Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Grobner basis algorithm. *) | |
(* ========================================================================= *) | |
needs "Complex/complexnumbers.ml";; | |
needs "Complex/quelim.ml";; | |
prioritize_complex();; | |
(* ------------------------------------------------------------------------- *) | |
(* Utility functions. *) | |
(* ------------------------------------------------------------------------- *) | |
let allpairs f l1 l2 = | |
itlist ((@) o C map l2 o f) l1 [];; | |
let rec merge ord l1 l2 = | |
match l1 with | |
[] -> l2 | |
| h1::t1 -> match l2 with | |
[] -> l1 | |
| h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2) | |
else h2::(merge ord l1 t2);; | |
let sort ord = | |
let rec mergepairs l1 l2 = | |
match (l1,l2) with | |
([s],[]) -> s | |
| (l,[]) -> mergepairs [] l | |
| (l,[s1]) -> mergepairs (s1::l) [] | |
| (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in | |
fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);; | |
(* ------------------------------------------------------------------------- *) | |
(* Type for recording history, i.e. how a polynomial was obtained. *) | |
(* ------------------------------------------------------------------------- *) | |
type history = | |
Start of int | |
| Mmul of (num * (int list)) * history | |
| Add of history * history;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion of leaves, i.e. variables and constant rational constants. *) | |
(* ------------------------------------------------------------------------- *) | |
let grob_var vars tm = | |
let res = map (fun i -> if i = tm then 1 else 0) vars in | |
if exists (fun x -> x <> 0) res then [Int 1,res] else failwith "grob_var";; | |
let grob_const = | |
let cx_tm = `Cx` in | |
fun vars tm -> | |
try let l,r = dest_comb tm in | |
if l = cx_tm then | |
let x = rat_of_term r in | |
if x =/ Int 0 then [] else [x,map (fun v -> 0) vars] | |
else failwith "" | |
with Failure _ -> failwith "grob_const";; | |
(* ------------------------------------------------------------------------- *) | |
(* Monomial ordering. *) | |
(* ------------------------------------------------------------------------- *) | |
let morder_lt = | |
let rec lexorder l1 l2 = | |
match (l1,l2) with | |
[],[] -> false | |
| (x1::o1,x2::o2) -> x1 > x2 || x1 = x2 && lexorder o1 o2 | |
| _ -> failwith "morder: inconsistent monomial lengths" in | |
fun m1 m2 -> let n1 = itlist (+) m1 0 | |
and n2 = itlist (+) m2 0 in | |
n1 < n2 || n1 = n2 && lexorder m1 m2;; | |
let morder_le m1 m2 = morder_lt m1 m2 || (m1 = m2);; | |
let morder_gt m1 m2 = morder_lt m2 m1;; | |
(* ------------------------------------------------------------------------- *) | |
(* Arithmetic on canonical polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let grob_neg = map (fun (c,m) -> (minus_num c,m));; | |
let rec grob_add l1 l2 = | |
match (l1,l2) with | |
([],l2) -> l2 | |
| (l1,[]) -> l1 | |
| ((c1,m1)::o1,(c2,m2)::o2) -> | |
if m1 = m2 then | |
let c = c1+/c2 and rest = grob_add o1 o2 in | |
if c =/ Int 0 then rest else (c,m1)::rest | |
else if morder_lt m2 m1 then (c1,m1)::(grob_add o1 l2) | |
else (c2,m2)::(grob_add l1 o2);; | |
let grob_sub l1 l2 = grob_add l1 (grob_neg l2);; | |
let grob_mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2);; | |
let rec grob_cmul cm pol = map (grob_mmul cm) pol;; | |
let rec grob_mul l1 l2 = | |
match l1 with | |
[] -> [] | |
| (h1::t1) -> grob_add (grob_cmul h1 l2) (grob_mul t1 l2);; | |
let rec grob_pow vars l n = | |
if n < 0 then failwith "grob_pow: negative power" | |
else if n = 0 then [Int 1,map (fun v -> 0) vars] | |
else grob_mul l (grob_pow vars l (n - 1));; | |
(* ------------------------------------------------------------------------- *) | |
(* Monomial division operation. *) | |
(* ------------------------------------------------------------------------- *) | |
