Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : equalities.ml *) | |
(* DESCRIPTION : Using equalities. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 19th June 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 7th August 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : 2008 *) | |
(******************************************************************************) | |
(*----------------------------------------------------------------------------*) | |
(* is_explicit_value_template : term -> bool *) | |
(* *) | |
(* Function to compute whether a term is an explicit value template. *) | |
(* An explicit value template is a non-variable term composed entirely of *) | |
(* T or F or variables or applications of shell constructors. *) | |
(* A `bottom object' corresponds to an application to no arguments. I have *) | |
(* also made numeric constants valid components of explicit value templates, *) | |
(* since they are equivalent to some number of applications of SUC to 0. *) | |
(*----------------------------------------------------------------------------*) | |
let is_explicit_value_template tm = | |
let rec is_explicit_value_template' constructors tm = | |
(is_T tm) || (is_F tm) || ((is_const tm) && (type_of tm = `:num`)) || | |
(is_var tm) || (is_numeral tm) || | |
(let (f,args) = strip_comb tm | |
in (try(mem (fst (dest_const f)) constructors) with Failure _ -> false) && | |
(forall (is_explicit_value_template' constructors) args)) | |
in (not (is_var tm)) && | |
(is_explicit_value_template' (all_constructors ()) tm);; | |
(*----------------------------------------------------------------------------*) | |
(* subst_conv : thm -> conv *) | |
(* *) | |
(* Substitution conversion. Given a theorem |- l = r, it replaces all *) | |
(* occurrences of l in the term with r. *) | |
(*----------------------------------------------------------------------------*) | |
let subst_conv th tm = SUBST_CONV [(th,lhs (concl th))] tm tm;; | |
(*----------------------------------------------------------------------------*) | |
(* use_equality_subst : bool -> bool -> thm -> conv *) | |
(* *) | |
(* Function to perform substitution when using equalities. The first argument *) | |
(* is a Boolean that controls which side of an equation substitution is to *) | |
(* take place on. The second argument is also a Boolean, indicating whether *) | |
(* or not we have decided to cross-fertilize. The third argument is a *) | |
(* substitution theorem of the form: *) | |
(* *) | |
(* t' = s' |- t' = s' *) | |
(* *) | |
(* If we are not cross-fertilizing, s' is substituted for t' throughout the *) | |
(* term. If we are cross-fertilizing, the behaviour depends on the structure *) | |
(* of the term, tm: *) | |
(* *) | |
(* (a) if tm is "l = r", substitute s' for t' in either r or l. *) | |
(* (b) if tm is "~(l = r)", substitute s' for t' throughout tm. *) | |
(* (c) otherwise, do not substitute. *) | |
(*----------------------------------------------------------------------------*) | |
(* The heuristic above is modified so that in case (c) a substitution does *) | |
(* take place. This reduces the chances of an invalid subgoal (clause) being *) | |
(* generated, and has been shown to be a better option for certain examples. *) | |
let use_equality_subst right cross_fert th tm = | |
try (if cross_fert | |
then if (is_eq tm) then | |
(if right | |
then RAND_CONV (subst_conv th) tm | |
else RATOR_CONV (RAND_CONV (subst_conv th)) tm) | |
else if ((is_neg tm) && (try(is_eq (rand tm)) with Failure _ -> false)) then subst_conv th tm | |
else (* ALL_CONV tm *) subst_conv th tm | |
else subst_conv th tm | |
) with Failure _ -> failwith "use_equality_subst";; | |
(*----------------------------------------------------------------------------*) | |
(* EQ_EQ_IMP_DISJ_EQ = *) | |
(* |- !x x' y y'. (x = x') /\ (y = y') ==> (x \/ y = x' \/ y') *) | |
(*----------------------------------------------------------------------------*) | |
let EQ_EQ_IMP_DISJ_EQ = | |
prove | |
(`!x x' y y'. (x = x') /\ (y = y') ==> ((x \/ y) = (x' \/ y'))`, | |
REPEAT STRIP_TAC THEN | |
ASM_REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* DISJ_EQ : thm -> thm -> thm *) | |
(* *) | |
(* |- x = x' |- y = y' *) | |
(* ------------------------ *) | |
