Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /hol /Complex /complex_grobner.ml
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
20.7 kB
(* ========================================================================= *)
(* Grobner basis algorithm. *)
(* ========================================================================= *)
needs "Complex/complexnumbers.ml";;
needs "Complex/quelim.ml";;
prioritize_complex();;
(* ------------------------------------------------------------------------- *)
(* Utility functions. *)
(* ------------------------------------------------------------------------- *)
let allpairs f l1 l2 =
itlist ((@) o C map l2 o f) l1 [];;
let rec merge ord l1 l2 =
match l1 with
[] -> l2
| h1::t1 -> match l2 with
[] -> l1
| h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
else h2::(merge ord l1 t2);;
let sort ord =
let rec mergepairs l1 l2 =
match (l1,l2) with
([s],[]) -> s
| (l,[]) -> mergepairs [] l
| (l,[s1]) -> mergepairs (s1::l) []
| (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in
fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);;
(* ------------------------------------------------------------------------- *)
(* Type for recording history, i.e. how a polynomial was obtained. *)
(* ------------------------------------------------------------------------- *)
type history =
Start of int
| Mmul of (num * (int list)) * history
| Add of history * history;;
(* ------------------------------------------------------------------------- *)
(* Conversion of leaves, i.e. variables and constant rational constants. *)
(* ------------------------------------------------------------------------- *)
let grob_var vars tm =
let res = map (fun i -> if i = tm then 1 else 0) vars in
if exists (fun x -> x <> 0) res then [Int 1,res] else failwith "grob_var";;
let grob_const =
let cx_tm = `Cx` in
fun vars tm ->
try let l,r = dest_comb tm in
if l = cx_tm then
let x = rat_of_term r in
if x =/ Int 0 then [] else [x,map (fun v -> 0) vars]
else failwith ""
with Failure _ -> failwith "grob_const";;
(* ------------------------------------------------------------------------- *)
(* Monomial ordering. *)
(* ------------------------------------------------------------------------- *)
let morder_lt =
let rec lexorder l1 l2 =
match (l1,l2) with
[],[] -> false
| (x1::o1,x2::o2) -> x1 > x2 || x1 = x2 && lexorder o1 o2
| _ -> failwith "morder: inconsistent monomial lengths" in
fun m1 m2 -> let n1 = itlist (+) m1 0
and n2 = itlist (+) m2 0 in
n1 < n2 || n1 = n2 && lexorder m1 m2;;
let morder_le m1 m2 = morder_lt m1 m2 || (m1 = m2);;
let morder_gt m1 m2 = morder_lt m2 m1;;
(* ------------------------------------------------------------------------- *)
(* Arithmetic on canonical polynomials. *)
(* ------------------------------------------------------------------------- *)
let grob_neg = map (fun (c,m) -> (minus_num c,m));;
let rec grob_add l1 l2 =
match (l1,l2) with
([],l2) -> l2
| (l1,[]) -> l1
| ((c1,m1)::o1,(c2,m2)::o2) ->
if m1 = m2 then
let c = c1+/c2 and rest = grob_add o1 o2 in
if c =/ Int 0 then rest else (c,m1)::rest
else if morder_lt m2 m1 then (c1,m1)::(grob_add o1 l2)
else (c2,m2)::(grob_add l1 o2);;
let grob_sub l1 l2 = grob_add l1 (grob_neg l2);;
let grob_mmul (c1,m1) (c2,m2) = (c1*/c2,map2 (+) m1 m2);;
let rec grob_cmul cm pol = map (grob_mmul cm) pol;;
let rec grob_mul l1 l2 =
match l1 with
[] -> []
| (h1::t1) -> grob_add (grob_cmul h1 l2) (grob_mul t1 l2);;
let rec grob_pow vars l n =
if n < 0 then failwith "grob_pow: negative power"
else if n = 0 then [Int 1,map (fun v -> 0) vars]
else grob_mul l (grob_pow vars l (n - 1));;
