Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
24.3 kB
(* ========================================================================= *)
(* Godel's theorem in its true form. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Classes of formulas, via auxiliary "shared" inductive definition. *)
(* ------------------------------------------------------------------------- *)
let sigmapi_RULES,sigmapi_INDUCT,sigmapi_CASES = new_inductive_definition
`(!b n. sigmapi b n False) /\
(!b n. sigmapi b n True) /\
(!b n s t. sigmapi b n (s === t)) /\
(!b n s t. sigmapi b n (s << t)) /\
(!b n s t. sigmapi b n (s <<= t)) /\
(!b n p. sigmapi (~b) n p ==> sigmapi b n (Not p)) /\
(!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p && q)) /\
(!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p || q)) /\
(!b n p q. sigmapi (~b) n p /\ sigmapi b n q ==> sigmapi b n (p --> q)) /\
(!b n p q. (!b. sigmapi b n p) /\ (!b. sigmapi b n q)
==> sigmapi b n (p <-> q)) /\
(!n x p. sigmapi T n p /\ ~(n = 0) ==> sigmapi T n (??x p)) /\
(!n x p. sigmapi F n p /\ ~(n = 0) ==> sigmapi F n (!!x p)) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (??x (V x << t && p))) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (??x (V x <<= t && p))) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (!!x (V x << t --> p))) /\
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t)
==> sigmapi b n (!!x (V x <<= t --> p))) /\
(!b c n p. sigmapi b n p ==> sigmapi c (n + 1) p)`;;
let SIGMA = new_definition `SIGMA = sigmapi T`;;
let PI = new_definition `PI = sigmapi F`;;
let DELTA = new_definition `DELTA n p <=> SIGMA n p /\ PI n p`;;
let SIGMAPI_PROP = prove
(`(!n b. sigmapi b n False <=> T) /\
(!n b. sigmapi b n True <=> T) /\
(!n b s t. sigmapi b n (s === t) <=> T) /\
(!n b s t. sigmapi b n (s << t) <=> T) /\
(!n b s t. sigmapi b n (s <<= t) <=> T) /\
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
(sigmapi b n q /\ sigmapi (~b) n q))`,
REWRITE_TAC[sigmapi_RULES] THEN
GEN_REWRITE_TAC DEPTH_CONV [AND_FORALL_THM] THEN
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_SUB1] THEN
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1;
FORALL_BOOL_THM] THEN
REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`] THEN
REWRITE_TAC[ARITH_RULE `(SUC m = n + 1) <=> (n = m)`; UNWIND_THM2] THEN
ASM_REWRITE_TAC[] THEN
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[ADD1] THEN
REWRITE_TAC[CONJ_ACI] THEN
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
MESON_TAC[sigmapi_RULES]);;
let SIGMAPI_MONO_LEMMA = prove
(`(!b n p. sigmapi b n p ==> sigmapi b (n + 1) p) /\
(!b n p. ~(n = 0) /\ sigmapi b (n - 1) p ==> sigmapi b n p) /\
(!b n p. ~(n = 0) /\ sigmapi (~b) (n - 1) p ==> sigmapi b n p)`,
CONJ_TAC THENL
[REPEAT STRIP_TAC;
REPEAT STRIP_TAC THEN
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(n = 0) ==> (n = (n - 1) + 1)`))] THEN
POP_ASSUM MP_TAC THEN ASM_MESON_TAC[sigmapi_RULES]);;
let SIGMAPI_REV_EXISTS = prove
