TAC[IN] THEN ASM_MESON_TAC[EDWARDS_ADD_SYM]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Characterizing low-order points on an Edwards curve. *) | |
(* ------------------------------------------------------------------------- *) | |
let EDWARDS_GROUP_ORDER_EQ_2 = prove | |
(`!f (a:A) d p. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
p IN group_carrier (edwards_group(f,a,d)) | |
==> (group_element_order (edwards_group(f,a,d)) p = 2 <=> | |
p = (ring_0 f,ring_neg f (ring_1 f)))`, | |
REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN | |
ASM_SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_2_ALT] THEN | |
ASM_SIMP_TAC[EDWARDS_GROUP; IMP_CONJ] THEN | |
REWRITE_TAC[FORALL_PAIR_THM; edwards_0; edwards_neg; PAIR_EQ; IN] THEN | |
REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; | |
let EDWARDS_GROUP_ORDER_EQ_4_EQUIV = prove | |
(`!f (a:A) d x y. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
(x,y) IN group_carrier (edwards_group(f,a,d)) | |
==> (group_element_order (edwards_group(f,a,d)) (x,y) = 4 <=> | |
ring_mul f a (ring_pow f x 2) = ring_1 f /\ y = ring_0 f)`, | |
REWRITE_TAC[ARITH_RULE `4 = 2 * 2`] THEN | |
SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL; DIVIDES_2; ARITH_EQ; ARITH_EVEN] THEN | |
SIMP_TAC[EDWARDS_GROUP_ORDER_EQ_2; GROUP_POW] THEN | |
REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN | |
ASM_SIMP_TAC[GROUP_POW_2; FORALL_PAIR_THM] THEN | |
ASM_SIMP_TAC[EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN | |
REWRITE_TAC[edwards_curve; edwards_add; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`; `x:A`; `y:A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; | |
let EDWARDS_GROUP_ORDER_EQ_4 = prove | |
(`!f (a:A) d a' p. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
a' IN ring_carrier f /\ ring_mul f a (ring_pow f a' 2) = ring_1 f /\ | |
edwards_nonsingular (f,a,d) /\ | |
p IN group_carrier (edwards_group(f,a,d)) | |
==> (group_element_order (edwards_group(f,a,d)) p = 4 <=> | |
p = (a',ring_0 f) \/ p = (ring_neg f a',ring_0 f))`, | |
REWRITE_TAC[ARITH_RULE `4 = 2 * 2`] THEN | |
SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL; DIVIDES_2; ARITH_EQ; ARITH_EVEN] THEN | |
SIMP_TAC[EDWARDS_GROUP_ORDER_EQ_2; GROUP_POW] THEN | |
REPLICATE_TAC 4 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN | |
ASM_SIMP_TAC[GROUP_POW_2; FORALL_PAIR_THM] THEN | |
ASM_SIMP_TAC[EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN | |
REWRITE_TAC[edwards_curve; edwards_add; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`; `x:A`; `y:A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; | |
let EDWARDS_GROUP_ORDER_EQ_8_EQUIV = prove | |
(`!f (a:A) d x y. | |
field f /\ ~(ring_char f = 2) /\ | |
a IN ring_carrier f /\ d IN ring_carrier f /\ | |
edwards_nonsingular (f,a,d) /\ | |
(x,y) IN group_carrier (edwards_group(f,a,d)) | |
==> (group_element_order (edwards_group(f,a,d)) (x,y) = 8 <=> | |
ring_mul f a (ring_pow f x 2) = ring_pow f y 2 /\ | |
ring_mul f (ring_of_num f 4) | |
(ring_mul f (ring_pow f a 2) (ring_pow f x 4)) = | |
ring_pow f (ring_add f (ring_1 f) | |
(ring_mul f a (ring_mul f d (ring_pow f x 4)))) 2)`, | |
REWRITE_TAC[ARITH_RULE `8 = 2 * 4`] THEN | |
SIMP_TAC[GROUP_ELEMENT_ORDER_EQ_MUL; DIVIDES_2; ARITH_EQ; ARITH_EVEN] THEN | |
SIMP_TAC[GROUP_POW; REWRITE_RULE[PAIR] | |
(GEN_REWRITE_RULE (funpow 3 BINDER_CONV) [FORALL_UNPAIR_THM] | |
EDWARDS_GROUP_ORDER_EQ_4_EQUIV)] THEN | |
REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT2] THEN | |
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT DISCH_TAC THEN | |
ASM_SIMP_TAC[GROUP_POW_2; FORALL_PAIR_THM] THEN | |
ASM_SIMP_TAC[EDWARDS_GROUP] THEN REWRITE_TAC[IN] THEN | |
REWRITE_TAC[edwards_curve; edwards_add; PAIR_EQ] THEN | |
MAP_EVERY X_GEN_TAC [`x:A`; `y:A`] THEN STRIP_TAC THEN | |
MP_TAC(ISPECL [`f:A ring`; `a:A`; `d:A`; `x:A`; `y:A`; `x:A`; `y:A`] | |
EDWARDS_NONSINGULAR_DENOMINATORS) THEN | |
ASM_REWRITE_TAC[edwards_curve] THEN FIELD_TAC);; | |