(* ------------------------------------------------------------------------- *)
(* Monomial division operation. *)
(* ------------------------------------------------------------------------- *)
let mdiv (c1,m1) (c2,m2) =
(c1//c2,
map2 (fun n1 n2 -> if n1 < n2 then failwith "mdiv" else n1-n2) m1 m2);;
(* ------------------------------------------------------------------------- *)
(* Lowest common multiple of two monomials. *)
(* ------------------------------------------------------------------------- *)
let mlcm (c1,m1) (c2,m2) = (Int 1,map2 max m1 m2);;
(* ------------------------------------------------------------------------- *)
(* Reduce monomial cm by polynomial pol, returning replacement for cm. *)
(* ------------------------------------------------------------------------- *)
let reduce1 cm (pol,hpol) =
match pol with
[] -> failwith "reduce1"
| cm1::cms -> try let (c,m) = mdiv cm cm1 in
(grob_cmul (minus_num c,m) cms,
Mmul((minus_num c,m),hpol))
with Failure _ -> failwith "reduce1";;
(* ------------------------------------------------------------------------- *)
(* Try this for all polynomials in a basis. *)
(* ------------------------------------------------------------------------- *)
let reduceb cm basis = tryfind (fun p -> reduce1 cm p) basis;;
(* ------------------------------------------------------------------------- *)
(* Reduction of a polynomial (always picking largest monomial possible). *)
(* ------------------------------------------------------------------------- *)
let rec reduce basis (pol,hist) =
match pol with
[] -> (pol,hist)
| cm::ptl -> try let q,hnew = reduceb cm basis in
reduce basis (grob_add q ptl,Add(hnew,hist))
with Failure _ ->
let q,hist' = reduce basis (ptl,hist) in
cm::q,hist';;
(* ------------------------------------------------------------------------- *)
(* Check for orthogonality w.r.t. LCM. *)
(* ------------------------------------------------------------------------- *)
let orthogonal l p1 p2 =
snd l = snd(grob_mmul (hd p1) (hd p2));;
(* ------------------------------------------------------------------------- *)
(* Compute S-polynomial of two polynomials. *)
(* ------------------------------------------------------------------------- *)
let spoly cm ph1 ph2 =
match (ph1,ph2) with
([],h),p -> ([],h)
| p,([],h) -> ([],h)
| (cm1::ptl1,his1),(cm2::ptl2,his2) ->
(grob_sub (grob_cmul (mdiv cm cm1) ptl1)
(grob_cmul (mdiv cm cm2) ptl2),
Add(Mmul(mdiv cm cm1,his1),
Mmul(mdiv (minus_num(fst cm),snd cm) cm2,his2)));;
(* ------------------------------------------------------------------------- *)
(* Make a polynomial monic. *)
(* ------------------------------------------------------------------------- *)
let monic (pol,hist) =
if pol = [] then (pol,hist) else
let c',m' = hd pol in
(map (fun (c,m) -> (c//c',m)) pol,
Mmul((Int 1 // c',map (K 0) m'),hist));;
(* ------------------------------------------------------------------------- *)
(* The most popular heuristic is to order critical pairs by LCM monomial. *)
(* ------------------------------------------------------------------------- *)
let forder ((c1,m1),_) ((c2,m2),_) = morder_lt m1 m2;;
(* ------------------------------------------------------------------------- *)
(* Stupid stuff forced on us by lack of equality test on num type. *)
(* ------------------------------------------------------------------------- *)
let rec poly_lt p q =
match (p,q) with
p,[] -> false
| [],q -> true
| (c1,m1)::o1,(c2,m2)::o2 ->
c1 </ c2 ||
c1 =/ c2 && (m1 < m2 || m1 = m2 && poly_lt o1 o2);;
let align ((p,hp),(q,hq)) =
if poly_lt p q then ((p,hp),(q,hq)) else ((q,hq),(p,hp));;
let poly_eq p1 p2 =
forall2 (fun (c1,m1) (c2,m2) -> c1 =/ c2 && m1 = m2) p1 p2;;
