Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Some examples of full complex quantifier elimination. *) | |
(* ========================================================================= *) | |
let th = time prove | |
(`!x y. (x pow 2 = Cx(&2)) /\ (y pow 2 = Cx(&3)) | |
==> ((x * y) pow 2 = Cx(&6))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`!x a. (a pow 2 = Cx(&2)) /\ (x pow 2 + a * x + Cx(&1) = Cx(&0)) | |
==> (x pow 4 + Cx(&1) = Cx(&0))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`!a x. (a pow 2 = Cx(&2)) /\ (x pow 2 + a * x + Cx(&1) = Cx(&0)) | |
==> (x pow 4 + Cx(&1) = Cx(&0))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`~(?a x y. (a pow 2 = Cx(&2)) /\ | |
(x pow 2 + a * x + Cx(&1) = Cx(&0)) /\ | |
(y * (x pow 4 + Cx(&1)) + Cx(&1) = Cx(&0)))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`!x. ?y. x pow 2 = y pow 3`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`!x y z a b. (a + b) * (x - y + z) - (a - b) * (x + y + z) = | |
Cx(&2) * (b * x + b * z - a * y)`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`!a b. ~(a = b) ==> ?x y. (y * x pow 2 = a) /\ (y * x pow 2 + x = b)`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`!a b c x y. (a * x pow 2 + b * x + c = Cx(&0)) /\ | |
(a * y pow 2 + b * y + c = Cx(&0)) /\ | |
~(x = y) | |
==> (a * x * y = c) /\ (a * (x + y) + b = Cx(&0))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
let th = time prove | |
(`~(!a b c x y. (a * x pow 2 + b * x + c = Cx(&0)) /\ | |
(a * y pow 2 + b * y + c = Cx(&0)) | |
==> (a * x * y = c) /\ (a * (x + y) + b = Cx(&0)))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
(** geometric example from ``Algorithms for Computer Algebra'': | |
right triangle where perp. bisector of hypotenuse passes through the | |
right angle is isoseles. | |
**) | |
let th = time prove | |
(`!y_1 y_2 y_3 y_4. | |
(y_1 = Cx(&2) * y_3) /\ | |
(y_2 = Cx(&2) * y_4) /\ | |
(y_1 * y_3 = y_2 * y_4) | |
==> (y_1 pow 2 = y_2 pow 2)`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
(** geometric example: gradient condition for two lines to be non-parallel. | |
**) | |
let th = time prove | |
(`!a1 b1 c1 a2 b2 c2. | |
~(a1 * b2 = a2 * b1) | |
==> ?x y. (a1 * x + b1 * y = c1) /\ (a2 * x + b2 * y = c2)`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
(*********** Apparently takes too long | |
let th = time prove | |
(`!a b c x y. (a * x pow 2 + b * x + c = Cx(&0)) /\ | |
(a * y pow 2 + b * y + c = Cx(&0)) /\ | |
(!z. (a * z pow 2 + b * z + c = Cx(&0)) | |
==> (z = x) \/ (z = y)) | |
==> (a * x * y = c) /\ (a * (x + y) + b = Cx(&0))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
*************) | |
(* ------------------------------------------------------------------------- *) | |
(* Any three points determine a circle. Not true in complex number version! *) | |
(* ------------------------------------------------------------------------- *) | |
(******** And it takes a lot of memory! | |
let th = time prove | |
(`~(!x1 y1 x2 y2 x3 y3. | |
?x0 y0. ((x1 - x0) pow 2 + (y1 - y0) pow 2 = | |
(x2 - x0) pow 2 + (y2 - y0) pow 2) /\ | |
((x2 - x0) pow 2 + (y2 - y0) pow 2 = | |
(x3 - x0) pow 2 + (y3 - y0) pow 2))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
**************) | |
(* ------------------------------------------------------------------------- *) | |
(* To show we don't need to consider only closed formulas. *) | |
(* Can eliminate some, then deal with the rest manually and painfully. *) | |