(`!n b x p. sigmapi b n (??x p) ==> sigmapi b n p`,
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN
ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);;
let SIGMAPI_REV_FORALL = prove
(`!n b x p. sigmapi b n (!!x p) ==> sigmapi b n p`,
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN
ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);;
let SIGMAPI_CLAUSES_CODE = prove
(`(!n b. sigmapi b n False <=> T) /\
(!n b. sigmapi b n True <=> T) /\
(!n b s t. sigmapi b n (s === t) <=> T) /\
(!n b s t. sigmapi b n (s << t) <=> T) /\
(!n b s t. sigmapi b n (s <<= t) <=> T) /\
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
(sigmapi b n q /\ sigmapi (~b) n q)) /\
(!n b x p. sigmapi b n (??x p) <=>
if b /\ ~(n = 0) \/
?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\
~(x IN FVT t)
then sigmapi b n p
else ~(n = 0) /\ sigmapi (~b) (n - 1) (??x p)) /\
(!n b x p. sigmapi b n (!!x p) <=>
if ~b /\ ~(n = 0) \/
?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\
~(x IN FVT t)
then sigmapi b n p
else ~(n = 0) /\ sigmapi (~b) (n - 1) (!!x p))`,
REWRITE_TAC[SIGMAPI_PROP] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
ONCE_REWRITE_TAC[TAUT `a \/ b \/ c \/ d <=> (b \/ c) \/ (a \/ d)`] THEN
REWRITE_TAC[CONJ_ASSOC; OR_EXISTS_THM; GSYM RIGHT_OR_DISTRIB] THEN
REWRITE_TAC[TAUT
`(if b /\ c \/ d then e else c /\ f) <=>
d /\ e \/ c /\ ~d /\ (if b then e else f)`] THEN
MATCH_MP_TAC(TAUT `(a <=> a') /\ (~a' ==> (b <=> b'))
==> (a \/ b <=> a' \/ b')`) THEN
(CONJ_TAC THENL
[REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN
EQ_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[SIGMAPI_PROP] THEN
SIMP_TAC[];
ALL_TAC]) THEN
(ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`]) THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n = m + 1 <=> m = n - 1)`] THEN
REWRITE_TAC[UNWIND_THM2] THEN
W(fun (asl,w) -> ASM_CASES_TAC (find_term is_exists w)) THEN
ASM_REWRITE_TAC[CONTRAPOS_THM] THENL
[DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL
[DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
REWRITE_TAC[EXISTS_BOOL_THM] THEN
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
ONCE_REWRITE_TAC[sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]];
DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`];
ASM_CASES_TAC `b:bool` THEN
ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL
[REWRITE_TAC[EXISTS_BOOL_THM] THEN
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN
ONCE_REWRITE_TAC[sigmapi_CASES] THEN
REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[];
DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]]]);;
let SIGMAPI_CLAUSES = prove
(`(!n b. sigmapi b n False <=> T) /\
(!n b. sigmapi b n True <=> T) /\
(!n b s t. sigmapi b n (s === t) <=> T) /\
(!n b s t. sigmapi b n (s << t) <=> T) /\
(!n b s t. sigmapi b n (s <<= t) <=> T) /\
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\
(sigmapi b n q /\ sigmapi (~b) n q)) /\
(!n b x p. sigmapi b n (??x p) <=>
