Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : main.ml *) | |
(* DESCRIPTION : The main functions for the Boyer-Moore-style prover. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 27th June 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 13th October 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : July 2009 *) | |
(******************************************************************************) | |
(*----------------------------------------------------------------------------*) | |
(* BOYER_MOORE : conv *) | |
(* *) | |
(* Boyer-Moore-style automatic theorem prover. *) | |
(* Given a term "tm", attempts to prove |- tm. *) | |
(*----------------------------------------------------------------------------*) | |
let BOYER_MOORE_FINAL l tm = | |
my_gen_terms := []; | |
counterexamples := 0; | |
proof_print_depth := 0; | |
bm_steps := (0,0); | |
try (proof_print_newline | |
(FILTERED_WATERFALL | |
[taut_heuristic; | |
clausal_form_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
use_equality_heuristic; | |
generalize_heuristic_ext; | |
irrelevance_heuristic] | |
induction_heuristic [] | |
(tm,false)) | |
) with Failure _ -> failwith "BOYER_MOORE";; | |
let BOYER_MOORE_MESON l tm = | |
my_gen_terms := []; | |
counterexamples := 0; | |
proof_print_depth := 0; | |
bm_steps := (0,0); | |
try (proof_print_newline | |
(FILTERED_WATERFALL | |
[taut_heuristic; | |
clausal_form_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
meson_heuristic l; | |
use_equality_heuristic; | |
generalize_heuristic_aderhold; | |
irrelevance_heuristic] | |
induction_heuristic [] | |
(tm,false)) | |
) with Failure _ -> failwith "BOYER_MOORE";; | |
let BOYER_MOORE_GEN l tm = | |
my_gen_terms := []; | |
counterexamples := 0; | |
proof_print_depth := 0; | |
bm_steps := (0,0); | |
try (proof_print_newline | |
(FILTERED_WATERFALL | |
[taut_heuristic; | |
clausal_form_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
use_equality_heuristic; | |
generalize_heuristic_aderhold; | |
irrelevance_heuristic] | |
induction_heuristic [] | |
(tm,false)) | |
) with Failure _ -> failwith "BOYER_MOORE";; | |
let BOYER_MOORE_EXT tm = | |
my_gen_terms := []; | |
counterexamples := 0; | |
proof_print_depth := 0; | |
bm_steps := (0,0); | |
try (proof_print_newline | |
(FILTERED_WATERFALL | |
[taut_heuristic; | |
clausal_form_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
use_equality_heuristic; | |
simplify_heuristic; | |
(* meson_heuristic; *) | |
generalize_heuristic; | |
irrelevance_heuristic] | |
induction_heuristic [] | |
(tm,false)) | |
) with Failure _ -> failwith "BOYER_MOORE";; | |
let BOYER_MOORE_RE l tm = | |
my_gen_terms := []; | |
counterexamples := 0; | |
proof_print_depth := 0; | |
bm_steps := (0,0); | |
try (proof_print_newline | |
(FILTERED_WATERFALL | |
[taut_heuristic; | |
clausal_form_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
use_equality_heuristic; | |
HL_simplify_heuristic l; | |
(* meson_heuristic; *) | |
generalize_heuristic; | |
irrelevance_heuristic] | |
induction_heuristic [] | |
(tm,false)) | |
) with Failure _ -> failwith "BOYER_MOORE";; | |
let BOYER_MOORE tm = | |
counterexamples := 0; | |
my_gen_terms := []; | |
proof_print_depth := 0; | |
bm_steps := (0,0); | |
try (proof_print_newline | |
(WATERFALL | |
[clausal_form_heuristic; | |
subst_heuristic; | |
simplify_heuristic; | |
use_equality_heuristic; | |
generalize_heuristic; | |
irrelevance_heuristic] | |
induction_heuristic | |
(tm,false)) | |
) with Failure _ -> failwith "BOYER_MOORE";; | |
(*----------------------------------------------------------------------------*) | |
(* BOYER_MOORE_CONV : conv *) | |
(* *) | |
(* Boyer-Moore-style automatic theorem prover. *) | |
(* Given a term "tm", attempts to prove |- tm = T. *) | |
(*----------------------------------------------------------------------------*) | |
let BOYER_MOORE_CONV tm = | |
try (EQT_INTRO (BOYER_MOORE tm)) with Failure _ -> failwith "BOYER_MOORE_CONV";; | |
(*----------------------------------------------------------------------------*) | |
(* HEURISTIC_TAC : *) | |
(* ((term # bool) -> ((term # bool) list # proof)) list -> tactic *) | |
(* *) | |
(* Tactic to do automatic proof using a list of heuristics. The tactic will *) | |
(* fail if it thinks the goal is not a theorem. Otherwise it will either *) | |
(* prove the goal, or return as subgoals the conjectures it couldn't handle. *) | |
(* *) | |
(* If the `proof_printing' flag is set to true, the tactic displays each new *) | |
(* conjecture it generates, prints blank lines between subconjectures which *) | |
(* resulted from a split, and prints a final blank line when it can do no *) | |
(* more. *) | |
(* *) | |
(* Given a goal, the tactic constructs an implication from it, so that the *) | |
(* hypotheses are made available. It then tries to prove this implication. *) | |
(* When it can do no more, the function splits the clauses that it couldn't *) | |
