Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
(* ========================================================================= *) | |
(* Godel's theorem in its true form. *) | |
(* ========================================================================= *) | |
(* ------------------------------------------------------------------------- *) | |
(* Classes of formulas, via auxiliary "shared" inductive definition. *) | |
(* ------------------------------------------------------------------------- *) | |
let sigmapi_RULES,sigmapi_INDUCT,sigmapi_CASES = new_inductive_definition | |
`(!b n. sigmapi b n False) /\ | |
(!b n. sigmapi b n True) /\ | |
(!b n s t. sigmapi b n (s === t)) /\ | |
(!b n s t. sigmapi b n (s << t)) /\ | |
(!b n s t. sigmapi b n (s <<= t)) /\ | |
(!b n p. sigmapi (~b) n p ==> sigmapi b n (Not p)) /\ | |
(!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p && q)) /\ | |
(!b n p q. sigmapi b n p /\ sigmapi b n q ==> sigmapi b n (p || q)) /\ | |
(!b n p q. sigmapi (~b) n p /\ sigmapi b n q ==> sigmapi b n (p --> q)) /\ | |
(!b n p q. (!b. sigmapi b n p) /\ (!b. sigmapi b n q) | |
==> sigmapi b n (p <-> q)) /\ | |
(!n x p. sigmapi T n p /\ ~(n = 0) ==> sigmapi T n (??x p)) /\ | |
(!n x p. sigmapi F n p /\ ~(n = 0) ==> sigmapi F n (!!x p)) /\ | |
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t) | |
==> sigmapi b n (??x (V x << t && p))) /\ | |
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t) | |
==> sigmapi b n (??x (V x <<= t && p))) /\ | |
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t) | |
==> sigmapi b n (!!x (V x << t --> p))) /\ | |
(!b n x p t. sigmapi b n p /\ ~(x IN FVT t) | |
==> sigmapi b n (!!x (V x <<= t --> p))) /\ | |
(!b c n p. sigmapi b n p ==> sigmapi c (n + 1) p)`;; | |
let SIGMA = new_definition `SIGMA = sigmapi T`;; | |
let PI = new_definition `PI = sigmapi F`;; | |
let DELTA = new_definition `DELTA n p <=> SIGMA n p /\ PI n p`;; | |
let SIGMAPI_PROP = prove | |
(`(!n b. sigmapi b n False <=> T) /\ | |
(!n b. sigmapi b n True <=> T) /\ | |
(!n b s t. sigmapi b n (s === t) <=> T) /\ | |
(!n b s t. sigmapi b n (s << t) <=> T) /\ | |
(!n b s t. sigmapi b n (s <<= t) <=> T) /\ | |
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\ | |
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\ | |
(sigmapi b n q /\ sigmapi (~b) n q))`, | |
REWRITE_TAC[sigmapi_RULES] THEN | |
GEN_REWRITE_TAC DEPTH_CONV [AND_FORALL_THM] THEN | |
INDUCT_TAC THEN REWRITE_TAC[NOT_SUC; SUC_SUB1] THEN | |
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1; | |
FORALL_BOOL_THM] THEN | |
REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`] THEN | |
REWRITE_TAC[ARITH_RULE `(SUC m = n + 1) <=> (n = m)`; UNWIND_THM2] THEN | |
ASM_REWRITE_TAC[] THEN | |
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[ADD1] THEN | |
REWRITE_TAC[CONJ_ACI] THEN | |