let mdiv (c1,m1) (c2,m2) = | |
(c1//c2, | |
map2 (fun n1 n2 -> if n1 < n2 then failwith "mdiv" else n1-n2) m1 m2);; | |
(* ------------------------------------------------------------------------- *) | |
(* Lowest common multiple of two monomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let mlcm (c1,m1) (c2,m2) = (Int 1,map2 max m1 m2);; | |
(* ------------------------------------------------------------------------- *) | |
(* Reduce monomial cm by polynomial pol, returning replacement for cm. *) | |
(* ------------------------------------------------------------------------- *) | |
let reduce1 cm (pol,hpol) = | |
match pol with | |
[] -> failwith "reduce1" | |
| cm1::cms -> try let (c,m) = mdiv cm cm1 in | |
(grob_cmul (minus_num c,m) cms, | |
Mmul((minus_num c,m),hpol)) | |
with Failure _ -> failwith "reduce1";; | |
(* ------------------------------------------------------------------------- *) | |
(* Try this for all polynomials in a basis. *) | |
(* ------------------------------------------------------------------------- *) | |
let reduceb cm basis = tryfind (fun p -> reduce1 cm p) basis;; | |
(* ------------------------------------------------------------------------- *) | |
(* Reduction of a polynomial (always picking largest monomial possible). *) | |
(* ------------------------------------------------------------------------- *) | |
let rec reduce basis (pol,hist) = | |
match pol with | |
[] -> (pol,hist) | |
| cm::ptl -> try let q,hnew = reduceb cm basis in | |
reduce basis (grob_add q ptl,Add(hnew,hist)) | |
with Failure _ -> | |
let q,hist' = reduce basis (ptl,hist) in | |
cm::q,hist';; | |
(* ------------------------------------------------------------------------- *) | |
(* Check for orthogonality w.r.t. LCM. *) | |
(* ------------------------------------------------------------------------- *) | |
let orthogonal l p1 p2 = | |
snd l = snd(grob_mmul (hd p1) (hd p2));; | |
(* ------------------------------------------------------------------------- *) | |
(* Compute S-polynomial of two polynomials. *) | |
(* ------------------------------------------------------------------------- *) | |
let spoly cm ph1 ph2 = | |
match (ph1,ph2) with | |
([],h),p -> ([],h) | |
| p,([],h) -> ([],h) | |
| (cm1::ptl1,his1),(cm2::ptl2,his2) -> | |
(grob_sub (grob_cmul (mdiv cm cm1) ptl1) | |
(grob_cmul (mdiv cm cm2) ptl2), | |
Add(Mmul(mdiv cm cm1,his1), | |
Mmul(mdiv (minus_num(fst cm),snd cm) cm2,his2)));; | |
(* ------------------------------------------------------------------------- *) | |
(* Make a polynomial monic. *) | |
(* ------------------------------------------------------------------------- *) | |
let monic (pol,hist) = | |
if pol = [] then (pol,hist) else | |
let c',m' = hd pol in | |
(map (fun (c,m) -> (c//c',m)) pol, | |
Mmul((Int 1 // c',map (K 0) m'),hist));; | |
(* ------------------------------------------------------------------------- *) | |
(* The most popular heuristic is to order critical pairs by LCM monomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let forder ((c1,m1),_) ((c2,m2),_) = morder_lt m1 m2;; | |
(* ------------------------------------------------------------------------- *) | |
(* Stupid stuff forced on us by lack of equality test on num type. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec poly_lt p q = | |
match (p,q) with | |
p,[] -> false | |
| [],q -> true | |
| (c1,m1)::o1,(c2,m2)::o2 -> | |
c1 </ c2 || | |
c1 =/ c2 && (m1 < m2 || m1 = m2 && poly_lt o1 o2);; | |
let align ((p,hp),(q,hq)) = | |
if poly_lt p q then ((p,hp),(q,hq)) else ((q,hq),(p,hp));; | |
let poly_eq p1 p2 = | |
forall2 (fun (c1,m1) (c2,m2) -> c1 =/ c2 && m1 = m2) p1 p2;; | |
let memx ((p1,h1),(p2,h2)) ppairs = | |
not (exists (fun ((q1,_),(q2,_)) -> poly_eq p1 q1 && poly_eq p2 q2) ppairs);; | |
(* ------------------------------------------------------------------------- *) | |
(* Buchberger's second criterion. *) | |