if b /\ ~(n = 0) \/
?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\
~(x IN FVT t)
then sigmapi b n p
else 2 <= n /\ sigmapi (~b) (n - 1) p) /\
(!n b x p. sigmapi b n (!!x p) <=>
if ~b /\ ~(n = 0) \/
?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\
~(x IN FVT t)
then sigmapi b n p
else 2 <= n /\ sigmapi (~b) (n - 1) p)`,
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN
REWRITE_TAC[] THEN
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN
ASM_REWRITE_TAC[ARITH_RULE `~(n - 1 = 0) <=> 2 <= n`] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Show that it respects substitution. *)
(* ------------------------------------------------------------------------- *)
let SIGMAPI_FORMSUBST = prove
(`!p v n b. sigmapi b n p ==> sigmapi b n (formsubst v p)`,
MATCH_MP_TAC form_INDUCT THEN
REWRITE_TAC[SIGMAPI_CLAUSES; formsubst] THEN SIMP_TAC[] THEN
REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN
MATCH_MP_TAC(TAUT `(a ==> b /\ c) ==> (a ==> b) /\ (a ==> c)`) THEN
DISCH_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN
MAP_EVERY X_GEN_TAC [`i:num->term`; `n:num`; `b:bool`] THEN
REWRITE_TAC[FV] THEN LET_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN
REWRITE_TAC[SIGMAPI_CLAUSES] THEN
ONCE_REWRITE_TAC[TAUT
`((if p \/ q then x else y) ==> (if p \/ q' then x' else y')) <=>
(p /\ x ==> x') /\
(~p ==> (if q then x else y) ==> (if q' then x' else y'))`] THEN
ASM_SIMP_TAC[] THEN REWRITE_TAC[DE_MORGAN_THM] THEN
CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT
`(p ==> p') /\ (x ==> x') /\ (y ==> y') /\ (y ==> x)
==> (if p then x else y) ==> (if p' then x' else y')`) THEN
ASM_SIMP_TAC[SIGMAPI_MONO_LEMMA; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[formsubst; form_INJ; termsubst] THEN
REWRITE_TAC[form_DISTINCT] THEN
ONCE_REWRITE_TAC[TAUT `((a /\ b) /\ c) /\ d <=> b /\ c /\ a /\ d`] THEN
REWRITE_TAC[UNWIND_THM1; termsubst; VALMOD_BASIC] THEN
REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM; NOT_EXISTS_THM] THEN
X_GEN_TAC `y:num` THEN REWRITE_TAC[valmod] THEN
(COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SYM th]) THEN
FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[FV; FVT] THEN
REWRITE_TAC[IN_DELETE; IN_UNION; IN_SING; GSYM DISJ_ASSOC] THEN
REWRITE_TAC[TAUT `(a \/ b \/ c) /\ ~a <=> ~a /\ b \/ ~a /\ c`] THEN
(COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN
W(fun (asl,w) -> let t = lhand(rand w) in
MP_TAC(SPEC (rand(rand t)) VARIANT_THM) THEN
SPEC_TAC(t,`u:num`)) THEN
REWRITE_TAC[CONTRAPOS_THM; FORMSUBST_FV; IN_ELIM_THM; FV] THEN
GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `y:num` THEN
ASM_REWRITE_TAC[valmod; IN_UNION]);;
(* ------------------------------------------------------------------------- *)
(* Hence all our main concepts are OK. *)
(* ------------------------------------------------------------------------- *)
let SIGMAPI_TAC ths =
REPEAT STRIP_TAC THEN
REWRITE_TAC ths THEN
TRY(MATCH_MP_TAC SIGMAPI_FORMSUBST) THEN