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN | |
MESON_TAC[sigmapi_RULES]);; | |
let SIGMAPI_MONO_LEMMA = prove | |
(`(!b n p. sigmapi b n p ==> sigmapi b (n + 1) p) /\ | |
(!b n p. ~(n = 0) /\ sigmapi b (n - 1) p ==> sigmapi b n p) /\ | |
(!b n p. ~(n = 0) /\ sigmapi (~b) (n - 1) p ==> sigmapi b n p)`, | |
CONJ_TAC THENL | |
[REPEAT STRIP_TAC; | |
REPEAT STRIP_TAC THEN | |
FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE | |
`~(n = 0) ==> (n = (n - 1) + 1)`))] THEN | |
POP_ASSUM MP_TAC THEN ASM_MESON_TAC[sigmapi_RULES]);; | |
let SIGMAPI_REV_EXISTS = prove | |
(`!n b x p. sigmapi b n (??x p) ==> sigmapi b n p`, | |
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN | |
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN | |
ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);; | |
let SIGMAPI_REV_FORALL = prove | |
(`!n b x p. sigmapi b n (!!x p) ==> sigmapi b n p`, | |
MATCH_MP_TAC num_WF THEN GEN_TAC THEN DISCH_TAC THEN | |
REPEAT GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN | |
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[SIGMAPI_PROP] THEN | |
ASM_MESON_TAC[ARITH_RULE `n < n + 1`; sigmapi_RULES]);; | |
let SIGMAPI_CLAUSES_CODE = prove | |
(`(!n b. sigmapi b n False <=> T) /\ | |
(!n b. sigmapi b n True <=> T) /\ | |
(!n b s t. sigmapi b n (s === t) <=> T) /\ | |
(!n b s t. sigmapi b n (s << t) <=> T) /\ | |
(!n b s t. sigmapi b n (s <<= t) <=> T) /\ | |
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\ | |
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\ | |
(sigmapi b n q /\ sigmapi (~b) n q)) /\ | |
(!n b x p. sigmapi b n (??x p) <=> | |
if b /\ ~(n = 0) \/ | |
?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\ | |
~(x IN FVT t) | |
then sigmapi b n p | |
else ~(n = 0) /\ sigmapi (~b) (n - 1) (??x p)) /\ | |
(!n b x p. sigmapi b n (!!x p) <=> | |
if ~b /\ ~(n = 0) \/ | |
?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\ | |
~(x IN FVT t) | |
then sigmapi b n p | |
else ~(n = 0) /\ sigmapi (~b) (n - 1) (!!x p))`, | |
REWRITE_TAC[SIGMAPI_PROP] THEN CONJ_TAC THEN REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [sigmapi_CASES] THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN | |
REWRITE_TAC[GSYM CONJ_ASSOC; RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN | |
ONCE_REWRITE_TAC[TAUT `a \/ b \/ c \/ d <=> (b \/ c) \/ (a \/ d)`] THEN | |
REWRITE_TAC[CONJ_ASSOC; OR_EXISTS_THM; GSYM RIGHT_OR_DISTRIB] THEN | |
REWRITE_TAC[TAUT | |
`(if b /\ c \/ d then e else c /\ f) <=> | |
d /\ e \/ c /\ ~d /\ (if b then e else f)`] THEN | |
MATCH_MP_TAC(TAUT `(a <=> a') /\ (~a' ==> (b <=> b')) | |
==> (a \/ b <=> a' \/ b')`) THEN | |
(CONJ_TAC THENL | |
[REWRITE_TAC[LEFT_AND_EXISTS_THM] THEN | |
REPEAT(AP_TERM_TAC THEN ABS_TAC) THEN | |
EQ_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN | |
REPEAT(POP_ASSUM MP_TAC) THEN REWRITE_TAC[SIGMAPI_PROP] THEN | |
