Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(******************************************************************************) | |
(* FILE : environment.ml *) | |
(* DESCRIPTION : Environment of definitions and pre-proved theorems for use *) | |
(* in automation. *) | |
(* *) | |
(* READS FILES : <none> *) | |
(* WRITES FILES : <none> *) | |
(* *) | |
(* AUTHOR : R.J.Boulton *) | |
(* DATE : 8th May 1991 *) | |
(* *) | |
(* LAST MODIFIED : R.J.Boulton *) | |
(* DATE : 12th October 1992 *) | |
(* *) | |
(* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) | |
(* DATE : July 2009 *) | |
(******************************************************************************) | |
let my_gen_terms = ref ([]:term list);; | |
let bm_steps = ref (0,0);; | |
let rec GSPEC th = | |
let wl,w = dest_thm th in | |
if is_forall w then | |
GSPEC (SPEC (genvar (type_of (fst (dest_forall w)))) th) | |
else th;; | |
let LIST_CONJ = end_itlist CONJ ;; | |
let rec CONJ_LIST n th = | |
try if n=1 then [th] else (CONJUNCT1 th)::(CONJ_LIST (n-1) (CONJUNCT2 th)) | |
with Failure _ -> failwith "CONJ_LIST";; | |
(*----------------------------------------------------------------------------*) | |
(* Reference variable to hold the defining theorems for operators currently *) | |
(* defined within the system. Each definition is stored as a triple. The *) | |
(* first component is the name of the operator. The second is the number of *) | |
(* the recursive argument. If the operator is not defined recursively, this *) | |
(* number is zero. The third component is a list of pairs of type constructor *) | |
(* names and the theorems that define the behaviour of the operator for each *) | |
(* constructor. If the operator is not recursive, the constructor names are *) | |
(* empty (null) strings. *) | |
(*----------------------------------------------------------------------------*) | |
let system_defs = ref ([] : (string * (int * (string * thm) list)) list);; | |
(*----------------------------------------------------------------------------*) | |
(* new_def : thm -> void *) | |
(* *) | |
(* Make a new definition available. Checks that theorem has no hypotheses, *) | |
(* then splits it into conjuncts. The variables for each conjunct are *) | |
(* specialised and then the conjuncts are made into equations. *) | |
(* *) | |
(* For each equation, a triple is obtained, consisting of the name of the *) | |
(* function on the LHS, the number of the recursive argument, and the name of *) | |
(* the constructor used in that argument. This process fails if the LHS is *) | |
(* not an application of a constant (possibly to zero arguments), or if more *) | |
(* than one of the arguments is anything other than a variable. The argument *) | |
(* that is not a variable must be an application of a constructor. If the *) | |
(* function is not recursive, the argument number returned is zero. *) | |
(* *) | |
(* Having obtained a triple for each equation, a check is made that the first *) | |
(* two components are the same for each equation. Then, the equations are *) | |
(* saved together with constructor names for each, and the name of the *) | |
(* operator being defined, and the number of the recursive argument. *) | |
(*----------------------------------------------------------------------------*) | |
let new_def th = | |
try | |
(let make_into_eqn th = | |
let tm = concl th | |
in if (is_eq tm) then th | |
else if (is_neg tm) then EQF_INTRO th | |
else EQT_INTRO th | |
and get_constructor th = | |
let tm = lhs (concl th) | |
in let (f,args) = strip_comb tm | |
in let name = fst (dest_const f) | |
in let bools = number_list (map is_var args) | |
in let i = itlist (fun (b,i) n -> if ((not b) && (n = 0)) then i | |
else if b then n else failwith "") bools 0 | |
in if (i = 0) | |
then ((name,i),"") | |