let ths' = ths @ [SIGMAPI_CLAUSES; form_DISTINCT;
form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL;
FVT; IN_SING; ARITH_EQ] in
REWRITE_TAC ths' THEN ASM_SIMP_TAC ths';;
let SIGMAPI_DIVIDES = prove
(`!n s t. sigmapi b n (arith_divides s t)`,
SIGMAPI_TAC[arith_divides]);;
let SIGMAPI_PRIME = prove
(`!n t. sigmapi b n (arith_prime t)`,
SIGMAPI_TAC[arith_prime; SIGMAPI_DIVIDES]);;
let SIGMAPI_PRIMEPOW = prove
(`!n s t. sigmapi b n (arith_primepow s t)`,
SIGMAPI_TAC[arith_primepow; SIGMAPI_DIVIDES; SIGMAPI_PRIME]);;
let SIGMAPI_RTC = prove
(`(!s t. sigmapi T 1 (R s t))
==> !s t. sigmapi T 1 (arith_rtc R s t)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtc] THEN
MATCH_MP_TAC SIGMAPI_FORMSUBST THEN
REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1;
GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES;
SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN
ASM_REWRITE_TAC[]);;
let SIGMAPI_RTCP = prove
(`(!s t u. sigmapi T 1 (R s t u))
==> !s t u. sigmapi T 1 (arith_rtcp R s t u)`,
REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtcp] THEN
MATCH_MP_TAC SIGMAPI_FORMSUBST THEN
REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1;
GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES;
SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN
ASM_REWRITE_TAC[]);;
let SIGMAPI_TERM1 = prove
(`!s t. sigmapi T 1 (arith_term1 s t)`,
SIGMAPI_TAC[arith_term1]);;
let SIGMAPI_TERM = prove
(`!t. sigmapi T 1 (arith_term t)`,
SIGMAPI_TAC[arith_term; SIGMAPI_RTC; SIGMAPI_TERM1]);;
let SIGMAPI_FORM1 = prove
(`!s t. sigmapi T 1 (arith_form1 s t)`,
SIGMAPI_TAC[arith_form1; SIGMAPI_TERM]);;
let SIGMAPI_FORM = prove
(`!t. sigmapi T 1 (arith_form t)`,
SIGMAPI_TAC[arith_form; SIGMAPI_RTC; SIGMAPI_FORM1]);;
let SIGMAPI_FREETERM1 = prove
(`!s t u. sigmapi T 1 (arith_freeterm1 s t u)`,
SIGMAPI_TAC[arith_freeterm1]);;
let SIGMAPI_FREETERM = prove
(`!s t. sigmapi T 1 (arith_freeterm s t)`,
SIGMAPI_TAC[arith_freeterm; SIGMAPI_FREETERM1; SIGMAPI_RTCP]);;
let SIGMAPI_FREEFORM1 = prove
(`!s t u. sigmapi T 1 (arith_freeform1 s t u)`,
SIGMAPI_TAC[arith_freeform1; SIGMAPI_FREETERM; SIGMAPI_FORM]);;
let SIGMAPI_FREEFORM = prove
(`!s t. sigmapi T 1 (arith_freeform s t)`,
SIGMAPI_TAC[arith_freeform; SIGMAPI_FREEFORM1; SIGMAPI_RTCP]);;
let SIGMAPI_AXIOM = prove
(`!t. sigmapi T 1 (arith_axiom t)`,
SIGMAPI_TAC[arith_axiom; SIGMAPI_FREEFORM; SIGMAPI_FREETERM; SIGMAPI_FORM;
SIGMAPI_TERM]);;
let SIGMAPI_PROV1 = prove
(`!A. (!t. sigmapi T 1 (A t)) ==> !s t. sigmapi T 1 (arith_prov1 A s t)`,
SIGMAPI_TAC[arith_prov1; SIGMAPI_AXIOM]);;
let SIGMAPI_PROV = prove
(`(!t. sigmapi T 1 (A t)) ==> !t. sigmapi T 1 (arith_prov A t)`,
SIGMAPI_TAC[arith_prov; SIGMAPI_PROV1; SIGMAPI_RTC]);;
let SIGMAPI_PRIMRECSTEP = prove
(`(!s t u. sigmapi T 1 (R s t u))
==> !s t. sigmapi T 1 (arith_primrecstep R s t)`,
SIGMAPI_TAC[arith_primrecstep]);;
let SIGMAPI_PRIMREC = prove
(`(!s t u. sigmapi T 1 (R s t u))