SIMP_TAC[]; | |
ALL_TAC]) THEN | |
(ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH_RULE `~(0 = n + 1)`]) THEN | |
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n = m + 1 <=> m = n - 1)`] THEN | |
REWRITE_TAC[UNWIND_THM2] THEN | |
W(fun (asl,w) -> ASM_CASES_TAC (find_term is_exists w)) THEN | |
ASM_REWRITE_TAC[CONTRAPOS_THM] THENL | |
[DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN | |
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]; | |
ASM_CASES_TAC `b:bool` THEN | |
ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL | |
[DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_EXISTS)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN | |
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]; | |
REWRITE_TAC[EXISTS_BOOL_THM] THEN | |
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN | |
ONCE_REWRITE_TAC[sigmapi_CASES] THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]]; | |
DISCH_THEN(DISJ_CASES_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN | |
FIRST_X_ASSUM(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN | |
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]; | |
ASM_CASES_TAC `b:bool` THEN | |
ASM_REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THENL | |
[REWRITE_TAC[EXISTS_BOOL_THM] THEN | |
REWRITE_TAC[TAUT `(a \/ b <=> a) <=> (b ==> a)`] THEN | |
ONCE_REWRITE_TAC[sigmapi_CASES] THEN | |
REWRITE_TAC[form_DISTINCT; form_INJ] THEN ASM_MESON_TAC[]; | |
DISCH_THEN(CHOOSE_THEN(MP_TAC o MATCH_MP SIGMAPI_REV_FORALL)) THEN | |
DISCH_THEN(MP_TAC o MATCH_MP(last(CONJUNCTS sigmapi_RULES))) THEN | |
ASM_SIMP_TAC[SUB_ADD; ARITH_RULE `~(n = 0) ==> 1 <= n`]]]);; | |
let SIGMAPI_CLAUSES = prove | |
(`(!n b. sigmapi b n False <=> T) /\ | |
(!n b. sigmapi b n True <=> T) /\ | |
(!n b s t. sigmapi b n (s === t) <=> T) /\ | |
(!n b s t. sigmapi b n (s << t) <=> T) /\ | |
(!n b s t. sigmapi b n (s <<= t) <=> T) /\ | |
(!n b p. sigmapi b n (Not p) <=> sigmapi (~b) n p) /\ | |
(!n b p q. sigmapi b n (p && q) <=> sigmapi b n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p || q) <=> sigmapi b n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p --> q) <=> sigmapi (~b) n p /\ sigmapi b n q) /\ | |
(!n b p q. sigmapi b n (p <-> q) <=> (sigmapi b n p /\ sigmapi (~b) n p) /\ | |
(sigmapi b n q /\ sigmapi (~b) n q)) /\ | |
(!n b x p. sigmapi b n (??x p) <=> | |
if b /\ ~(n = 0) \/ | |
?q t. (p = (V x << t && q) \/ p = (V x <<= t && q)) /\ | |
~(x IN FVT t) | |
then sigmapi b n p | |
else 2 <= n /\ sigmapi (~b) (n - 1) p) /\ | |
(!n b x p. sigmapi b n (!!x p) <=> | |
if ~b /\ ~(n = 0) \/ | |
?q t. (p = (V x << t --> q) \/ p = (V x <<= t --> q)) /\ | |
~(x IN FVT t) | |
then sigmapi b n p | |
else 2 <= n /\ sigmapi (~b) (n - 1) p)`, | |
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN | |
GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN | |
REWRITE_TAC[] THEN | |
ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[ARITH] THEN | |
BOOL_CASES_TAC `b:bool` THEN ASM_REWRITE_TAC[] THEN | |
COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN | |
GEN_REWRITE_TAC LAND_CONV [SIGMAPI_CLAUSES_CODE] THEN | |
ASM_REWRITE_TAC[ARITH_RULE `~(n - 1 = 0) <=> 2 <= n`] THEN | |
MESON_TAC[]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Show that it respects substitution. *) | |
(* ------------------------------------------------------------------------- *) | |
let SIGMAPI_FORMSUBST = prove | |
(`!p v n b. sigmapi b n p ==> sigmapi b n (formsubst v p)`, | |
MATCH_MP_TAC form_INDUCT THEN | |
REWRITE_TAC[SIGMAPI_CLAUSES; formsubst] THEN SIMP_TAC[] THEN | |
REWRITE_TAC[AND_FORALL_THM] THEN MAP_EVERY X_GEN_TAC [`x:num`; `p:form`] THEN | |
MATCH_MP_TAC(TAUT `(a ==> b /\ c) ==> (a ==> b) /\ (a ==> c)`) THEN | |
DISCH_TAC THEN REWRITE_TAC[AND_FORALL_THM] THEN | |
MAP_EVERY X_GEN_TAC [`i:num->term`; `n:num`; `b:bool`] THEN | |
REWRITE_TAC[FV] THEN LET_TAC THEN | |
CONV_TAC(ONCE_DEPTH_CONV let_CONV) THEN | |
REWRITE_TAC[SIGMAPI_CLAUSES] THEN | |
ONCE_REWRITE_TAC[TAUT | |
`((if p \/ q then x else y) ==> (if p \/ q' then x' else y')) <=> | |
(p /\ x ==> x') /\ | |
(~p ==> (if q then x else y) ==> (if q' then x' else y'))`] THEN | |
ASM_SIMP_TAC[] THEN REWRITE_TAC[DE_MORGAN_THM] THEN | |
CONJ_TAC THEN DISCH_THEN(K ALL_TAC) THEN MATCH_MP_TAC(TAUT | |
`(p ==> p') /\ (x ==> x') /\ (y ==> y') /\ (y ==> x) | |
==> (if p then x else y) ==> (if p' then x' else y')`) THEN | |
ASM_SIMP_TAC[SIGMAPI_MONO_LEMMA; ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN | |
STRIP_TAC THEN ASM_REWRITE_TAC[formsubst; form_INJ; termsubst] THEN | |
REWRITE_TAC[form_DISTINCT] THEN | |
ONCE_REWRITE_TAC[TAUT `((a /\ b) /\ c) /\ d <=> b /\ c /\ a /\ d`] THEN | |
REWRITE_TAC[UNWIND_THM1; termsubst; VALMOD_BASIC] THEN | |
REWRITE_TAC[TERMSUBST_FVT; IN_ELIM_THM; NOT_EXISTS_THM] THEN | |
X_GEN_TAC `y:num` THEN REWRITE_TAC[valmod] THEN | |
(COND_CASES_TAC THENL [ASM_MESON_TAC[]; ALL_TAC]) THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC (funpow 2 LAND_CONV) [SYM th]) THEN | |
FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[FV; FVT] THEN | |
REWRITE_TAC[IN_DELETE; IN_UNION; IN_SING; GSYM DISJ_ASSOC] THEN | |
REWRITE_TAC[TAUT `(a \/ b \/ c) /\ ~a <=> ~a /\ b \/ ~a /\ c`] THEN | |
(COND_CASES_TAC THENL [ALL_TAC; ASM_MESON_TAC[]]) THEN | |
W(fun (asl,w) -> let t = lhand(rand w) in | |
MP_TAC(SPEC (rand(rand t)) VARIANT_THM) THEN | |
SPEC_TAC(t,`u:num`)) THEN | |
REWRITE_TAC[CONTRAPOS_THM; FORMSUBST_FV; IN_ELIM_THM; FV] THEN | |
GEN_TAC THEN DISCH_TAC THEN EXISTS_TAC `y:num` THEN | |
ASM_REWRITE_TAC[valmod; IN_UNION]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence all our main concepts are OK. *) | |
(* ------------------------------------------------------------------------- *) | |