let memx ((p1,h1),(p2,h2)) ppairs =
not (exists (fun ((q1,_),(q2,_)) -> poly_eq p1 q1 && poly_eq p2 q2) ppairs);;
(* ------------------------------------------------------------------------- *)
(* Buchberger's second criterion. *)
(* ------------------------------------------------------------------------- *)
let criterion2 basis (lcm,((p1,h1),(p2,h2))) opairs =
exists (fun g -> not(poly_eq (fst g) p1) && not(poly_eq (fst g) p2) &&
can (mdiv lcm) (hd(fst g)) &&
not(memx (align(g,(p1,h1))) (map snd opairs)) &&
not(memx (align(g,(p2,h2))) (map snd opairs))) basis;;
(* ------------------------------------------------------------------------- *)
(* Test for hitting constant polynomial. *)
(* ------------------------------------------------------------------------- *)
let constant_poly p =
length p = 1 && forall ((=) 0) (snd(hd p));;
(* ------------------------------------------------------------------------- *)
(* Grobner basis algorithm. *)
(* ------------------------------------------------------------------------- *)
let rec grobner histories basis pairs =
print_string(string_of_int(length basis)^" basis elements and "^
string_of_int(length pairs)^" critical pairs");
print_newline();
match pairs with
[] -> rev histories,basis
| (l,(p1,p2))::opairs ->
let (sp,hist) = monic (reduce basis (spoly l p1 p2)) in
if sp = [] || criterion2 basis (l,(p1,p2)) opairs
then grobner histories basis opairs else
let sph = sp,Start(length histories) in
if constant_poly sp
then grobner ((sp,hist)::histories) (sph::basis) [] else
let rawcps =
map (fun p -> mlcm (hd(fst p)) (hd sp),align(p,sph)) basis in
let newcps = filter
(fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) rawcps in
grobner ((sp,hist)::histories) (sph::basis)
(merge forder opairs (sort forder newcps));;
(* ------------------------------------------------------------------------- *)
(* Overall function. *)
(* ------------------------------------------------------------------------- *)
let groebner pols =
let npols = map2 (fun p n -> p,Start n) pols (0--(length pols - 1)) in
let phists = filter (fun (p,_) -> p <> []) npols in
let bas0 = map monic phists in
let bas = map2 (fun (p,h) n -> p,Start n) bas0
((length bas0)--(2 * length bas0 - 1)) in
let prs0 = allpairs (fun x y -> x,y) bas bas in
let prs1 = filter (fun ((x,_),(y,_)) -> poly_lt x y) prs0 in
let prs2 = map (fun (p,q) -> mlcm (hd(fst p)) (hd(fst q)),(p,q)) prs1 in
let prs3 = filter (fun (l,(p,q)) -> not(orthogonal l (fst p) (fst q))) prs2 in
grobner (rev bas0 @ rev phists) bas (mergesort forder prs3);;
(* ------------------------------------------------------------------------- *)
(* Alternative orthography. *)
(* ------------------------------------------------------------------------- *)
let gr'o'bner = groebner;;
(* ------------------------------------------------------------------------- *)
(* Conversion from HOL term. *)
(* ------------------------------------------------------------------------- *)
let grobify_term =
let neg_tm = `(--):complex->complex`
and add_tm = `(+):complex->complex->complex`
and sub_tm = `(-):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and pow_tm = `(pow):complex->num->complex` in
let rec grobify_term vars tm =
try grob_var vars tm with Failure _ ->
try grob_const vars tm with Failure _ ->
let lop,r = dest_comb tm in
if lop = neg_tm then grob_neg(grobify_term vars r) else
let op,l = dest_comb lop in
if op = pow_tm then
grob_pow vars (grobify_term vars l) (dest_small_numeral r)
else
(if op = add_tm then grob_add else if op = sub_tm then grob_sub
else if op = mul_tm then grob_mul else failwith "unknown term")