(* ------------------------------------------------------------------------- *) | |
let criterion2 basis (lcm,((p1,h1),(p2,h2))) opairs = | |
exists (fun g -> not(poly_eq (fst g) p1) && not(poly_eq (fst g) p2) && | |
can (mdiv lcm) (hd(fst g)) && | |
not(memx (align(g,(p1,h1))) (map snd opairs)) && | |
not(memx (align(g,(p2,h2))) (map snd opairs))) basis;; | |
(* ------------------------------------------------------------------------- *) | |
(* Test for hitting constant polynomial. *) | |
(* ------------------------------------------------------------------------- *) | |
let constant_poly p = | |
length p = 1 && forall ((=) 0) (snd(hd p));; | |
(* ------------------------------------------------------------------------- *) | |
(* Grobner basis algorithm. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec grobner histories basis pairs = | |
print_string(string_of_int(length basis)^" basis elements and "^ | |
string_of_int(length pairs)^" critical pairs"); | |
print_newline(); | |
match pairs with | |
[] -> rev histories,basis | |
| (l,(p1,p2))::opairs -> | |
let (sp,hist) = monic (reduce basis (spoly l p1 p2)) in | |
if sp = [] || criterion2 basis (l,(p1,p2)) opairs | |
then grobner histories basis opairs else | |
let sph = sp,Start(length histories) in | |
if constant_poly sp | |
then grobner ((sp,hist)::histories) (sph::basis) [] else | |
let rawcps = | |
map (fun p -> mlcm (hd(fst p)) (hd sp),align(p,sph)) basis in | |
let newcps = filter | |
(fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) rawcps in | |
grobner ((sp,hist)::histories) (sph::basis) | |
(merge forder opairs (sort forder newcps));; | |
(* ------------------------------------------------------------------------- *) | |
(* Overall function. *) | |
(* ------------------------------------------------------------------------- *) | |
let groebner pols = | |
let npols = map2 (fun p n -> p,Start n) pols (0--(length pols - 1)) in | |
let phists = filter (fun (p,_) -> p <> []) npols in | |
let bas0 = map monic phists in | |
let bas = map2 (fun (p,h) n -> p,Start n) bas0 | |
((length bas0)--(2 * length bas0 - 1)) in | |
let prs0 = allpairs (fun x y -> x,y) bas bas in | |
let prs1 = filter (fun ((x,_),(y,_)) -> poly_lt x y) prs0 in | |
let prs2 = map (fun (p,q) -> mlcm (hd(fst p)) (hd(fst q)),(p,q)) prs1 in | |
let prs3 = filter (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) prs2 in | |
grobner (rev bas0 @ rev phists) bas (mergesort forder prs3);; | |
(* ------------------------------------------------------------------------- *) | |
(* Alternative orthography. *) | |
(* ------------------------------------------------------------------------- *) | |
let gr'o'bner = groebner;; | |
(* ------------------------------------------------------------------------- *) | |
(* Conversion from HOL term. *) | |
(* ------------------------------------------------------------------------- *) | |
let grobify_term = | |
let neg_tm = `(--):complex->complex` | |
and add_tm = `(+):complex->complex->complex` | |
and sub_tm = `(-):complex->complex->complex` | |
and mul_tm = `(*):complex->complex->complex` | |
and pow_tm = `(pow):complex->num->complex` in | |
let rec grobify_term vars tm = | |
try grob_var vars tm with Failure _ -> | |
try grob_const vars tm with Failure _ -> | |
let lop,r = dest_comb tm in | |
if lop = neg_tm then grob_neg(grobify_term vars r) else | |
let op,l = dest_comb lop in | |
if op = pow_tm then | |
grob_pow vars (grobify_term vars l) (dest_small_numeral r) | |
else | |
(if op = add_tm then grob_add else if op = sub_tm then grob_sub | |
else if op = mul_tm then grob_mul else failwith "unknown term") | |
(grobify_term vars l) (grobify_term vars r) in | |
fun vars tm -> | |
try grobify_term vars tm with Failure _ -> failwith "grobify_term";; | |
let grobvars = | |
let neg_tm = `(--):complex->complex` | |
and add_tm = `(+):complex->complex->complex` | |