let SIGMAPI_TAC ths = | |
REPEAT STRIP_TAC THEN | |
REWRITE_TAC ths THEN | |
TRY(MATCH_MP_TAC SIGMAPI_FORMSUBST) THEN | |
let ths' = ths @ [SIGMAPI_CLAUSES; form_DISTINCT; | |
form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; GSYM EXISTS_REFL; | |
FVT; IN_SING; ARITH_EQ] in | |
REWRITE_TAC ths' THEN ASM_SIMP_TAC ths';; | |
let SIGMAPI_DIVIDES = prove | |
(`!n s t. sigmapi b n (arith_divides s t)`, | |
SIGMAPI_TAC[arith_divides]);; | |
let SIGMAPI_PRIME = prove | |
(`!n t. sigmapi b n (arith_prime t)`, | |
SIGMAPI_TAC[arith_prime; SIGMAPI_DIVIDES]);; | |
let SIGMAPI_PRIMEPOW = prove | |
(`!n s t. sigmapi b n (arith_primepow s t)`, | |
SIGMAPI_TAC[arith_primepow; SIGMAPI_DIVIDES; SIGMAPI_PRIME]);; | |
let SIGMAPI_RTC = prove | |
(`(!s t. sigmapi T 1 (R s t)) | |
==> !s t. sigmapi T 1 (arith_rtc R s t)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtc] THEN | |
MATCH_MP_TAC SIGMAPI_FORMSUBST THEN | |
REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; | |
GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES; | |
SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN | |
ASM_REWRITE_TAC[]);; | |
let SIGMAPI_RTCP = prove | |
(`(!s t u. sigmapi T 1 (R s t u)) | |
==> !s t u. sigmapi T 1 (arith_rtcp R s t u)`, | |
REPEAT STRIP_TAC THEN REWRITE_TAC[arith_rtcp] THEN | |
MATCH_MP_TAC SIGMAPI_FORMSUBST THEN | |
REWRITE_TAC[SIGMAPI_CLAUSES; form_INJ; GSYM CONJ_ASSOC; UNWIND_THM1; | |
GSYM EXISTS_REFL; FVT; IN_SING; ARITH_EQ; SIGMAPI_DIVIDES; | |
SIGMAPI_PRIME; SIGMAPI_PRIMEPOW; form_DISTINCT] THEN | |
ASM_REWRITE_TAC[]);; | |
let SIGMAPI_TERM1 = prove | |
(`!s t. sigmapi T 1 (arith_term1 s t)`, | |
SIGMAPI_TAC[arith_term1]);; | |
let SIGMAPI_TERM = prove | |
(`!t. sigmapi T 1 (arith_term t)`, | |
SIGMAPI_TAC[arith_term; SIGMAPI_RTC; SIGMAPI_TERM1]);; | |
let SIGMAPI_FORM1 = prove | |
(`!s t. sigmapi T 1 (arith_form1 s t)`, | |
SIGMAPI_TAC[arith_form1; SIGMAPI_TERM]);; | |
let SIGMAPI_FORM = prove | |
(`!t. sigmapi T 1 (arith_form t)`, | |
SIGMAPI_TAC[arith_form; SIGMAPI_RTC; SIGMAPI_FORM1]);; | |
let SIGMAPI_FREETERM1 = prove | |
(`!s t u. sigmapi T 1 (arith_freeterm1 s t u)`, | |
SIGMAPI_TAC[arith_freeterm1]);; | |
let SIGMAPI_FREETERM = prove | |
(`!s t. sigmapi T 1 (arith_freeterm s t)`, | |
SIGMAPI_TAC[arith_freeterm; SIGMAPI_FREETERM1; SIGMAPI_RTCP]);; | |
let SIGMAPI_FREEFORM1 = prove | |
(`!s t u. sigmapi T 1 (arith_freeform1 s t u)`, | |
SIGMAPI_TAC[arith_freeform1; SIGMAPI_FREETERM; SIGMAPI_FORM]);; | |
let SIGMAPI_FREEFORM = prove | |
(`!s t. sigmapi T 1 (arith_freeform s t)`, | |
SIGMAPI_TAC[arith_freeform; SIGMAPI_FREEFORM1; SIGMAPI_RTCP]);; | |
let SIGMAPI_AXIOM = prove | |
(`!t. sigmapi T 1 (arith_axiom t)`, | |
SIGMAPI_TAC[arith_axiom; SIGMAPI_FREEFORM; SIGMAPI_FREETERM; SIGMAPI_FORM; | |
SIGMAPI_TERM]);; | |
let SIGMAPI_PROV1 = prove | |
(`!A. (!t. sigmapi T 1 (A t)) ==> !s t. sigmapi T 1 (arith_prov1 A s t)`, | |