else ((name,i),fst (dest_const (fst (strip_comb (el (i-1) args))))) | |
in let ([],tm) = dest_thm th | |
in let ths = CONJ_LIST (length (conj_list tm)) th | |
in let ths' = map SPEC_ALL ths | |
in let eqs = map make_into_eqn ths' | |
in let constructs = map get_constructor eqs | |
in let (xl,yl) = hashI setify (List.split constructs) | |
in let (name,i) = if (length xl = 1) then (hd xl) else failwith "" | |
in system_defs := (name,(i,List.combine yl eqs))::(!system_defs) | |
) with Failure _ -> failwith "new_def";; | |
(*----------------------------------------------------------------------------*) | |
(* defs : void -> thm list list *) | |
(* *) | |
(* Returns a list of lists of theorems currently being used as definitions. *) | |
(* Each list in the list is for one operator. *) | |
(*----------------------------------------------------------------------------*) | |
let defs () = map ((map snd) o snd o snd) (!system_defs);; | |
let defs_names () = map fst (!system_defs);; | |
(*----------------------------------------------------------------------------*) | |
(* get_def : string -> (string # int # (string # thm) list) *) | |
(* *) | |
(* Function to obtain the definition information of a named operator. *) | |
(*----------------------------------------------------------------------------*) | |
let get_def name = try ( assoc name (!system_defs) ) with Failure _ -> failwith "get_def";; | |
(*----------------------------------------------------------------------------*) | |
(* Reference variable for a list of theorems currently proved in the system. *) | |
(* These theorems are available to the automatic proof procedures for use as *) | |
(* rewrite rules. The elements of the list are actually pairs of theorems. *) | |
(* The first theorem is that specified by the user. The second is an *) | |
(* equivalent theorem in a standard form. *) | |
(*----------------------------------------------------------------------------*) | |
let system_rewrites = ref ([] : (thm * thm) list);; | |
(*----------------------------------------------------------------------------*) | |
(* CONJ_IMP_IMP_IMP = |- x /\ y ==> z = x ==> y ==> z *) | |
(*----------------------------------------------------------------------------*) | |
let CONJ_IMP_IMP_IMP = | |
prove | |
(`((x /\ y) ==> z) = (x ==> (y ==> z))`, | |
BOOL_CASES_TAC `x:bool` THEN | |
BOOL_CASES_TAC `y:bool` THEN | |
BOOL_CASES_TAC `z:bool` THEN | |
REWRITE_TAC []);; | |
(*----------------------------------------------------------------------------*) | |
(* CONJ_UNDISCH : thm -> thm *) | |
(* *) | |
(* Undischarges the conjuncts of the antecedant of an implication. *) | |
(* e.g. |- x /\ (y /\ z) /\ w ==> x ---> x, y /\ z, w |- x *) | |
(* *) | |
(* Has to check for negations, because UNDISCH processes them when we don't *) | |
(* want it to. *) | |
(*----------------------------------------------------------------------------*) | |
let rec CONJ_UNDISCH th = | |
try | |
(let th' = CONV_RULE (REWR_CONV CONJ_IMP_IMP_IMP) th | |
in let th'' = UNDISCH th' | |
in CONJ_UNDISCH th'') | |
with Failure _ -> try (if not (is_neg (concl th)) then UNDISCH th else failwith "") | |
with Failure _ -> failwith "CONJ_UNDISCH";; | |
(*----------------------------------------------------------------------------*) | |
(* new_rewrite_rule : thm -> void *) | |
(* *) | |
(* Make a new rewrite rule available. Checks that theorem has no hypotheses. *) | |
(* The theorem is saved together with an equivalent theorem in a standard *) | |
(* form. Theorems are fully generalized, then specialized with unique *) | |
(* variable names (genvars), and then standardized as follows: *) | |
(* *) | |
(* |- (h1 /\ ... /\ hn) ==> (l = r) ---> h1, ..., hn |- l = r *) | |
(* |- (h1 /\ ... /\ hn) ==> ~b ---> h1, ..., hn |- b = F *) | |
(* |- (h1 /\ ... /\ hn) ==> b ---> h1, ..., hn |- b = T *) | |