(grobify_term vars l) (grobify_term vars r) in
fun vars tm ->
try grobify_term vars tm with Failure _ -> failwith "grobify_term";;
let grobvars =
let neg_tm = `(--):complex->complex`
and add_tm = `(+):complex->complex->complex`
and sub_tm = `(-):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and pow_tm = `(pow):complex->num->complex` in
let rec grobvars tm acc =
if is_complex_const tm then acc
else if not (is_comb tm) then tm::acc else
let lop,r = dest_comb tm in
if lop = neg_tm then grobvars r acc
else if not (is_comb lop) then tm::acc else
let op,l = dest_comb lop in
if op = pow_tm then grobvars l acc
else if op = mul_tm || op = sub_tm || op = add_tm
then grobvars l (grobvars r acc)
else tm::acc in
fun tm -> setify(grobvars tm []);;
let grobify_equations =
let zero_tm = `Cx(&0)`
and sub_tm = `(-):complex->complex->complex`
and complex_ty = `:complex` in
let grobify_equation vars tm =
let l,r = dest_eq tm in
if r <> zero_tm then grobify_term vars (mk_comb(mk_comb(sub_tm,l),r))
else grobify_term vars l in
fun tm ->
let cjs = conjuncts tm in
let rawvars = itlist
(fun eq acc -> let l,r = dest_eq eq in
union (union (grobvars l) (grobvars r)) acc) cjs [] in
let vars = sort (fun x y -> x < y) rawvars in
vars,map(grobify_equation vars) cjs;;
(* ------------------------------------------------------------------------- *)
(* Printer. *)
(* ------------------------------------------------------------------------- *)
let string_of_monomial vars (c,m) =
let xns = filter (fun (x,y) -> y <> 0) (map2 (fun x y -> x,y) vars m) in
let xnstrs = map
(fun (x,n) -> x^(if n = 1 then "" else "^"^(string_of_int n))) xns in
if xns = [] then Num.string_of_num c else
let basstr = if c =/ Int 1 then "" else (Num.string_of_num c)^" * " in
basstr ^ end_itlist (fun s t -> s^" * "^t) xnstrs;;
let string_of_polynomial vars l =
if l = [] then "0" else
end_itlist (fun s t -> s^" + "^t) (map (string_of_monomial vars) l);;
(* ------------------------------------------------------------------------- *)
(* Resolve a proof. *)
(* ------------------------------------------------------------------------- *)
let rec resolve_proof vars prf =
match prf with
Start n ->
[n,[Int 1,map (K 0) vars]]
| Mmul(pol,lin) ->
let lis = resolve_proof vars lin in
map (fun (n,p) -> n,grob_cmul pol p) lis
| Add(lin1,lin2) ->
let lis1 = resolve_proof vars lin1
and lis2 = resolve_proof vars lin2 in
let dom = setify(union (map fst lis1) (map fst lis2)) in
map (fun n -> let a = try assoc n lis1 with Failure _ -> []
and b = try assoc n lis2 with Failure _ -> [] in
n,grob_add a b) dom;;
(* ------------------------------------------------------------------------- *)
(* Convert a polynomial back to HOL. *)
(* ------------------------------------------------------------------------- *)
let holify_polynomial =
let complex_ty = `:complex`
and pow_tm = `(pow):complex->num->complex`
and mk_mul = mk_binop `(*):complex->complex->complex`
and mk_add = mk_binop `(+):complex->complex->complex`
and zero_tm = `Cx(&0)`
and add_tm = `(+):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex`
and complex_term_of_rat = curry mk_comb `Cx` o term_of_rat in
let holify_varpow (v,n) =
if n = 1 then v
else list_mk_comb(pow_tm,[v;mk_small_numeral n]) in
let holify_monomial vars (c,m) =
let xps = map holify_varpow (filter (fun (_,n) -> n <> 0) (zip vars m)) in
end_itlist mk_mul (complex_term_of_rat c :: xps) in
let holify_polynomial vars p =
if p = [] then zero_tm
else end_itlist mk_add (map (holify_monomial vars) p) in
holify_polynomial;;
(* ------------------------------------------------------------------------- *)
(* Recursively find the set of basis elements involved. *)