(* prove into disjuncts. The last disjunct is assumed to be a conclusion, and *) | |
(* the rest are taken to be hypotheses. These new goals are returned together *) | |
(* with a proof of the original goal. *) | |
(* *) | |
(* The proof takes a list of theorems for the subgoals and discharges the *) | |
(* hypotheses so that the theorems are in clausal form. These clauses are *) | |
(* then used to prove the implication that was constructed from the original *) | |
(* goal. Finally the antecedants of this implication are undischarged to give *) | |
(* a theorem for the original goal. *) | |
(*----------------------------------------------------------------------------*) | |
let HEURISTIC_TAC heuristics (asl,w) = | |
proof_print_depth := 0; try | |
(let asl = map (concl o snd) asl in | |
let negate tm = if (is_neg tm) then (rand tm) else (mk_neg tm) | |
and NEG_DISJ_DISCH tm th = | |
if (is_neg tm) | |
then DISJ_DISCH (rand tm) th | |
else CONV_RULE (REWR_CONV IMP_DISJ_THM) (DISCH tm th) | |
in let tm = list_mk_imp (asl,w) | |
in let tree = proof_print_newline | |
(filtered_waterfall (clausal_form_heuristic::heuristics) [] (tm,false)) | |
in let tml = map fst (fringe_of_clause_tree tree) | |
in let disjsl = map disj_list tml | |
in let goals = map (fun disjs -> (map negate (butlast disjs),last disjs)) disjsl | |
in let HL_goals = map (fun (asmtms,g) -> (map (fun tm -> ("",ASSUME tm)) asmtms),g) goals | |
in let proof _ thl = | |
let thl' = map (fun (th,goal)-> itlist NEG_DISJ_DISCH (fst goal) th) | |
(lcombinep (thl,goals)) | |
in funpow (length asl) UNDISCH (fprove_clause_tree tree thl') | |
in (null_meta,HL_goals,proof) | |
) with Failure s -> failwith ("HEURISTIC_TAC: " ^ s);; | |
(*----------------------------------------------------------------------------*) | |
(* BOYER_MOORE_TAC : tactic *) | |
(* *) | |
(* Tactic to do automatic proof using Boyer & Moore's heuristics. The tactic *) | |
(* will fail if it thinks the goal is not a theorem. Otherwise it will either *) | |
(* prove the goal, or return as subgoals the conjectures it couldn't handle. *) | |
(*----------------------------------------------------------------------------*) | |
let (BOYER_MOORE_TAC:tactic) = | |
fun aslw -> | |
try (HEURISTIC_TAC | |
[subst_heuristic; | |
simplify_heuristic; | |
use_equality_heuristic; | |
generalize_heuristic; | |
irrelevance_heuristic; | |
induction_heuristic] | |
aslw | |
) with Failure s -> failwith ("BOYER_MOORE_TAC: " ^ s);; | |
let (BM_SAFE_TAC:thm list -> tactic) = | |
fun l aslw -> | |
try (HEURISTIC_TAC | |
[taut_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
(* use_equality_heuristic;*) | |
induction_heuristic] | |
aslw | |
) with Failure s -> failwith ("BM_SAFE_TAC: " ^ s);; | |
let (BMG_TAC:thm list -> tactic) = | |
fun l aslw -> | |
try (HEURISTIC_TAC | |
[taut_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
use_equality_heuristic; | |
generalize_heuristic_aderhold; | |
irrelevance_heuristic; | |
induction_heuristic] | |
aslw | |
) with Failure s -> failwith ("BMG_TAC: " ^ s);; | |
let (BMF_TAC:thm list -> tactic) = | |
fun l aslw -> | |
try (HEURISTIC_TAC | |
[taut_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
use_equality_heuristic; | |
generalize_heuristic_ext; | |
irrelevance_heuristic; | |
induction_heuristic] | |
aslw | |
) with Failure s -> failwith ("BMF_TAC: " ^ s);; | |
let (BMF_NOEQ_TAC:thm list -> tactic) = | |
fun l aslw -> | |
try (HEURISTIC_TAC | |
[taut_heuristic; | |
setify_heuristic; | |
subst_heuristic; | |
HL_simplify_heuristic l; | |
generalize_heuristic_ext; | |
irrelevance_heuristic; | |
induction_heuristic] | |
aslw | |
) with Failure s -> failwith ("BMF_NOEQ_TAC: " ^ s);; | |
(*----------------------------------------------------------------------------*) | |
(* BM_SIMPLIFY_TAC : tactic *) | |
(* *) | |
(* Tactic to do automatic simplification using Boyer & Moore's heuristics. *) | |
(* The tactic will fail if it thinks the goal is not a theorem. Otherwise, it *) | |
(* will either prove the goal or return the simplified conjectures as *) | |
(* subgoals. *) | |
(*----------------------------------------------------------------------------*) | |
let BM_SIMPLIFY_TAC aslw = | |
try (HEURISTIC_TAC [subst_heuristic;simplify_heuristic] aslw | |
) with Failure _ -> failwith "BM_SIMPLIFY_TAC";; | |
(*----------------------------------------------------------------------------*) | |
(* BM_INDUCT_TAC : tactic *) | |
(* *) | |
(* Tactic which attempts to do a SINGLE induction using Boyer & Moore's *) | |
(* heuristics. The cases of the induction are returned as subgoals. *) | |
(*----------------------------------------------------------------------------*) | |
let BM_INDUCT_TAC aslw = | |
try (let induct = ref true | |
in let once_induction_heuristic x = | |
if !induct then (induct := false; induction_heuristic x) else failwith "" | |
in HEURISTIC_TAC [once_induction_heuristic] aslw | |
) with Failure _ -> failwith "BM_INDUCT_TAC";; | |