(* |- l = r ---> |- l = r *) | |
(* |- ~b ---> |- b = F *) | |
(* |- b ---> |- b = T *) | |
(* *) | |
(* A conjunction of rules may be given. The function will treat each conjunct *) | |
(* in the theorem as a separate rule. *) | |
(*----------------------------------------------------------------------------*) | |
let rec new_rewrite_rule th = | |
try (if (is_conj (concl th)) | |
then (map new_rewrite_rule (CONJUNCTS th); ()) | |
else let ([],tm) = dest_thm th | |
in let th' = GSPEC (GEN_ALL th) | |
in let th'' = try (CONJ_UNDISCH th') with Failure _ -> th' | |
in let tm'' = concl th'' | |
in let th''' = | |
(if (is_eq tm'') then th'' | |
else if (is_neg tm'') then EQF_INTRO th'' | |
else EQT_INTRO th'') | |
in system_rewrites := (th,th''')::(!system_rewrites) | |
) with Failure _ -> failwith "new_rewrite_rule";; | |
(*----------------------------------------------------------------------------*) | |
(* rewrite_rules : void -> thm list *) | |
(* *) | |
(* Returns the list of theorems currently being used as rewrites, in the form *) | |
(* they were originally given by the user. *) | |
(*----------------------------------------------------------------------------*) | |
let rewrite_rules () = map fst (!system_rewrites);; | |
(*----------------------------------------------------------------------------*) | |
(* Reference variable to hold the generalisation lemmas currently known to *) | |
(* the system. *) | |
(*----------------------------------------------------------------------------*) | |
let system_gen_lemmas = ref ([] : thm list);; | |
(*----------------------------------------------------------------------------*) | |
(* new_gen_lemma : thm -> void *) | |
(* *) | |
(* Make a new generalisation lemma available. *) | |
(* Checks that the theorem has no hypotheses. *) | |
(*----------------------------------------------------------------------------*) | |
let new_gen_lemma th = | |
if ((hyp th) = []) | |
then system_gen_lemmas := th::(!system_gen_lemmas) | |
else failwith "new_gen_lemma";; | |
(*----------------------------------------------------------------------------*) | |
(* gen_lemmas : void -> thm list *) | |
(* *) | |
(* Returns the list of theorems currently being used as *) | |
(* generalisation lemmas. *) | |
(*----------------------------------------------------------------------------*) | |
let gen_lemmas () = !system_gen_lemmas;; | |
(*----------------------------------------------------------------------------*) | |
(* max_var_depth : term -> int *) | |
(* *) | |
(* Returns the maximum depth of any variable in a term. *) | |
(* eg. max_var_depth `PRE (a + SUC c)` = 4 *) | |
(* max_var_depth `a` = 1 *) | |
(* max_var_depth `PRE (5 + SUC 2)` = 0 *) | |
(* max_var_depth `PRE (a + SUC 2)` = 3 *) | |
(*----------------------------------------------------------------------------*) | |
(* This is primarily used to limit non-termination. If max_var_depth exceeds *) | |
(* a limit the system will fail. *) | |
(* The algorithm is simple: *) | |
(* if constant,numeral,etc then 0 *) | |
(* else if variable then 1 *) | |
(* else if definition,constructor,accessor then *) | |
(* if (max_var_depth of arguments) > 0 then result + 1 *) | |
(* else 0 *) | |
(* else if any other combination then max_var_depth of arguments *) | |
(*----------------------------------------------------------------------------*) | |
let rec max_var_depth tm = | |
if (is_var tm) then 1 | |
else if ((is_numeral tm) | |
|| (is_const tm) | |
|| (is_T tm) || (is_F tm)) then 0 | |
else try | |
let (f,args) = strip_comb tm in | |
let fn = (fst o dest_const) f in | |
let l = flat [defs_names();all_constructors();all_accessors()] in | |
if (mem fn l) then | |
let x = itlist max (map max_var_depth args) 0 in | |
if (x>0) then x+1 else 0 | |
else itlist max (map max_var_depth args) 0 | |
with Failure _ -> 0;; | |