(* ------------------------------------------------------------------------- *) | |
let th = time prove | |
(`(?x y. (a * x pow 2 + b * x + c = Cx(&0)) /\ | |
(a * y pow 2 + b * y + c = Cx(&0)) /\ | |
~(x = y)) <=> | |
(a = Cx(&0)) /\ (b = Cx(&0)) /\ (c = Cx(&0)) \/ | |
~(a = Cx(&0)) /\ ~(b pow 2 = Cx(&4) * a * c)`, | |
CONV_TAC(LAND_CONV FULL_COMPLEX_QUELIM_CONV) THEN | |
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_LID; COMPLEX_ADD_RID] THEN | |
REWRITE_TAC[COMPLEX_ENTIRE; CX_INJ; REAL_OF_NUM_EQ; ARITH] THEN | |
ASM_CASES_TAC `a = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THENL | |
[ASM_CASES_TAC `b = Cx(&0)` THEN | |
ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO]; | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH | |
`b * b * c * Cx(--(&1)) + a * c * c * Cx(&4) = | |
c * (Cx(&4) * a * c - b * b)`] THEN | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH | |
`b * b * b * Cx(--(&1)) + a * b * c * Cx (&4) = | |
b * (Cx(&4) * a * c - b * b)`] THEN | |
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH | |
`b * b * Cx (&1) + a * c * Cx(--(&4)) = | |
Cx(--(&1)) * (Cx(&4) * a * c - b * b)`] THEN | |
REWRITE_TAC[COMPLEX_ENTIRE; COMPLEX_SUB_0; CX_INJ] THEN | |
CONV_TAC REAL_RAT_REDUCE_CONV THEN | |
ASM_CASES_TAC `b = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN | |
ASM_CASES_TAC `c = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN | |
REWRITE_TAC[COMPLEX_POW_2; COMPLEX_MUL_RZERO; COMPLEX_MUL_LZERO] THEN | |
REWRITE_TAC[EQ_SYM_EQ]]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Do the same thing directly. *) | |
(* ------------------------------------------------------------------------- *) | |
(**** This seems barely feasible | |
let th = time prove | |
(`!a b c. | |
(?x y. (a * x pow 2 + b * x + c = Cx(&0)) /\ | |
(a * y pow 2 + b * y + c = Cx(&0)) /\ | |
~(x = y)) <=> | |
(a = Cx(&0)) /\ (b = Cx(&0)) /\ (c = Cx(&0)) \/ | |
~(a = Cx(&0)) /\ ~(b pow 2 = Cx(&4) * a * c)`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
****) | |
(* ------------------------------------------------------------------------- *) | |
(* More ambitious: determine a unique circle. Also not true over complexes. *) | |
(* (consider the points (k, k i) where i is the imaginary unit...) *) | |
(* ------------------------------------------------------------------------- *) | |
(********** Takes too long, I think, and too much memory too | |
let th = prove | |
(`~(!x1 y1 x2 y2 x3 y3 x0 y0 x0' y0'. | |
((x1 - x0) pow 2 + (y1 - y0) pow 2 = | |
(x2 - x0) pow 2 + (y2 - y0) pow 2) /\ | |
((x2 - x0) pow 2 + (y2 - y0) pow 2 = | |
(x3 - x0) pow 2 + (y3 - y0) pow 2) /\ | |
((x1 - x0') pow 2 + (y1 - y0') pow 2 = | |
(x2 - x0') pow 2 + (y2 - y0') pow 2) /\ | |
((x2 - x0') pow 2 + (y2 - y0') pow 2 = | |
(x3 - x0') pow 2 + (y3 - y0') pow 2) | |
==> (x0 = x0') /\ (y0 = y0'))`, | |
CONV_TAC FULL_COMPLEX_QUELIM_CONV);; | |
*************) | |
(* ------------------------------------------------------------------------- *) | |
(* Side of a triangle in terms of its bisectors; Kapur survey 5.1. *) | |
(* ------------------------------------------------------------------------- *) | |
(************* | |
let th = time FULL_COMPLEX_QUELIM_CONV | |
`?b c. (p1 = ai pow 2 * (b + c) pow 2 - c * b * (c + b - a) * (c + b + a)) /\ | |
(p2 = ae pow 2 * (c - b) pow 2 - c * b * (a + b - c) * (a - b + a)) /\ | |
(p3 = be pow 2 * (c - a) pow 2 - a * c * (a + b - c) * (c + b - a))`;; | |
*************) | |