(* ------------------------------------------------------------------------- *)
let dependencies =
let rec dependencies prf acc =
match prf with
Start n -> n::acc
| Mmul(pol,lin) -> dependencies lin acc
| Add(lin1,lin2) -> dependencies lin1 (dependencies lin2 acc) in
fun prf -> setify(dependencies prf []);;
let rec involved deps sofar todo =
match todo with
[] -> sort (<) sofar
| (h::hs) ->
if mem h sofar then involved deps sofar hs
else involved deps (h::sofar) (el h deps @ hs);;
(* ------------------------------------------------------------------------- *)
(* Refute a conjunction of equations in HOL. *)
(* ------------------------------------------------------------------------- *)
let GROBNER_REFUTE =
let add_tm = `(+):complex->complex->complex`
and mul_tm = `(*):complex->complex->complex` in
let APPLY_pth = MATCH_MP(SIMPLE_COMPLEX_ARITH
`(x = y) ==> (x + Cx(--(&1)) * (y + Cx(&1)) = Cx(&0)) ==> F`)
and MK_ADD th1 th2 = MK_COMB(AP_TERM add_tm th1,th2) in
let rec holify_lincombs vars cjs prfs =
match prfs with
[] -> cjs
| (p::ps) ->
if p = [] then holify_lincombs vars (cjs @ [TRUTH]) ps else
let holis = map (fun (n,q) -> n,holify_polynomial vars q) p in
let ths =
map (fun (n,m) -> AP_TERM (mk_comb(mul_tm,m)) (el n cjs)) holis in
let th = CONV_RULE(BINOP_CONV COMPLEX_POLY_CONV)
(end_itlist MK_ADD ths) in
holify_lincombs vars (cjs @ [th]) ps in
fun tm ->
let vars,pols = grobify_equations tm in
let (prfs,gb) = groebner pols in
let (_,prf) =
find (fun (p,h) -> length p = 1 && forall ((=)0) (snd(hd p))) gb in
let deps = map (dependencies o snd) prfs
and depl = dependencies prf in
let need = involved deps [] depl in
let pprfs =
map2 (fun p n -> if mem n need then resolve_proof vars (snd p) else [])
prfs (0--(length prfs - 1))
and ppr = resolve_proof vars prf in
let ths = CONJUNCTS(ASSUME tm) in
let th = last
(holify_lincombs vars ths (snd(chop_list(length ths) (pprfs @ [ppr])))) in
CONV_RULE COMPLEX_RAT_EQ_CONV th;;
(* ------------------------------------------------------------------------- *)
(* Overall conversion. *)
(* ------------------------------------------------------------------------- *)
let COMPLEX_ARITH =
let pth0 = SIMPLE_COMPLEX_ARITH `(x = y) <=> (x - y = Cx(&0))`
and pth1 = prove
(`!x. ~(x = Cx(&0)) <=> ?z. z * x + Cx(&1) = Cx(&0)`,
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
and pth2a = prove
(`!x y u v. ~(x = y) \/ ~(u = v) <=>
?w z. w * (x - y) + z * (u - v) + Cx(&1) = Cx(&0)`,
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
and pth2b = prove
(`!x y. ~(x = y) <=> ?z. z * (x - y) + Cx(&1) = Cx(&0)`,
CONV_TAC(time FULL_COMPLEX_QUELIM_CONV))
and pth3 = TAUT `(p ==> F) ==> (~q <=> p) ==> q` in
let GEN_PRENEX_CONV =
GEN_REWRITE_CONV REDEPTH_CONV
[AND_FORALL_THM;
LEFT_AND_FORALL_THM;
RIGHT_AND_FORALL_THM;
LEFT_OR_FORALL_THM;
RIGHT_OR_FORALL_THM;
OR_EXISTS_THM;
LEFT_OR_EXISTS_THM;
RIGHT_OR_EXISTS_THM;
LEFT_AND_EXISTS_THM;
RIGHT_AND_EXISTS_THM] in
let INITIAL_CONV =
NNF_CONV THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth1] THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2a] THENC
GEN_REWRITE_CONV ONCE_DEPTH_CONV [pth2b] THENC
ONCE_DEPTH_CONV(GEN_REWRITE_CONV I [pth0] o
check ((<>) `Cx(&0)` o rand)) THENC
GEN_PRENEX_CONV THENC
DNF_CONV in
fun tm ->
let avs = frees tm in
let tm' = list_mk_forall(avs,tm) in
let th1 = INITIAL_CONV(mk_neg tm') in
let evs,bod = strip_exists(rand(concl th1)) in
if is_forall bod then failwith "COMPLEX_ARITH: non-universal formula" else
let djs = disjuncts bod in
let th2 = end_itlist SIMPLE_DISJ_CASES(map GROBNER_REFUTE djs) in
let th3 = itlist SIMPLE_CHOOSE evs th2 in
SPECL avs (MATCH_MP (MATCH_MP pth3 (DISCH_ALL th3)) th1);;