and sub_tm = `(-):complex->complex->complex` | |
and mul_tm = `(*):complex->complex->complex` | |
and pow_tm = `(pow):complex->num->complex` in | |
let rec grobvars tm acc = | |
if is_complex_const tm then acc | |
else if not (is_comb tm) then tm::acc else | |
let lop,r = dest_comb tm in | |
if lop = neg_tm then grobvars r acc | |
else if not (is_comb lop) then tm::acc else | |
let op,l = dest_comb lop in | |
if op = pow_tm then grobvars l acc | |
else if op = mul_tm || op = sub_tm || op = add_tm | |
then grobvars l (grobvars r acc) | |
else tm::acc in | |
fun tm -> setify(grobvars tm []);; | |
let grobify_equations = | |
let zero_tm = `Cx(&0)` | |
and sub_tm = `(-):complex->complex->complex` | |
and complex_ty = `:complex` in | |
let grobify_equation vars tm = | |
let l,r = dest_eq tm in | |
if r <> zero_tm then grobify_term vars (mk_comb(mk_comb(sub_tm,l),r)) | |
else grobify_term vars l in | |
fun tm -> | |
let cjs = conjuncts tm in | |
let rawvars = itlist | |
(fun eq acc -> let l,r = dest_eq eq in | |
union (union (grobvars l) (grobvars r)) acc) cjs [] in | |
let vars = sort (fun x y -> x < y) rawvars in | |
vars,map(grobify_equation vars) cjs;; | |
(* ------------------------------------------------------------------------- *) | |
(* Printer. *) | |
(* ------------------------------------------------------------------------- *) | |
let string_of_monomial vars (c,m) = | |
let xns = filter (fun (x,y) -> y <> 0) (map2 (fun x y -> x,y) vars m) in | |
let xnstrs = map | |
(fun (x,n) -> x^(if n = 1 then "" else "^"^(string_of_int n))) xns in | |
if xns = [] then Num.string_of_num c else | |
let basstr = if c =/ Int 1 then "" else (Num.string_of_num c)^" * " in | |
basstr ^ end_itlist (fun s t -> s^" * "^t) xnstrs;; | |
let string_of_polynomial vars l = | |
if l = [] then "0" else | |
end_itlist (fun s t -> s^" + "^t) (map (string_of_monomial vars) l);; | |
(* ------------------------------------------------------------------------- *) | |
(* Resolve a proof. *) | |
(* ------------------------------------------------------------------------- *) | |
let rec resolve_proof vars prf = | |
match prf with | |
Start n -> | |
[n,[Int 1,map (K 0) vars]] | |
| Mmul(pol,lin) -> | |
let lis = resolve_proof vars lin in | |
map (fun (n,p) -> n,grob_cmul pol p) lis | |
| Add(lin1,lin2) -> | |
let lis1 = resolve_proof vars lin1 | |
and lis2 = resolve_proof vars lin2 in | |
let dom = setify(union (map fst lis1) (map fst lis2)) in | |
map (fun n -> let a = try assoc n lis1 with Failure _ -> [] | |
and b = try assoc n lis2 with Failure _ -> [] in | |
n,grob_add a b) dom;; | |
(* ------------------------------------------------------------------------- *) | |
(* Convert a polynomial back to HOL. *) | |
(* ------------------------------------------------------------------------- *) | |
let holify_polynomial = | |
let complex_ty = `:complex` | |
and pow_tm = `(pow):complex->num->complex` | |
and mk_mul = mk_binop `(*):complex->complex->complex` | |
and mk_add = mk_binop `(+):complex->complex->complex` | |
and zero_tm = `Cx(&0)` | |
and add_tm = `(+):complex->complex->complex` | |
and mul_tm = `(*):complex->complex->complex` | |
and complex_term_of_rat = curry mk_comb `Cx` o term_of_rat in | |
let holify_varpow (v,n) = | |
if n = 1 then v | |
else list_mk_comb(pow_tm,[v;mk_small_numeral n]) in | |
let holify_monomial vars (c,m) = | |
let xps = map holify_varpow (filter (fun (_,n) -> n <> 0) (zip vars m)) in | |
end_itlist mk_mul (complex_term_of_rat c :: xps) in | |
let holify_polynomial vars p = | |
if p = [] then zero_tm | |
else end_itlist mk_add (map (holify_monomial vars) p) in | |
holify_polynomial;; | |
(* ------------------------------------------------------------------------- *) | |
(* Recursively find the set of basis elements involved. *) | |
(* ------------------------------------------------------------------------- *) | |
let dependencies = | |
let rec dependencies prf acc = | |
