Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Complex /quelim_examples.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
7.18 kB
(* ========================================================================= *)
(* Some examples of full complex quantifier elimination. *)
(* ========================================================================= *)
let th = time prove
(`!x y. (x pow 2 = Cx(&2)) /\ (y pow 2 = Cx(&3))
==> ((x * y) pow 2 = Cx(&6))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`!x a. (a pow 2 = Cx(&2)) /\ (x pow 2 + a * x + Cx(&1) = Cx(&0))
==> (x pow 4 + Cx(&1) = Cx(&0))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`!a x. (a pow 2 = Cx(&2)) /\ (x pow 2 + a * x + Cx(&1) = Cx(&0))
==> (x pow 4 + Cx(&1) = Cx(&0))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`~(?a x y. (a pow 2 = Cx(&2)) /\
(x pow 2 + a * x + Cx(&1) = Cx(&0)) /\
(y * (x pow 4 + Cx(&1)) + Cx(&1) = Cx(&0)))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`!x. ?y. x pow 2 = y pow 3`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`!x y z a b. (a + b) * (x - y + z) - (a - b) * (x + y + z) =
Cx(&2) * (b * x + b * z - a * y)`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`!a b. ~(a = b) ==> ?x y. (y * x pow 2 = a) /\ (y * x pow 2 + x = b)`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`!a b c x y. (a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0)) /\
~(x = y)
==> (a * x * y = c) /\ (a * (x + y) + b = Cx(&0))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
let th = time prove
(`~(!a b c x y. (a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0))
==> (a * x * y = c) /\ (a * (x + y) + b = Cx(&0)))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
(** geometric example from ``Algorithms for Computer Algebra'':
right triangle where perp. bisector of hypotenuse passes through the
right angle is isoseles.
**)
let th = time prove
(`!y_1 y_2 y_3 y_4.
(y_1 = Cx(&2) * y_3) /\
(y_2 = Cx(&2) * y_4) /\
(y_1 * y_3 = y_2 * y_4)
==> (y_1 pow 2 = y_2 pow 2)`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
(** geometric example: gradient condition for two lines to be non-parallel.
**)
let th = time prove
(`!a1 b1 c1 a2 b2 c2.
~(a1 * b2 = a2 * b1)
==> ?x y. (a1 * x + b1 * y = c1) /\ (a2 * x + b2 * y = c2)`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
(*********** Apparently takes too long
let th = time prove
(`!a b c x y. (a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0)) /\
(!z. (a * z pow 2 + b * z + c = Cx(&0))
==> (z = x) \/ (z = y))
==> (a * x * y = c) /\ (a * (x + y) + b = Cx(&0))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
*************)
(* ------------------------------------------------------------------------- *)
(* Any three points determine a circle. Not true in complex number version! *)
(* ------------------------------------------------------------------------- *)
(******** And it takes a lot of memory!
let th = time prove
(`~(!x1 y1 x2 y2 x3 y3.
?x0 y0. ((x1 - x0) pow 2 + (y1 - y0) pow 2 =
(x2 - x0) pow 2 + (y2 - y0) pow 2) /\
((x2 - x0) pow 2 + (y2 - y0) pow 2 =
(x3 - x0) pow 2 + (y3 - y0) pow 2))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
**************)
(* ------------------------------------------------------------------------- *)
(* To show we don't need to consider only closed formulas. *)
(* Can eliminate some, then deal with the rest manually and painfully. *)
(* ------------------------------------------------------------------------- *)
let th = time prove
(`(?x y. (a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0)) /\
~(x = y)) <=>
(a = Cx(&0)) /\ (b = Cx(&0)) /\ (c = Cx(&0)) \/
~(a = Cx(&0)) /\ ~(b pow 2 = Cx(&4) * a * c)`,
CONV_TAC(LAND_CONV FULL_COMPLEX_QUELIM_CONV) THEN
REWRITE_TAC[poly; COMPLEX_MUL_RZERO; COMPLEX_ADD_LID; COMPLEX_ADD_RID] THEN
REWRITE_TAC[COMPLEX_ENTIRE; CX_INJ; REAL_OF_NUM_EQ; ARITH] THEN
ASM_CASES_TAC `a = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THENL
[ASM_CASES_TAC `b = Cx(&0)` THEN
ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO];
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`b * b * c * Cx(--(&1)) + a * c * c * Cx(&4) =
c * (Cx(&4) * a * c - b * b)`] THEN
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`b * b * b * Cx(--(&1)) + a * b * c * Cx (&4) =
b * (Cx(&4) * a * c - b * b)`] THEN
ONCE_REWRITE_TAC[SIMPLE_COMPLEX_ARITH
`b * b * Cx (&1) + a * c * Cx(--(&4)) =
Cx(--(&1)) * (Cx(&4) * a * c - b * b)`] THEN
REWRITE_TAC[COMPLEX_ENTIRE; COMPLEX_SUB_0; CX_INJ] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
ASM_CASES_TAC `b = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `c = Cx(&0)` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[COMPLEX_POW_2; COMPLEX_MUL_RZERO; COMPLEX_MUL_LZERO] THEN
REWRITE_TAC[EQ_SYM_EQ]]);;
(* ------------------------------------------------------------------------- *)
(* Do the same thing directly. *)
(* ------------------------------------------------------------------------- *)
(**** This seems barely feasible
let th = time prove
(`!a b c.
(?x y. (a * x pow 2 + b * x + c = Cx(&0)) /\
(a * y pow 2 + b * y + c = Cx(&0)) /\
~(x = y)) <=>
(a = Cx(&0)) /\ (b = Cx(&0)) /\ (c = Cx(&0)) \/
~(a = Cx(&0)) /\ ~(b pow 2 = Cx(&4) * a * c)`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
****)
(* ------------------------------------------------------------------------- *)
(* More ambitious: determine a unique circle. Also not true over complexes. *)
(* (consider the points (k, k i) where i is the imaginary unit...) *)
(* ------------------------------------------------------------------------- *)
(********** Takes too long, I think, and too much memory too
let th = prove
(`~(!x1 y1 x2 y2 x3 y3 x0 y0 x0' y0'.
((x1 - x0) pow 2 + (y1 - y0) pow 2 =
(x2 - x0) pow 2 + (y2 - y0) pow 2) /\
((x2 - x0) pow 2 + (y2 - y0) pow 2 =
(x3 - x0) pow 2 + (y3 - y0) pow 2) /\
((x1 - x0') pow 2 + (y1 - y0') pow 2 =
(x2 - x0') pow 2 + (y2 - y0') pow 2) /\
((x2 - x0') pow 2 + (y2 - y0') pow 2 =
(x3 - x0') pow 2 + (y3 - y0') pow 2)
==> (x0 = x0') /\ (y0 = y0'))`,
CONV_TAC FULL_COMPLEX_QUELIM_CONV);;
*************)
(* ------------------------------------------------------------------------- *)
(* Side of a triangle in terms of its bisectors; Kapur survey 5.1. *)
(* ------------------------------------------------------------------------- *)
(*************
let th = time FULL_COMPLEX_QUELIM_CONV
`?b c. (p1 = ai pow 2 * (b + c) pow 2 - c * b * (c + b - a) * (c + b + a)) /\
(p2 = ae pow 2 * (c - b) pow 2 - c * b * (a + b - c) * (a - b + a)) /\
(p3 = be pow 2 * (c - a) pow 2 - a * c * (a + b - c) * (c + b - a))`;;
*************)