==> !s t. sigmapi T 1 (arith_primrec R c s t)`,
SIGMAPI_TAC[arith_primrec; SIGMAPI_PRIMRECSTEP; SIGMAPI_RTC]);;
let SIGMAPI_GNUMERAL1 = prove
(`!s t. sigmapi T 1 (arith_gnumeral1 s t)`,
SIGMAPI_TAC[arith_gnumeral1]);;
let SIGMAPI_GNUMERAL = prove
(`!s t. sigmapi T 1 (arith_gnumeral s t)`,
SIGMAPI_TAC[arith_gnumeral; arith_gnumeral1';
SIGMAPI_GNUMERAL1; SIGMAPI_RTC]);;
let SIGMAPI_QSUBST = prove
(`!x n p. sigmapi T 1 p ==> sigmapi T 1 (qsubst(x,n) p)`,
SIGMAPI_TAC[qsubst]);;
let SIGMAPI_QDIAG = prove
(`!x s t. sigmapi T 1 (arith_qdiag x s t)`,
SIGMAPI_TAC[arith_qdiag; SIGMAPI_GNUMERAL]);;
let SIGMAPI_DIAGONALIZE = prove
(`!x p. sigmapi T 1 p ==> sigmapi T 1 (diagonalize x p)`,
SIGMAPI_TAC[diagonalize; SIGMAPI_QDIAG;
SIGMAPI_FORMSUBST; LET_DEF; LET_END_DEF]);;
let SIGMAPI_FIXPOINT = prove
(`!x p. sigmapi T 1 p ==> sigmapi T 1 (fixpoint x p)`,
SIGMAPI_TAC[fixpoint; qdiag; SIGMAPI_QSUBST; SIGMAPI_DIAGONALIZE]);;
(* ------------------------------------------------------------------------- *)
(* The Godel sentence, "H" being Sigma and "G" being Pi. *)
(* ------------------------------------------------------------------------- *)
let hsentence = new_definition
`hsentence Arep =
fixpoint 0 (arith_prov Arep (arith_pair (numeral 4) (V 0)))`;;
let gsentence = new_definition
`gsentence Arep = Not(hsentence Arep)`;;
let FV_HSENTENCE = prove
(`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(hsentence Arep) = {})`,
SIMP_TAC[hsentence; FV_FIXPOINT; FV_PROV] THEN
REWRITE_TAC[FVT_PAIR; FVT_NUMERAL; FVT; UNION_EMPTY; DELETE_INSERT;
EMPTY_DELETE]);;
let FV_GSENTENCE = prove
(`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(gsentence Arep) = {})`,
SIMP_TAC[gsentence; FV_HSENTENCE; FV]);;
let SIGMAPI_HSENTENCE = prove
(`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi T 1 (hsentence Arep)`,
SIGMAPI_TAC[hsentence; SIGMAPI_FIXPOINT; SIGMAPI_PROV]);;
let SIGMAPI_GSENTENCE = prove
(`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi F 1 (gsentence Arep)`,
SIGMAPI_TAC[gsentence; SIGMAPI_HSENTENCE]);;
(* ------------------------------------------------------------------------- *)
(* Hence the key fixpoint properties. *)
(* ------------------------------------------------------------------------- *)
let HSENTENCE_FIX_STRONG = prove
(`!A Arep.
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
==> !v. holds v (hsentence Arep) <=> A |-- Not(hsentence Arep)`,
REWRITE_TAC[hsentence; true_def; HOLDS_FIXPOINT] THEN
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PROV) THEN
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN
DISCH_TAC THEN ASM_REWRITE_TAC[ARITH_PAIR; TERMVAL_NUMERAL] THEN
REWRITE_TAC[termval; valmod; GSYM gform] THEN REWRITE_TAC[PROV_THM]);;
let HSENTENCE_FIX = prove
(`!A Arep.
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
==> (true(hsentence Arep) <=> A |-- Not(hsentence Arep))`,
REWRITE_TAC[true_def] THEN MESON_TAC[HSENTENCE_FIX_STRONG]);;
let GSENTENCE_FIX = prove
(`!A Arep.