SIGMAPI_TAC[arith_prov1; SIGMAPI_AXIOM]);; | |
let SIGMAPI_PROV = prove | |
(`(!t. sigmapi T 1 (A t)) ==> !t. sigmapi T 1 (arith_prov A t)`, | |
SIGMAPI_TAC[arith_prov; SIGMAPI_PROV1; SIGMAPI_RTC]);; | |
let SIGMAPI_PRIMRECSTEP = prove | |
(`(!s t u. sigmapi T 1 (R s t u)) | |
==> !s t. sigmapi T 1 (arith_primrecstep R s t)`, | |
SIGMAPI_TAC[arith_primrecstep]);; | |
let SIGMAPI_PRIMREC = prove | |
(`(!s t u. sigmapi T 1 (R s t u)) | |
==> !s t. sigmapi T 1 (arith_primrec R c s t)`, | |
SIGMAPI_TAC[arith_primrec; SIGMAPI_PRIMRECSTEP; SIGMAPI_RTC]);; | |
let SIGMAPI_GNUMERAL1 = prove | |
(`!s t. sigmapi T 1 (arith_gnumeral1 s t)`, | |
SIGMAPI_TAC[arith_gnumeral1]);; | |
let SIGMAPI_GNUMERAL = prove | |
(`!s t. sigmapi T 1 (arith_gnumeral s t)`, | |
SIGMAPI_TAC[arith_gnumeral; arith_gnumeral1'; | |
SIGMAPI_GNUMERAL1; SIGMAPI_RTC]);; | |
let SIGMAPI_QSUBST = prove | |
(`!x n p. sigmapi T 1 p ==> sigmapi T 1 (qsubst(x,n) p)`, | |
SIGMAPI_TAC[qsubst]);; | |
let SIGMAPI_QDIAG = prove | |
(`!x s t. sigmapi T 1 (arith_qdiag x s t)`, | |
SIGMAPI_TAC[arith_qdiag; SIGMAPI_GNUMERAL]);; | |
let SIGMAPI_DIAGONALIZE = prove | |
(`!x p. sigmapi T 1 p ==> sigmapi T 1 (diagonalize x p)`, | |
SIGMAPI_TAC[diagonalize; SIGMAPI_QDIAG; | |
SIGMAPI_FORMSUBST; LET_DEF; LET_END_DEF]);; | |
let SIGMAPI_FIXPOINT = prove | |
(`!x p. sigmapi T 1 p ==> sigmapi T 1 (fixpoint x p)`, | |
SIGMAPI_TAC[fixpoint; qdiag; SIGMAPI_QSUBST; SIGMAPI_DIAGONALIZE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The Godel sentence, "H" being Sigma and "G" being Pi. *) | |
(* ------------------------------------------------------------------------- *) | |
let hsentence = new_definition | |
`hsentence Arep = | |
fixpoint 0 (arith_prov Arep (arith_pair (numeral 4) (V 0)))`;; | |
let gsentence = new_definition | |
`gsentence Arep = Not(hsentence Arep)`;; | |
let FV_HSENTENCE = prove | |
(`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(hsentence Arep) = {})`, | |
SIMP_TAC[hsentence; FV_FIXPOINT; FV_PROV] THEN | |
REWRITE_TAC[FVT_PAIR; FVT_NUMERAL; FVT; UNION_EMPTY; DELETE_INSERT; | |
EMPTY_DELETE]);; | |
let FV_GSENTENCE = prove | |
(`!Arep. (!t. FV(Arep t) = FVT t) ==> (FV(gsentence Arep) = {})`, | |
SIMP_TAC[gsentence; FV_HSENTENCE; FV]);; | |
let SIGMAPI_HSENTENCE = prove | |
(`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi T 1 (hsentence Arep)`, | |
SIGMAPI_TAC[hsentence; SIGMAPI_FIXPOINT; SIGMAPI_PROV]);; | |
let SIGMAPI_GSENTENCE = prove | |
(`!Arep. (!t. sigmapi T 1 (Arep t)) ==> sigmapi F 1 (gsentence Arep)`, | |
SIGMAPI_TAC[gsentence; SIGMAPI_HSENTENCE]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Hence the key fixpoint properties. *) | |
(* ------------------------------------------------------------------------- *) | |
let HSENTENCE_FIX_STRONG = prove | |
(`!A Arep. | |
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A) | |