match prf with | |
Start n -> n::acc | |
| Mmul(pol,lin) -> dependencies lin acc | |
| Add(lin1,lin2) -> dependencies lin1 (dependencies lin2 acc) in | |
fun prf -> setify(dependencies prf []);; | |
let rec involved deps sofar todo = | |
match todo with | |
[] -> sort (<) sofar | |
| (h::hs) -> | |
if mem h sofar then involved deps sofar hs | |
else involved deps (h::sofar) (el h deps @ hs);; | |
(* ------------------------------------------------------------------------- *) | |
(* Refute a conjunction of equations in HOL. *) | |
(* ------------------------------------------------------------------------- *) | |
let GROBNER_REFUTE = | |
let add_tm = `(+):complex->complex->complex` | |
and mul_tm = `(*):complex->complex->complex` in | |
let APPLY_pth = MATCH_MP(SIMPLE_COMPLEX_ARITH | |
`(x = y) ==> (x + Cx(--(&1)) * (y + Cx(&1)) = Cx(&0)) ==> F`) | |
and MK_ADD th1 th2 = MK_COMB(AP_TERM add_tm th1,th2) in | |
let rec holify_lincombs vars cjs prfs = | |
match prfs with | |
[] -> cjs | |
| (p::ps) -> | |
if p = [] then holify_lincombs vars (cjs @ [TRUTH]) ps else | |
let holis = map (fun (n,q) -> n,holify_polynomial vars q) p in | |
let ths = | |
map (fun (n,m) -> AP_TERM (mk_comb(mul_tm,m)) (el n cjs)) holis in | |
let th = CONV_RULE(BINOP_CONV COMPLEX_POLY_CONV) | |
(end_itlist MK_ADD ths) in | |
holify_lincombs vars (cjs @ [th]) ps in | |
fun tm -> | |
let vars,pols = grobify_equations tm in | |
let (prfs,gb) = groebner pols in | |
let (_,prf) = | |
find (fun (p,h) -> length p = 1 && forall ((=)0) (snd(hd p))) gb in | |
let deps = map (dependencies o snd) prfs | |
and depl = dependencies prf in | |
let need = involved deps [] depl in | |
let pprfs = | |
map2 (fun p n -> if mem n need then resolve_proof vars (snd p) else []) | |
prfs (0--(length prfs - 1)) | |
and ppr = resolve_proof vars prf in | |
let ths = CONJUNCTS(ASSUME tm) in | |
let th = last | |
(holify_lincombs vars ths (snd(chop_list(length ths) (pprfs @ [ppr])))) in | |
CONV_RULE COMPLEX_RAT_EQ_CONV th;; | |
(* ------------------------------------------------------------------------- *) | |
(* Overall conversion. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLEX_ARITH = | |
let pth0 = SIMPLE_COMPLEX_ARITH `(x = y) <=> (x - y = Cx(&0))` | |
and pth1 = prove | |
(`!x. ~(x = Cx(&0)) <=> ?z. z * x + Cx(&1) = Cx(&0)`, | |
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV)) | |
and pth2a = prove | |
(`!x y u v. ~(x = y) \/ ~(u = v) <=> | |
?w z. w * (x - y) + z * (u - v) + Cx(&1) = Cx(&0)`, | |
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV)) | |
and pth2b = prove | |
(`!x y. ~(x = y) <=> ?z. z * (x - y) + Cx(&1) = Cx(&0)`, | |
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV)) | |
and pth3 = TAUT `(p ==> F) ==> (~q <=> p) ==> q` in | |
let GEN_PRENEX_CONV = | |
GEN_REWRITE_CONV REDEPTH_CONV | |
[AND_FORALL_THM; | |
LEFT_AND_FORALL_THM; | |
RIGHT_AND_FORALL_THM; | |
LEFT_OR_FORALL_THM; | |
RIGHT_OR_FORALL_THM; | |
OR_EXISTS_THM; | |
LEFT_OR_EXISTS_THM; | |
RIGHT_OR_EXISTS_THM; | |
LEFT_AND_EXISTS_THM; | |
RIGHT_AND_EXISTS_THM] in | |
let INITIAL_CONV = | |
NNF_CONV THENC | |
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth1] THENC | |
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2a] THENC | |
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2b] THENC | |
ONCE_DEPTH_CONV(GEN_REWRITE_CONV I [pth0] o | |
check ((<>) `Cx(&0)` o rand)) THENC | |
GEN_PRENEX_CONV THENC | |
DNF_CONV in | |
fun tm -> | |
let avs = frees tm in | |
let tm' = list_mk_forall(avs,tm) in | |
let th1 = INITIAL_CONV(mk_neg tm') in | |
let evs,bod = strip_exists(rand(concl th1)) in | |
if is_forall bod then failwith "COMPLEX_ARITH: non-universal formula" else | |
let djs = disjuncts bod in | |
let th2 = end_itlist SIMPLE_DISJ_CASES(map GROBNER_REFUTE djs) in | |
let th3 = itlist SIMPLE_CHOOSE evs th2 in | |
SPECL avs (MATCH_MP (MATCH_MP pth3 (DISCH_ALL th3)) th1);; | |