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A)
==> (true(gsentence Arep) <=> ~(A |-- gsentence Arep))`,
REWRITE_TAC[true_def; holds; gsentence] THEN
MESON_TAC[HSENTENCE_FIX_STRONG]);;
(* ------------------------------------------------------------------------- *)
(* Auxiliary concepts. *)
(* ------------------------------------------------------------------------- *)
let ground = new_definition
`ground t <=> (FVT t = {})`;;
let complete_for = new_definition
`complete_for P A <=> !p. P p /\ true p ==> A |-- p`;;
let sound_for = new_definition
`sound_for P A <=> !p. P p /\ A |-- p ==> true p`;;
let consistent = new_definition
`consistent A <=> ~(?p. A |-- p /\ A |-- Not p)`;;
let CONSISTENT_ALT = prove
(`!A p. A |-- p /\ A |-- Not p <=> A |-- False`,
MESON_TAC[proves_RULES; axiom_RULES]);;
(* ------------------------------------------------------------------------- *)
(* The purest and most symmetric and beautiful form of G1. *)
(* ------------------------------------------------------------------------- *)
let DEFINABLE_BY_ONEVAR = prove
(`definable_by (SIGMA 1) s <=>
?p x. SIGMA 1 p /\ (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`,
REWRITE_TAC[definable_by; SIGMA] THEN
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN
EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN
EXISTS_TAC `x:num` THEN ASM_SIMP_TAC[SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN
ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN
REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION;
COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN
MESON_TAC[]);;
let CLOSED_NOT_TRUE = prove
(`!p. closed p ==> (true(Not p) <=> ~(true p))`,
REWRITE_TAC[closed; true_def; holds] THEN
MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;
let G1 = prove
(`!A. definable_by (SIGMA 1) (IMAGE gform A)
==> ?G. PI 1 G /\ closed G /\
(sound_for (PI 1 INTER closed) A ==> true G /\ ~(A |-- G)) /\
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
GEN_TAC THEN
REWRITE_TAC[sound_for; INTER; IN_ELIM_THM; DEFINABLE_BY_ONEVAR] THEN
DISCH_THEN(X_CHOOSE_THEN `Arep:form` (X_CHOOSE_THEN `a:num`
STRIP_ASSUME_TAC)) THEN
MP_TAC(SPECL [`A:form->bool`; `\t. formsubst ((a |-> t) V) Arep`]
GSENTENCE_FIX) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; valmod; o_THM];
ALL_TAC] THEN
STRIP_TAC THEN EXISTS_TAC `gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN
ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c /\ d) ==> a /\ b /\ c /\ d`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[PI] THEN MATCH_MP_TAC SIGMAPI_GSENTENCE THEN
RULE_ASSUM_TAC(REWRITE_RULE[SIGMA]) THEN ASM_SIMP_TAC[SIGMAPI_FORMSUBST];
REWRITE_TAC[closed] THEN MATCH_MP_TAC FV_GSENTENCE THEN
ASM_REWRITE_TAC[FORMSUBST_FV; EXTENSION; IN_ELIM_THM; IN_SING;
valmod; UNWIND_THM2];
ALL_TAC] THEN
ABBREV_TAC `G = gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN
SUBGOAL_THEN `true(Not G)` MP_TAC THENL
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN] THEN
REWRITE_TAC[SIGMA; SIGMAPI_CLAUSES] THEN ASM_MESON_TAC[closed; FV; PI];
ALL_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP CLOSED_NOT_TRUE) THEN
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN
SUBGOAL_THEN `true False` MP_TAC THENL
[ALL_TAC; REWRITE_TAC[true_def; holds]] THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
REWRITE_TAC[closed; IN; SIGMA; SIGMAPI_CLAUSES; FV] THEN
ASM_MESON_TAC[CONSISTENT_ALT]);;
(* ------------------------------------------------------------------------- *)
(* Some more familiar variants. *)
(* ------------------------------------------------------------------------- *)
let COMPLETE_SOUND_SENTENCE = prove
(`consistent A /\ complete_for (sigmapi (~b) n INTER closed) A
==> sound_for (sigmapi b n INTER closed) A`,
REWRITE_TAC[consistent; sound_for; complete_for; IN; INTER; IN_ELIM_THM] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(fun th -> X_GEN_TAC `p:form` THEN MP_TAC(SPEC `Not p` th)) THEN
REWRITE_TAC[SIGMAPI_CLAUSES] THEN
REWRITE_TAC[closed; FV; true_def; holds] THEN
ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);;
let G1_TRAD = prove
(`!A. consistent A /\
complete_for (SIGMA 1 INTER closed) A /\
definable_by (SIGMA 1) (IMAGE gform A)
==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`,
REWRITE_TAC[SIGMA] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPEC `A:form->bool` G1) THEN ASM_REWRITE_TAC[SIGMA; PI] THEN
MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[COMPLETE_SOUND_SENTENCE]);;