(* |- (x \/ y) = (x' \/ y') *) | |
(*----------------------------------------------------------------------------*) | |
let DISJ_EQ th1 th2 = | |
try | |
(let (x,x') = dest_eq (concl th1) | |
and (y,y') = dest_eq (concl th2) | |
in MP (SPECL [x;x';y;y'] EQ_EQ_IMP_DISJ_EQ) (CONJ th1 th2) | |
) with Failure _ -> failwith "DISJ_EQ";; | |
(*----------------------------------------------------------------------------*) | |
(* use_equality_heuristic : (term # bool) -> ((term # bool) list # proof) *) | |
(* *) | |
(* Heuristic for using equalities, and in particular for cross-fertilizing. *) | |
(* Given a clause, the function looks for a literal of the form ~(s' = t') *) | |
(* where t' occurs in another literal and is not an explicit value template. *) | |
(* If no such literal is present, the function looks for a literal of the *) | |
(* form ~(t' = s') where t' occurs in another literal and is not an explicit *) | |
(* value template. If a substitution literal of one of these two forms is *) | |
(* found, substitution takes place as follows. *) | |
(* *) | |
(* If the clause is an induction step, and there is an equality literal *) | |
(* mentioning t' on the RHS (or LHS if the substitution literal was *) | |
(* ~(t' = s')), and s' is not an explicit value, the function performs a *) | |
(* cross-fertilization. The substitution function is called for each literal *) | |
(* other than the substitution literal. Each call results in a theorem of the *) | |
(* form: *) | |
(* *) | |
(* t' = s' |- old_lit = new_lit *) | |
(* *) | |
(* If the clause is an induction step and s' is not an explicit value, the *) | |
(* substitution literal is rewritten to F, and so will subsequently be *) | |
(* eliminated. Otherwise this literal is unchanged. The theorems for each *) | |
(* literal are recombined using the DISJ_EQ rule, and the new clause is *) | |
(* returned. See the comments for the substitution heuristic for a *) | |
(* description of how the original clause is proved from the new clause. *) | |
(*----------------------------------------------------------------------------*) | |
let use_equality_heuristic (tm,(ind:bool)) = | |
try (let checkx (tml1,tml2) t' = | |
(not (is_explicit_value_template t')) && | |
((exists (is_subterm t') tml1) || (exists (is_subterm t') tml2)) | |
in let rec split_disjuncts side prevl tml = | |
if (can (check (checkx (prevl,tl tml)) o side o dest_neg) (hd tml)) | |
then (prevl,tml) | |
else split_disjuncts side ((hd tml)::prevl) (tl tml) | |
in let is_subterm_of_side side subterm tm = | |
(try(is_subterm subterm (side tm)) with Failure _ -> false) | |
in let literals = disj_list tm | |
in let (right,(overs,neq'::unders)) = | |
try (true,(hashI rev) (split_disjuncts rhs [] literals)) with Failure _ -> | |
(false,(hashI rev) (split_disjuncts lhs [] literals)) | |
in let side = if right then rhs else lhs | |
in let flipth = if right then ALL_CONV neq' else RAND_CONV SYM_CONV neq' | |
in let neq = rhs (concl flipth) | |
in let eq = dest_neg neq | |
in let (s',t') = dest_eq eq | |
in let delete = ind && (not (is_explicit_value s')) | |
in let cross_fert = delete && | |
((exists (is_subterm_of_side side t') overs) || | |
(exists (is_subterm_of_side side t') unders)) | |
in let sym_eq = mk_eq (t',s') | |
in let sym_neq = mk_neg sym_eq | |
in let ass1 = EQ_MP (SYM flipth) (NOT_EQ_SYM (ASSUME sym_neq)) | |
and ass2 = ASSUME sym_eq | |
in let subsfun = use_equality_subst right cross_fert ass2 | |
in let overths = map subsfun overs | |
and neqth = | |
if delete | |
then TRANS (RAND_CONV (RAND_CONV (subst_conv ass2)) neq) | |
(ISPEC s' NOT_EQ_F) | |
else ADD_ASSUM sym_eq (REFL neq) | |
and underths = map subsfun unders | |
in let neqth' = TRANS flipth neqth | |
in let th1 = itlist DISJ2 overs (try DISJ1 ass1 (list_mk_disj unders) with Failure _ -> ass1) | |
and th2 = itlist DISJ_EQ overths (end_itlist DISJ_EQ (neqth'::underths)) | |
and th3 = SPEC sym_eq EXCLUDED_MIDDLE | |
in let tm' = rhs (concl th2) | |
in let proof th = DISJ_CASES th3 (EQ_MP (SYM th2) th) th1 | |
in (proof_print_string_l "-> Use Equality Heuristic" () ; | |
([(tm',ind)],apply_fproof "use_equality_heuristic" (proof o hd) [tm'])) | |
) with Failure _ -> failwith "use_equality_heuristic`"; | |