==> !v. holds v (hsentence Arep) <=> A |-- Not(hsentence Arep)`, | |
REWRITE_TAC[hsentence; true_def; HOLDS_FIXPOINT] THEN | |
REPEAT STRIP_TAC THEN | |
FIRST_ASSUM(MP_TAC o MATCH_MP ARITH_PROV) THEN | |
REWRITE_TAC[IN] THEN CONV_TAC(ONCE_DEPTH_CONV ETA_CONV) THEN | |
DISCH_TAC THEN ASM_REWRITE_TAC[ARITH_PAIR; TERMVAL_NUMERAL] THEN | |
REWRITE_TAC[termval; valmod; GSYM gform] THEN REWRITE_TAC[PROV_THM]);; | |
let HSENTENCE_FIX = prove | |
(`!A Arep. | |
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A) | |
==> (true(hsentence Arep) <=> A |-- Not(hsentence Arep))`, | |
REWRITE_TAC[true_def] THEN MESON_TAC[HSENTENCE_FIX_STRONG]);; | |
let GSENTENCE_FIX = prove | |
(`!A Arep. | |
(!v t. holds v (Arep t) <=> (termval v t) IN IMAGE gform A) | |
==> (true(gsentence Arep) <=> ~(A |-- gsentence Arep))`, | |
REWRITE_TAC[true_def; holds; gsentence] THEN | |
MESON_TAC[HSENTENCE_FIX_STRONG]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Auxiliary concepts. *) | |
(* ------------------------------------------------------------------------- *) | |
let ground = new_definition | |
`ground t <=> (FVT t = {})`;; | |
let complete_for = new_definition | |
`complete_for P A <=> !p. P p /\ true p ==> A |-- p`;; | |
let sound_for = new_definition | |
`sound_for P A <=> !p. P p /\ A |-- p ==> true p`;; | |
let consistent = new_definition | |
`consistent A <=> ~(?p. A |-- p /\ A |-- Not p)`;; | |
let CONSISTENT_ALT = prove | |
(`!A p. A |-- p /\ A |-- Not p <=> A |-- False`, | |
MESON_TAC[proves_RULES; axiom_RULES]);; | |
(* ------------------------------------------------------------------------- *) | |
(* The purest and most symmetric and beautiful form of G1. *) | |
(* ------------------------------------------------------------------------- *) | |
let DEFINABLE_BY_ONEVAR = prove | |
(`definable_by (SIGMA 1) s <=> | |
?p x. SIGMA 1 p /\ (FV p = {x}) /\ !v. holds v p <=> (v x) IN s`, | |
REWRITE_TAC[definable_by; SIGMA] THEN | |
EQ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN | |
DISCH_THEN(X_CHOOSE_THEN `p:form` (X_CHOOSE_TAC `x:num`)) THEN | |
EXISTS_TAC `(V x === V x) && formsubst (\y. if y = x then V x else Z) p` THEN | |
EXISTS_TAC `x:num` THEN ASM_SIMP_TAC[SIGMAPI_CLAUSES; SIGMAPI_FORMSUBST] THEN | |
ASM_REWRITE_TAC[HOLDS_FORMSUBST; FORMSUBST_FV; FV; holds] THEN | |
REWRITE_TAC[COND_RAND; EXTENSION; IN_ELIM_THM; IN_SING; FVT; IN_UNION; | |
COND_EXPAND; NOT_IN_EMPTY; o_THM; termval] THEN | |
MESON_TAC[]);; | |
let CLOSED_NOT_TRUE = prove | |
(`!p. closed p ==> (true(Not p) <=> ~(true p))`, | |
REWRITE_TAC[closed; true_def; holds] THEN | |
MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);; | |
let G1 = prove | |
(`!A. definable_by (SIGMA 1) (IMAGE gform A) | |
==> ?G. PI 1 G /\ closed G /\ | |
(sound_for (PI 1 INTER closed) A ==> true G /\ ~(A |-- G)) /\ | |
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`, | |
GEN_TAC THEN | |
REWRITE_TAC[sound_for; INTER; IN_ELIM_THM; DEFINABLE_BY_ONEVAR] THEN | |
DISCH_THEN(X_CHOOSE_THEN `Arep:form` (X_CHOOSE_THEN `a:num` | |
STRIP_ASSUME_TAC)) THEN | |
MP_TAC(SPECL [`A:form->bool`; `\t. formsubst ((a |-> t) V) Arep`] | |
GSENTENCE_FIX) THEN | |
REWRITE_TAC[] THEN ANTS_TAC THENL | |
[ASM_REWRITE_TAC[HOLDS_FORMSUBST] THEN REWRITE_TAC[termval; valmod; o_THM]; | |
ALL_TAC] THEN | |
STRIP_TAC THEN EXISTS_TAC `gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN | |
ASM_REWRITE_TAC[] THEN | |
MATCH_MP_TAC(TAUT `a /\ b /\ (a /\ b ==> c /\ d) ==> a /\ b /\ c /\ d`) THEN | |
REPEAT CONJ_TAC THENL | |
[REWRITE_TAC[PI] THEN MATCH_MP_TAC SIGMAPI_GSENTENCE THEN | |
RULE_ASSUM_TAC(REWRITE_RULE[SIGMA]) THEN ASM_SIMP_TAC[SIGMAPI_FORMSUBST]; | |
REWRITE_TAC[closed] THEN MATCH_MP_TAC FV_GSENTENCE THEN | |
ASM_REWRITE_TAC[FORMSUBST_FV; EXTENSION; IN_ELIM_THM; IN_SING; | |
valmod; UNWIND_THM2]; | |
ALL_TAC] THEN | |
ABBREV_TAC `G = gsentence (\t. formsubst ((a |-> t) V) Arep)` THEN | |
REPEAT STRIP_TAC THENL [ASM_MESON_TAC[IN]; ALL_TAC] THEN | |
SUBGOAL_THEN `true(Not G)` MP_TAC THENL | |
[FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[IN] THEN | |
REWRITE_TAC[SIGMA; SIGMAPI_CLAUSES] THEN ASM_MESON_TAC[closed; FV; PI]; | |
ALL_TAC] THEN | |
FIRST_ASSUM(SUBST1_TAC o MATCH_MP CLOSED_NOT_TRUE) THEN | |
ASM_REWRITE_TAC[] THEN DISCH_TAC THEN | |
SUBGOAL_THEN `true False` MP_TAC THENL | |
[ALL_TAC; REWRITE_TAC[true_def; holds]] THEN | |
FIRST_X_ASSUM MATCH_MP_TAC THEN | |
REWRITE_TAC[closed; IN; SIGMA; SIGMAPI_CLAUSES; FV] THEN | |
ASM_MESON_TAC[CONSISTENT_ALT]);; | |
(* ------------------------------------------------------------------------- *) | |
(* Some more familiar variants. *) | |
(* ------------------------------------------------------------------------- *) | |
let COMPLETE_SOUND_SENTENCE = prove | |
(`consistent A /\ complete_for (sigmapi (~b) n INTER closed) A | |
==> sound_for (sigmapi b n INTER closed) A`, | |
REWRITE_TAC[consistent; sound_for; complete_for; IN; INTER; IN_ELIM_THM] THEN | |
REWRITE_TAC[NOT_EXISTS_THM] THEN | |
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN | |
DISCH_THEN(fun th -> X_GEN_TAC `p:form` THEN MP_TAC(SPEC `Not p` th)) THEN | |
REWRITE_TAC[SIGMAPI_CLAUSES] THEN | |
REWRITE_TAC[closed; FV; true_def; holds] THEN | |
ASM_MESON_TAC[HOLDS_VALUATION; NOT_IN_EMPTY]);; | |
let G1_TRAD = prove | |
(`!A. consistent A /\ | |
complete_for (SIGMA 1 INTER closed) A /\ | |
definable_by (SIGMA 1) (IMAGE gform A) | |
==> ?G. PI 1 G /\ closed G /\ true G /\ ~(A |-- G) /\ | |
(sound_for (SIGMA 1 INTER closed) A ==> ~(A |-- Not G))`, | |
REWRITE_TAC[SIGMA] THEN REPEAT STRIP_TAC THEN | |
MP_TAC(SPEC `A:form->bool` G1) THEN ASM_REWRITE_TAC[SIGMA; PI] THEN | |
MATCH_MP_TAC MONO_EXISTS THEN ASM_SIMP_TAC[COMPLETE_SOUND_SENTENCE]);; | |